Digital Twins for Radiopharmaceutical Dosimetry: PBPK Modelling of [177Lu]Lu-rhPSMA-10.1 in a Preclinical mCRPC Model
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Workflow
2.2. Experimental Data
2.3. PBPK Model
2.4. Mouse Digital Twin
2.5. Simulations
2.6. Absorbed Dose
3. Results
| Parameter | m1 | m2 | m3 | m4 | m5 | Median | Units |
|---|---|---|---|---|---|---|---|
| RD_Tum | 18.21 | 19.52 | 20.00 | 20.56 | 17.45 | 19.52 | nmol/L |
| F_Tum | 3.52 × 10 −6 | 5.41 × 10 −6 | 1.82 × 10 −5 | 5.61 × 10 −6 | 3.72 × 10 −6 | 5.41 × 10 −6 | L/min |
| RD_Kid | 4.92 | 4.77 | 8.35 | 6.78 | 11.14 | 6.78 | nmol/L |
| GFR | 3.54 × 10 −5 | 3.35 × 10 −5 | 3.71 × 10 −5 | 3.68 × 10 −5 | 3.41 × 10 −5 | 3.54 × 10 −5 | L/min |
| RD_Liv | 0.31 | 0.28 | 0.60 | 0.31 | 0.26 | 0.31 | nmol/L |
| RD_Spl | 0.40 | 0.25 | 0.28 | 0.31 | 0.39 | 0.31 | nmol/L |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Sartor, O.; de Bono, J.; Chi, K.; Fizazi, K.; Herrmann, K.; Rahbar, K.; Tagawa, S.; Nordquist, L.; Vaishampayan, N.; El-Haddad, G.; et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2021, 385, 1091–1103. [Google Scholar] [CrossRef] [PubMed]
- Foxton, C.; Waldron, B.; Veggerby Grønlund, R.; Simón, J.J.; Cornelissen, B.; O’Neill, E.; Stevens, D. Preclinical Evaluation of 177Lu-rhPSMA-10.1, a Radiopharmaceutical for Prostate Cancer: Biodistribution and Therapeutic Efficacy. J. Nucl. Med. 2025, 66, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Hennrich, U.; Eder, M. [177Lu]Lu-PSMA-617 (Pluvicto): The First FDA-Approved Radiotherapeutical for Treatment of Prostate Cancer. Pharmaceuticals 2022, 15, 1292. [Google Scholar] [CrossRef]
- Rinscheid, A.; Gäble, A.; Wienand, G.; Pfob, C.; Dierks, A.; Kircher, M.; Trepel, M.; Weckermann, D.; Lapa, C.; Bundschuh, R. An Intrapatient Dosimetry Comparison of 177Lu-rhPSMA-10.1 and 177Lu-PSMA-I&T in Patients with Metastatic Castration-Resistant Prostate Cancer. J. Nucl. Med. 2023, 64, 1918–1924. [Google Scholar]
- Dierks, A.; Gäble, A.; Rinscheid, A.; Wienand, G.; Pfob, C.H.; Kircher, M.; Enke, J.S.; Janzen, T.; Patt, M.; Trepel, M.; et al. First Safety and Efficacy Data with the Radiohybrid 177Lu-rhPSMA-10.1 for the Treatment of Metastatic Prostate Cancer. J. Nucl. Med. 2023, 65, 432–437. [Google Scholar] [CrossRef]
- Wurzer, A.; Kunert, J.P.; Fischer, S.; Felber, V.; Beck, R.; De Rose, F.; D’Alessandria, C.; Weber, W.; Wester, H.J. Synthesis and Preclinical Evaluation of 177Lu-labeled Radiohybrid PSMA Ligands (rhPSMAs) for Endoradiotherapy of Prostate Cancer. J. Nucl. Med. 2022, 63, 1489–1495. [Google Scholar] [CrossRef]
- Gafita, A.; Calais, J.; Grogan, T.R.; Hadaschik, B.; Wang, H.; Weber, M.; Sandhu, S.; Kratochwil, C.; Esfandiari, R.; Tauber, R.; et al. Nomograms to predict outcomes after 177Lu-PSMA therapy in men with metastatic castration-resistant prostate cancer: An international, multicentre, retrospective study. Lancet Oncol. 2021, 22, 1115–1125. [Google Scholar] [CrossRef]
