Treatment of Pelvic Recurrence After Radiotherapy for Cervical Cancer
Simple Summary
Abstract
1. Introduction
2. Current Treatment Standard for Recurrent Metastatic Cervical Cancer
3. Local Treatment for Pelvic Recurrence
3.1. Surgical Treatment
3.2. Re-Irradiation
4. Systemic Therapy for Pelvic Recurrence
4.1. Targeted Therapy
4.1.1. Tyrosine Kinase Inhibitors
4.1.2. Antibody-Drug Conjugates
Tissue Factor (TF)
Human Epidermal Growth Factor Receptor 2 (HER2)
Trophoblast Cell Surface Antigen 2 (Trop-2)
Mesothelin
Nectin Cell Adhesion Molecule 4 (Nectin-4)
4.1.3. Epidermal Growth Factor Receptor-Targeted Therapy
4.2. Immunotherapy
4.2.1. PD-1 Inhibitors
Pembrolizumab
Enlonstobart Injection
Atezolizumab
Cemiplimab
Nivolumab
Zimberelimab
4.2.2. PD-L1 Inhibitors
4.2.3. CTLA-4 Inhibitors
4.2.4. Dual Checkpoint Inhibitors
TIGIT Inhibitors
4.2.5. Combination Therapy with Immune Checkpoint Inhibitors
4.3. Immunotherapy Combination Therapy
5. Future Prospects
5.1. Refinement of Combination Strategies
5.2. Targeting Novel Immune Regulatory Axes
5.3. Leveraging Dynamic Biomarkers and AI
5.4. Advancing Cellular Therapies and Vaccines
5.5. Pioneering Novel Biologics
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| OS | overall survival |
| mOS | median overall survival |
| PFS | progression free survival |
| mPFS | progression free survival |
| DoR | duration of response |
| mDoR | median duration of response |
| SD | stable disease |
| DCR | disease control rate |
| ORR | objective response rate |
| CRR | complete response rate |
| HPV | human papilloma virus |
| CPS | combined positive score |
| EGF | epidermal growth factor |
| VEGF | vascular endothelial growth factor |
| EGFR | epidermal growth factor receptor |
| VEGFR | vascular endothelial growth factor receptor |
| PAR | poly ADP-ribose |
| PARP | poly ADP-ribose polymerase |
| FDA | Food and Drug Administration |
| ATP | adenosine triphosphate |
| TKI | tyrosine kinase inhibitor |
| ADC | antibody-drug conjugate |
| CTLA-4 | cytotoxic T lymphocyte antigen 4 |
| PD-L1 | programmed cell death protein 1 |
| ITIM | immune receptor tyrosine-based inhibitory motif |
| TIGIT | T cell immunoglobulin and ITIM domains |
| LAG-3 | lymphocyte activation gene 3 |
| ICI | immune checkpoint inhibitor |
| TAP | tumor area positivity score |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Monk, B.J.; Colombo, N.; Tewari, K.S.; Dubot, C.; Caceres, M.V.; Hasegawa, K.; Shapira-Frommer, R.; Salman, P.; Yañez, E.; Gümüş, M.; et al. First-Line Pembrolizumab + Chemotherapy Versus Placebo + Chemotherapy for Persistent, Recurrent, or Metastatic Cervical Cancer: Final Overall Survival Results of KEYNOTE-826. J. Clin. Oncol. 2023, 41, 5505–5511. [Google Scholar] [CrossRef]
- Small, W., Jr.; Bacon, M.A.; Bajaj, A.; Chuang, L.T.; Fisher, B.J.; Harkenrider, M.M.; Jhingran, A.; Kitchener, H.C.; Mileshkin, L.R.; Viswanathan, A.N.; et al. Cervical cancer: A global health crisis. Cancer 2017, 123, 2404–2412. [Google Scholar] [CrossRef]
- Mayadev, J.S.; Ke, G.; Mahantshetty, U.; Pereira, M.D.; Tarnawski, R.; Toita, T. Global challenges of radiotherapy for the treatment of locally advanced cervical cancer. Int. J. Gynecol. Cancer 2022, 32, 436–445. [Google Scholar] [CrossRef]
- Tewari, K.S.; Sill, M.W.; Penson, R.T.; Huang, H.; Ramondetta, L.M.; Landrum, L.M.; Oaknin, A.; Reid, T.J.; Leitao, M.M.; E Michael, H.; et al. Bevacizumab for advanced cervical cancer: Final overall survival and adverse event analysis of a randomised, controlled, open-label, phase 3 trial (Gynecologic Oncology Group 240). Lancet 2017, 390, 1654–1663. [Google Scholar] [CrossRef]
- Moore, D.H.; Blessing, J.A.; McQuellon, R.P.; Thaler, H.T.; Cella, D.; Benda, J.; Miller, D.S.; Olt, G.; King, S.; Boggess, J.F.; et al. Phase III Study of Cisplatin with or Without Paclitaxel in Stage IVB, Recurrent, or Persistent Squamous Cell Carcinoma of the Cervix: A Gynecologic Oncology Group Study. J. Clin. Oncol. 2004, 22, 3113–3119. [Google Scholar] [CrossRef]
- Tewari, K.S.; Sill, M.W.; Long, H.J., III; Penson, R.T.; Huang, H.; Ramondetta, L.M.; Landrum, L.M.; Oaknin, A.; Reid, T.J.; Leitao, M.M.; et al. Improved Survival with Bevacizumab in Advanced Cervical Cancer. N. Engl. J. Med. 2014, 370, 734–743, Erratum in N. Engl. J. Med. 2017, 377, 702. https://doi.org/10.1056/NEJMx170002. [Google Scholar] [CrossRef]
- Xu, C.; Garda, A.E.; Kumar, A. R0 Resection in Recurrent Gynecologic Malignancy: Pelvic Exenteration and Beyond. Curr. Treat. Options Oncol. 2023, 24, 262–273. [Google Scholar] [CrossRef]
- Benn, T.; Brooks, R.; Zhang, Q.; Powell, M.; Thaker, P.; Mutch, D.; Zighelboim, I. Pelvic exenteration in gynecologic oncology: A single institution study over 20 years. Gynecol. Oncol. 2011, 122, 14–18. [Google Scholar] [CrossRef]
- Corr, A.; Fletcher, J.; Jenkins, J.; Miskovic, D. Image-guided pelvic exenteration-preoperative and intraoperative strategies. Eur. J. Surg. Oncol. (EJSO) 2022, 48, 2263–2276. [Google Scholar] [CrossRef]
- Xiang-E, W.; Shu-Mo, C.; Ya-Qin, D.; Ke, W. Treatment of Late Recurrent Vaginal Malignancy after Initial Radiotherapy for Carcinoma of the Cervix: An Analysis of 73 Cases. Gynecol. Oncol. 1998, 69, 125–129. [Google Scholar] [CrossRef]
- Lee, L.J.; Damato, A.L.; Viswanathan, A.N. Clinical outcomes following 3D image-guided brachytherapy for vaginal recurrence of endometrial cancer. Gynecol. Oncol. 2013, 131, 586–592. [Google Scholar] [CrossRef]
- Kim, H.J.; Chang, J.S.; Koom, W.S.; Lee, K.C.; Kim, G.E.; Kim, Y.B. Radiotherapy is a safe and effective salvage treatment for recurrent cervical cancer. Gynecol. Oncol. 2018, 151, 208–214. [Google Scholar] [CrossRef]
- Llewelyn, M.; Taylor, A. Re-irradiation of cervical and endometrial cancer. Curr. Opin. Oncol. 2017, 29, 343–350. [Google Scholar] [CrossRef]
- Murray, L.J.; Lilley, J.; Hawkins, M.A.; Henry, A.M.; Dickinson, P.; Sebag-Montefiore, D. Pelvic re-irradiation using stereotactic ablative radiotherapy (SABR): A systematic review. Radiother. Oncol. 2017, 125, 213–222. [Google Scholar] [CrossRef]