- Sandström, M.; Garske-Román, U.; Granberg, D.; Johansson, S.; Widström, C.; Eriksson, B.; Sundin, A.; Lundqvist, H.; Lubberink, M. Individualized Dosimetry of Kidney and Bone Marrow in Patients Undergoing Lu-177-DOTA-Octreotate Treatment. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2012, 54, 33–41. [Google Scholar]
- Del Prete, M.; Buteau, F.A.; Beauregard, J.M. Personalized (177)Lu-octreotate peptide receptor radionuclide therapy of neuroendocrine tumours: A simulation study. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 1490–1500. [Google Scholar] [CrossRef] [PubMed]
- Cremonesi, M.; Ferrari, M.; Bodei, L.; Chiesa, C.; Sarnelli, A.; Garibaldi, C.; Pacilio, M.; Strigari, L.; Summers, P.; Orecchia, R.; et al. Correlation of dose with toxicity and tumour response to 90Y- and 177Lu-PRRT provides the basis for optimization through individualized treatment planning. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 2426–2441. [Google Scholar] [CrossRef]
- Zaid, N.; Kletting, P.; Winter, G.; Prasad, V.; Beer, A.; Glatting, G. A Physiologically Based Pharmacokinetic Model for In Vivo Alpha Particle Generators Targeting Neuroendocrine Tumors in Mice. Pharmaceutics 2021, 13, 2132. [Google Scholar] [CrossRef] [PubMed]
- Hardiansyah, D.; Kletting, P.; Begum, N.; Eiber, M.; Beer, A.; Pawiro, S.; Glatting, G. Important pharmacokinetic parameters for individualization of 177Lu-PSMA therapy: A global sensitivity analysis for a physiologically-based pharmacokinetic model. Med. Phys. 2021, 48, 556–568. [Google Scholar] [CrossRef] [PubMed]
- Begum, N.; Allmann, A.; Eberhardt, N.; Tauber, R.; Beer, A.; Glatting, G.; Eiber, M.; Kletting, P. The Effect of Total Tumor Volume on the Biologically Effective Dose to Tumor and Kidneys for 177Lu-Labeled PSMA Peptides. J. Nucl. Med. 2018, 59, 929–933. [Google Scholar] [CrossRef] [PubMed]
- Winter, G.; Vogt, A.; Jiménez-Franco, L.D.; Rinscheid, A.; Yousefzadeh-Nowshahr, E.; Solbach, C.; Beer, A.J.; Glatting, G.; Kletting, P. Modelling the internalisation process of prostate cancer cells for PSMA-specific ligands. Nucl. Med. Biol. 2019, 72–73, 20–25. [Google Scholar] [CrossRef]
- Stokke, C.; Gnesin, S.; Tran-Gia, J.; Cicone, F.; Holm, S.; Cremonesi, M.; Blakkisrud, J.; Wendler, T.; Gillings, N.; Herrmann, K.; et al. EANM guidance document: Dosimetry for first-in-human studies and early phase clinical trials. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 1268–1286. [Google Scholar] [CrossRef]
- Brosch-Lenz, J.; Uribe, C.; Rahmim, A.; Saboury, B. Theranostic Digital Twins: An indispensable prerequisite for personalized cancer care. J. Nucl. Med. 2022, 64, 501. [Google Scholar] [CrossRef]