- Hapani, S.; Chu, D.; Wu, S. Risk of gastrointestinal perforation in patients with cancer treated with bevacizumab: A meta-analysis. Lancet Oncol. 2009, 10, 559–568. [Google Scholar] [CrossRef]
- Brabham, J.G.M.; Cardenes, H.R. Permanent Interstitial Reirradiation with 198Au as Salvage Therapy for Low Volume Recurrent Gynecologic Malignancies. Am. J. Clin. Oncol. 2009, 32, 417–422. [Google Scholar] [CrossRef]
- Li, J.; Huang, L.; Wu, H.; Li, J.; Cao, X.; Liu, Z. Re-irradiation for recurrent cervical cancer: A single institutional experience. Clin. Transl. Radiat. Oncol. 2023, 43, 100690. [Google Scholar] [CrossRef]
- Kang, H.J.; Kwak, Y.-K.; Lee, S.J.; Kim, M. Re-Irradiation with Intensity-Modulated Radiation Therapy for the Treatment of Recurrent Cervical Cancer in the Pelvis: An Analysis of Outcomes and Toxicity. Medicina 2023, 59, 1164. [Google Scholar] [CrossRef]
- Qiu, H.; Li, J.; Liu, Q.; Tang, M.; Wang, Y. Apatinib, a novel tyrosine kinase inhibitor, suppresses tumor growth in cervical cancer and synergizes with Paclitaxel. Cell Cycle 2018, 17, 1235–1244. [Google Scholar] [CrossRef]
- Schutz, F.A.; Choueiri, T.K.; Sternberg, C.N. Pazopanib: Clinical development of a potent anti-angiogenic drug. Crit. Rev. Oncol. 2011, 77, 163–171. [Google Scholar] [CrossRef]
- Tewari, K.S. Clinical implications for cediranib in advanced cervical cancer. Lancet Oncol. 2015, 16, 1447–1448. [Google Scholar] [CrossRef][Green Version]
- Hilberg, F.; Roth, G.J.; Krssak, M.; Kautschitsch, S.; Sommergruber, W.; Tontsch-Grunt, U.; Garin-Chesa, P.; Bader, G.; Zoephel, A.; Quant, J.; et al. BIBF 1120: Triple Angiokinase Inhibitor with Sustained Receptor Blockade and Good Antitumor Efficacy. Cancer Res. 2008, 68, 4774–4782. [Google Scholar] [CrossRef]
- Mackay, H.J.; Tinker, A.; Winquist, E.; Thomas, G.; Swenerton, K.; Oza, A.; Sederias, J.; Ivy, P.; Eisenhauer, E.A. A phase II study of sunitinib in patients with locally advanced or metastatic cervical carcinoma: NCIC CTG Trial IND.184. Gynecol. Oncol. 2010, 116, 163–167. [Google Scholar] [CrossRef]
- Coleman, R.L.; Lorusso, D.; Gennigens, C.; González-Martín, A.; Randall, L.; Cibula, D.; Lund, B.; Woelber, L.; Pignata, S.; Forget, F.; et al. Efficacy and safety of tisotumab vedotin in previously treated recurrent or metastatic cervical cancer (innovaTV 204/GOG-3023/ENGOT-cx6): A multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2021, 22, 609–619. [Google Scholar] [CrossRef]
- Goncalves, A.; Fabbro, M.; Lhommé, C.; Gladieff, L.; Extra, J.-M.; Floquet, A.; Chaigneau, L.; Carrasco, A.T.; Viens, P. A phase II trial to evaluate gefitinib as second- or third-line treatment in patients with recurring locoregionally advanced or metastatic cervical cancer. Gynecol. Oncol. 2008, 108, 42–46. [Google Scholar] [CrossRef]
- Pang, Y.; Hou, X.; Yang, C.; Liu, Y.; Jiang, G. Advances on chimeric antigen receptor-modified T-cell therapy for oncotherapy. Mol. Cancer 2018, 17, 91. [Google Scholar] [CrossRef]
- Chung, H.; Ros, W.; Delord, J.-P.; Perets, R.; Italiano, A.; Shapira-Frommer, R.; Manzuk, L.; Piha-Paul, S.; Xu, L.; Zeigenfuss, S.; et al. Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Cervical Cancer: Results From the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2019, 37, 1470–1478. [Google Scholar] [CrossRef]
- Montero-Macias, R.; Koual, M.; Crespel, C.; Le Frére-Belda, M.A.; Hélène, H.B.; Nguyen-Xuan, H.-T.; Garinet, S.; Perkins, G.; Balay, V.; Durdux, C.; et al. Complete pathological response to olaparib and bevacizumab in advanced cervical cancer following chemoradiation in a BRCA1 mutation carrier: A case report. J. Med. Case Rep. 2021, 15, 210. [Google Scholar] [CrossRef]
- Jackson, C.; Moore, K.; Cantrell, L.; Erickson, B.; Duska, L.; Richardson, D.; Landrum, L.; Holman, L.; Walker, J.; Mannel, R.; et al. A phase II trial of bevacizumab and rucaparib in recurrent carcinoma of the cervix or endometrium. Gynecol. Oncol. 2022, 166, 44–49. [Google Scholar] [CrossRef]
- Chung, M.S.; Han, S.J. Endometriosis-Associated Angiogenesis and Anti-angiogenic Therapy for Endometriosis. Front. Glob. Women’s Health 2022, 3, 856316. [Google Scholar] [CrossRef]
- D’aLessio, A.; Moccia, F.; Li, J.-H.; Micera, A.; Kyriakides, T.R. Angiogenesis and Vasculogenesis in Health and Disease. BioMed Res. Int. 2015, 2015, 126582. [Google Scholar] [CrossRef]
- Du, S.; Qian, J.; Tan, S.; Li, W.; Liu, P.; Zhao, J.; Zeng, Y.; Xu, L.; Wang, Z.; Cai, J. Tumor cell-derived exosomes deliver TIE2 protein to macrophages to promote angiogenesis in cervical cancer. Cancer Lett. 2022, 529, 168–179. [Google Scholar] [CrossRef]
- Áyen, Á.; Martínez, Y.J.; Boulaiz, H. Targeted Gene Delivery Therapies for Cervical Cancer. Cancers 2020, 12, 1301. [Google Scholar] [CrossRef]
- Bogani, G.; Chiappa, V.; Bini, M.; Ronzulli, D.; Indini, A.; Conca, E.; Raspagliesi, F. BYL719 (alpelisib) for the treatment of PIK3CA-mutated, recurrent/advanced cervical cancer. Tumori J. 2022, 109, 244–248. [Google Scholar] [CrossRef]
- E Konecny, G.; Kristeleit, R.S. PARP inhibitors for BRCA1/2-mutated and sporadic ovarian cancer: Current practice and future directions. Br. J. Cancer 2016, 115, 1157–1173. [Google Scholar] [CrossRef]
- Livraghi, L.; Garber, J.E. PARP inhibitors in the management of breast cancer: Current data and future prospects. BMC Med. 2015, 13, 188. [Google Scholar] [CrossRef]
- Michels, J.; Vitale, I.; Galluzzi, L.; Adam, J.; Olaussen, K.A.; Kepp, O.; Senovilla, L.; Talhaoui, I.; Guegan, J.; Enot, D.P.; et al. Cisplatin Resistance Associated with PARP Hyperactivation. Cancer Res. 2013, 73, 2271–2280. [Google Scholar] [CrossRef]
- Rajawat, J.; Awasthi, P.; Banerjee, M. PARP inhibitor olaparib induced differential protein expression in cervical cancer cells. J. Proteom. 2023, 275, 104823. [Google Scholar] [CrossRef]