- Strigari, L.; Schwarz, J.; Bradshaw, T.; Brosch-Lenz, J.; Currie, G.; El-Fakhri, G.; Jha, A.K.; Mevzinska, S.; Pandit-Taskar, N.; Roncali, E.; et al. Computational Nuclear Oncology Toward Precision Radiopharmaceutical Therapies: Ethical, Regulatory, and Socioeconomic Dimensions of Theranostic Digital Twins. J. Nucl. Med. 2025, 66, 748–756. [Google Scholar] [CrossRef]
- Kletting, P.; Kull, T.; Maaß, C.; Malik, N.; Luster, M.; Beer, A.J.; Glatting, G. Optimized Peptide Amount and Activity for 90Y-Labeled DOTATATE Therapy. J. Nucl. Med. 2016, 57, 503–508. [Google Scholar] [CrossRef]
- Okamoto, S.; Thieme, A.; Allmann, J.; D’Alessandria, C.; Maurer, T.; Retz, M.; Tauber, R.; Heck, M.M.; Wester, H.J.; Tamaki, N.; et al. Radiation Dosimetry for 177Lu-PSMA I&T in Metastatic Castration-Resistant Prostate Cancer: Absorbed Dose in Normal Organs and Tumor Lesions. J. Nucl. Med. 2017, 58, 445–450. [Google Scholar]
- Williams, L.E. Radiopharmaceuticals: Introduction to Drug Evaluation and Dose Estimation. In Radiopharmaceuticals: Introduction to Drug Evaluation and Dose Estimation; CRC Press: Boca Raton, FL, USA, 2011; Chapter 11; p. 251. [Google Scholar]
- Rinscheid, A.; Kletting, P.; Eiber, M.; Beer, A.; Glatting, G. Technical Note: Optimal sampling schedules for kidney dosimetry based on the hybrid planar/SPECT method in Lu-PSMA therapy. Med. Phys. 2019, 46, 5861–5866. [Google Scholar] [CrossRef]
- Raskin, S.; Gamliel, D.; Abookasis, D.; Ben-Haim, S.; Chicheportiche, A. Towards accurate 177Lu SPECT activity quantification and standardization using lesion-to-background voxel ratio. EJNMMI Phys. 2023, 10, 5. [Google Scholar] [CrossRef]
- Hindié, E.; Zanotti-Fregonara, P.; Quinto, M.A.; Morgat, C.; Champion, C. Dose Deposits from 90Y, 177Lu, 111In, and 161Tb in Micrometastases of Various Sizes: Implications for Radiopharmaceutical Therapy. J. Nucl. Med. 2016, 57, 759–764. [Google Scholar] [CrossRef]
- Tranel, J.; Palm, S.; Graves, S.A.; Feng, F.Y.; Hope, T.A. Impact of radiopharmaceutical therapy (177Lu, 225Ac) microdistribution in a cancer-associated fibroblasts model. EJNMMI Phys. 2022, 9, 67. [Google Scholar] [CrossRef] [PubMed]
- Stokke, C.; Kvassheim, M.; Blakkisrud, J. Radionuclides for Targeted Therapy: Physical Properties. Molecules 2022, 27, 5429. [Google Scholar] [CrossRef]
- Kiess, A.; O’Donoghue, J.; Uribe, C.; Bodei, L.; Hobbs, R.; Hesterman, J.; Kesner, A.; Sgouros, G.; Morris, M. How Can Radiopharmaceutical Therapies Reach Their Full Potential? Improving Dose Reporting and Phase I Clinical Trial Design. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2024, 42, JCO2301241. [Google Scholar] [CrossRef]
- Simons, B.W.; Turtle, N.F.; Ulmert, D.H.; Abou, D.S.; Thorek, D.L.J. PSMA expression in the Hi-Myc model; extended utility of a representative model of prostate adenocarcinoma for biological insight and as a drug discovery tool. Prostate 2019, 79, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Roy, J.; Warner, B.; Basuli, F.; Zhang, X.; Wong, K.; Pranzatelli, T.; Ton, A.; Chiorini, J.; Choyke, P.; Lin, F.; et al. Comparison of Prostate-Specific Membrane Antigen Expression Levels in Human Salivary Glands to Non-Human Primates and Rodents. Cancer Biother Radiopharm. 2020, 35, 284–291. [Google Scholar] [CrossRef]