- Bianchi, A.; Lopez, S.; Altwerger, G.; Bellone, S.; Bonazzoli, E.; Zammataro, L.; Manzano, A.; Manara, P.; Perrone, E.; Zeybek, B.; et al. PARP-1 activity (PAR) determines the sensitivity of cervical cancer to olaparib. Gynecol. Oncol. 2019, 155, 144–150. [Google Scholar] [CrossRef]
- Mann, M.; Kumar, S.; Sharma, A.; Chauhan, S.S.; Bhatla, N.; Kumar, S.; Bakhshi, S.; Gupta, R.; Kumar, L. PARP-1 inhibitor modulate β-catenin signaling to enhance cisplatin sensitivity in cancer cervix. Oncotarget 2019, 10, 4262–4275, Correction in Oncotarget 2019, 10, 4802. https://doi.org/10.18632/oncotarget.27101. [Google Scholar] [CrossRef]
- Thaker, P.H.; Salani, R.; Brady, W.E.; Lankes, H.A.; Cohn, D.E.; Mutch, D.G.; Mannel, R.S.; Bell-McGuinn, K.M.; Di Silvestro, P.A.; Jelovac, D.; et al. A phase I trial of paclitaxel, cisplatin, and veliparib in the treatment of persistent or recurrent carcinoma of the cervix: An NRG Oncology Study (NCT#01281852). Ann. Oncol. 2016, 28, 505–511. [Google Scholar] [CrossRef]
- Syed, Y.Y. Rucaparib: First Global Approval. Drugs 2017, 77, 585–592. [Google Scholar] [CrossRef]
- Mauricio, D.; Zeybek, B.; Tymon-Rosario, J.; Harold, J.; Santin, A.D. Immunotherapy in Cervical Cancer. Curr. Oncol. Rep. 2021, 23, 61. [Google Scholar] [CrossRef]
- Sarwar, F.; Ashhad, S.; Vimal, A.; Vishvakarma, R. Small molecule inhibitors of the VEGF and tyrosine kinase for the treatment of cervical cancer. Med. Oncol. 2024, 41, 199. [Google Scholar] [CrossRef]
- Paul, M.K.; Mukhopadhyay, A.K. Tyrosine kinase—Role and significance in Cancer. Int. J. Med. Sci. 2004, 1, 101–115. [Google Scholar] [CrossRef]
- Morabito, A.; De Maio, E.; Di Maio, M.; Normanno, N.; Perrone, F. Tyrosine Kinase Inhibitors of Vascular Endothelial Growth Factor Receptors in Clinical Trials: Current Status and Future Directions. Oncologist 2006, 11, 753–764. [Google Scholar] [CrossRef]
- Huang, D.; He, Q.; Zhai, L.; Shen, J.; Jing, F.; Chen, H.; Zhu, X.; Zhou, J. Efficacy and Safety of Apatinib for the Treatment of Advanced or Recurrent Cervical Cancer: A Single-Arm Meta-Analysis Among Chinese Patients. Front. Pharmacol. 2022, 13, 843905. [Google Scholar] [CrossRef]
- Monk, B.J.; Lopez, L.M.; Zarba, J.J.; Oaknin, A.; Tarpin, C.; Termrungruanglert, W.; Alber, J.A.; Ding, J.; Stutts, M.W.; Pandite, L.N. Phase II, Open-Label Study of Pazopanib or Lapatinib Monotherapy Compared with Pazopanib Plus Lapatinib Combination Therapy in Patients with Advanced and Recurrent Cervical Cancer. J. Clin. Oncol. 2010, 28, 3562–3569. [Google Scholar] [CrossRef]
- Monk, B.J.; Willmott, L.J.; Sumner, D.A. Anti-angiogenesis agents in metastatic or recurrent cervical cancer. Gynecol. Oncol. 2010, 116, 181–186. [Google Scholar] [CrossRef]
- Symonds, R.P.; Gourley, C.; Davidson, S.; Carty, K.; McCartney, E.; Rai, D.; Banerjee, S.; Jackson, D.; Lord, R.; McCormack, M.; et al. Cediranib combined with carboplatin and paclitaxel in patients with metastatic or recurrent cervical cancer (CIRCCa): A randomised, double-blind, placebo-controlled phase 2 trial. Lancet Oncol. 2015, 16, 1515–1524. [Google Scholar] [CrossRef]