- Peters, S.; Dolgos, H. Requirements to Establishing Confidence in Physiologically Based Pharmacokinetic (PBPK) Models and Overcoming Some of the Challenges to Meeting Them. Clin. Pharmacokinet. 2019, 58, 1355–1371. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.A. Physiologically-Based Pharmacokinetics of Biotherapeutics. In Physiologically-Based Pharmacokinetic (PBPK) Modeling and Simulations; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012; Chapter 10; pp. 209–259. [Google Scholar]
- Sasaki, Y.; Iwama, R.; Sato, T.; Heishima, K.; Shimamura, S.; Ichijo, T.; Satoh, H.; Furuhama, K. Estimation of glomerular filtration rate in conscious mice using a simplified equation. Physiol. Rep. 2014, 2, e12135. [Google Scholar] [CrossRef]
- Tan, Z.; Zhang, Y.; Wang, C.; Sun, L. Physiologically Based Pharmacokinetic Modeling of Cefadroxil in Mouse, Rat, and Human to Predict Concentration–Time Profile at Infected Tissue. Front. Pharmacol. 2021, 12, 692741. [Google Scholar] [CrossRef] [PubMed]




| Difference (%) | ||
|---|---|---|
| Kidneys | Tumour | |
| Mouse 1 | 2.32 | 0.96 |
| Mouse 2 | 0.38 | 0.15 |
| Mouse 3 | 1.77 | 0.12 |
| Mouse 4 | 0.06 | 0.02 |
| Mouse 5 | 2.20 | 0.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, G.; Yousefzadeh-Nowshahr, E.; Vasic, V.; Sun, B.; Nagel, L.; Wurzer, A.; Schilling, F.; Beer, A.; Weber, W.; Kossatz, S.; et al. Digital Twins for Radiopharmaceutical Dosimetry: PBPK Modelling of [177Lu]Lu-rhPSMA-10.1 in a Preclinical mCRPC Model. Cancers 2025, 17, 3957. https://doi.org/10.3390/cancers17243957
Costa G, Yousefzadeh-Nowshahr E, Vasic V, Sun B, Nagel L, Wurzer A, Schilling F, Beer A, Weber W, Kossatz S, et al. Digital Twins for Radiopharmaceutical Dosimetry: PBPK Modelling of [177Lu]Lu-rhPSMA-10.1 in a Preclinical mCRPC Model. Cancers. 2025; 17(24):3957. https://doi.org/10.3390/cancers17243957
Chicago/Turabian StyleCosta, Gustavo, Elham Yousefzadeh-Nowshahr, Valentina Vasic, Baiqing Sun, Luca Nagel, Alexander Wurzer, Franz Schilling, Ambros Beer, Wolfgang Weber, Susanne Kossatz, and et al. 2025. "Digital Twins for Radiopharmaceutical Dosimetry: PBPK Modelling of [177Lu]Lu-rhPSMA-10.1 in a Preclinical mCRPC Model" Cancers 17, no. 24: 3957. https://doi.org/10.3390/cancers17243957
APA StyleCosta, G., Yousefzadeh-Nowshahr, E., Vasic, V., Sun, B., Nagel, L., Wurzer, A., Schilling, F., Beer, A., Weber, W., Kossatz, S., & Glatting, G. (2025). Digital Twins for Radiopharmaceutical Dosimetry: PBPK Modelling of [177Lu]Lu-rhPSMA-10.1 in a Preclinical mCRPC Model. Cancers, 17(24), 3957. https://doi.org/10.3390/cancers17243957