- Vergote, I.; Van Nieuwenhuysen, E.; Casado, A.; Laenen, A.; Lorusso, D.; Braicu, E.; Guerra-Alia, E.; Zola, P.; Wimberger, P.; Debruyne, P.; et al. Randomized phase II BGOG/ENGOT-cx1 study of paclitaxel-carboplatin with or without nintedanib in first-line recurrent or advanced cervical cancer. Gynecol. Oncol. 2023, 174, 80–88. [Google Scholar] [CrossRef]
- Hato, S.V.; Khong, A.; de Vries, I.J.M.; Lesterhuis, W.J. Molecular Pathways: The Immunogenic Effects of Platinum-Based Chemotherapeutics. Clin. Cancer Res. 2014, 20, 2831–2837. [Google Scholar] [CrossRef]
- Daniaux, M.; Gruber, L.; De Zordo, T.; Geiger-Gritsch, S.; Amort, B.; Santner, W.; Egle, D.; Baltzer, P.A.T. Preoperative staging by multimodal imaging in newly diagnosed breast cancer: Diagnostic performance of contrast-enhanced spectral mammography compared to conventional mammography, ultrasound, and MRI. Eur. J. Radiol. 2023, 163, 110838. [Google Scholar] [CrossRef]
- Starodub, A.N.; Ocean, A.J.; Shah, M.A.; Guarino, M.J.; Picozzi, V.J.; Vahdat, L.T.; Thomas, S.S.; Govindan, S.V.; Maliakal, P.P.; Wegener, W.A.; et al. First-in-Human Trial of a Novel Anti-Trop-2 Antibody-SN-38 Conjugate, Sacituzumab Govitecan, for the Treatment of Diverse Metastatic Solid Tumors. Clin. Cancer Res. 2015, 21, 3870–3878. [Google Scholar] [CrossRef]
- An, J.; Li, G.; Zhang, Y.; Feng, M.; Kong, W.; Jiang, H.; Luo, S.; Li, W.; Xu, C.; Han, L.; et al. Sacituzumab govitecan in Chinese patients with recurrent/metastatic cervical cancer: Results from the phase 2 EVER-132-003 basket study (NCT05119907). Gynecol. Oncol. 2025, 202, 33–40. [Google Scholar] [CrossRef]
- Liu, Y.; Li, G.; Yang, R.; Huang, Y.; Luo, S.; Dang, Q.; Li, Q.; Huang, D.; Huang, Y.; Tang, D.; et al. The efficacy and safety of RC88 in patients with ovarian cancer, non-squamous-non-small-cell lung-carcinoma and cervical cancer: Results from a first-in-human phase 1/2 study. J. Clin. Oncol. 2024, 42, 5551. [Google Scholar] [CrossRef]
- Fang, P.; You, M.; Cao, Y.; Feng, Q.; Shi, L.; Wang, J.; Sun, X.; Yu, D.; Zhou, W.; Yin, L.; et al. Development and validation of bioanalytical assays for the quantification of 9MW2821, a nectin-4-targeting antibody–drug conjugate. J. Pharm. Biomed. Anal. 2024, 248, 116318. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, R.; Wang, S.; Feng, Z.; Yang, H.; Gao, S.; Li, X.; Yao, X.; Chen, J.; Gong, Z.; et al. Bulumtatug Fuvedotin (BFv, 9MW2821), a next-generation Nectin-4 targeting antibody–drug conjugate, in patients with advanced solid tumors: A first-in-human, open-label, multicenter, phase I/II study. Ann. Oncol. 2025, 36, 934–943. [Google Scholar] [CrossRef]
- Breij, E.C.; de Goeij, B.E.; Verploegen, S.; Schuurhuis, D.H.; Amirkhosravi, A.; Francis, J.; Miller, V.B.; Houtkamp, M.; Bleeker, W.K.; Satijn, D.; et al. An Antibody–Drug Conjugate That Targets Tissue Factor Exhibits Potent Therapeutic Activity against a Broad Range of Solid Tumors. Cancer Res. 2014, 74, 1214–1226. [Google Scholar] [CrossRef]
- Vergote, I.; González-Martín, A.; Fujiwara, K.; Kalbacher, E.; Bagaméri, A.; Ghamande, S.; Lee, J.-Y.; Banerjee, S.; Maluf, F.C.; Lorusso, D.; et al. Tisotumab Vedotin as Second- or Third-Line Therapy for Recurrent Cervical Cancer. N. Engl. J. Med. 2024, 391, 44–55. [Google Scholar] [CrossRef]
- Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol. 2017, 12, 3–20. [Google Scholar] [CrossRef]
- Fuchs, I.; Vorsteher, N.; Bühler, H.; Evers, K.; Sehouli, J.; Schaller, G.; Kümmel, S. The prognostic significance of human epidermal growth factor receptor correlations in squamous cell cervical carcinoma. Anticancer Res. 2007, 27, 959–963. [Google Scholar]
- Bellone, S.; Frera, G.; Landolfi, G.; Romani, C.; Bandiera, E.; Tognon, G.; Roman, J.J.; Burnett, A.F.; Pecorelli, S.; Santin, A.D. Overexpression of epidermal growth factor type-1 receptor (EGF-R1) in cervical cancer: Implications for Cetuximab-mediated therapy in recurrent/metastatic disease. Gynecol. Oncol. 2007, 106, 513–520. [Google Scholar] [CrossRef]
- Cetina, L.; Crombet, T.; Jiménez-Lima, R.; Zapata, S.; Ramos, M.; Avila, S.; Coronel, J.; Charco, E.; Bojalil, R.; Astudillo, H.; et al. A pilot study of nimotuzumab plus single agent chemotherapy as second- or third-line treatment or more in patients with recurrent, persistent or metastatic cervical cancer. Cancer Biol. Ther. 2015, 16, 684–689. [Google Scholar] [CrossRef]
- Thienelt, C.D.; Bunn, P.A.; Hanna, N.; Rosenberg, A.; Needle, M.N.; Long, M.E.; Gustafson, D.L.; Kelly, K. Multicenter Phase I/II Study of Cetuximab with Paclitaxel and Carboplatin in Untreated Patients with Stage IV Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2005, 23, 8786–8793. [Google Scholar] [CrossRef]
- Jiang, H. Overview of Gefitinib in Non-small Cell Lung Cancer: An Asian Perspective. Ultrasound Med. Biol. 2008, 39, 137–150. [Google Scholar] [CrossRef]
- Zheng, J.; Yu, J.; Yang, M.; Tang, L. Gefitinib suppresses cervical cancer progression by inhibiting cell cycle progression and epithelial-mesenchymal transition. Exp. Ther. Med. 2019, 18, 1823–1830. [Google Scholar] [CrossRef]
- Sharma, D.N.; Rath, G.K.; Julka, P.K.; Gandhi, A.K.; Jagadesan, P.; Kumar, S. Role of Gefitinib in Patients with Recurrent or Metastatic Cervical Carcinoma Ineligible or Refractory to Systemic Chemotherapy. Int. J. Gynecol. Cancer 2013, 23, 705–709. [Google Scholar] [CrossRef]
- Fife, B.T.; Bluestone, J.A. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 776 pathways. Immunol Rev. 2008, 224, 166–182. [Google Scholar] [CrossRef]
- Prata, T.T.M.; Bonin, C.M.; Ferreira, A.M.T.; Padovani, C.T.J.; Fernandes, C.E.d.S.; Machado, A.P.; Tozetti, I.A. Local immunosuppression induced by high viral load of human papillomavirus: Characterization of cellular phenotypes producing interleukin-10 in cervical neoplastic lesions. Immunology 2015, 146, 113–121. [Google Scholar] [CrossRef]
- Oaknin, A.; Moore, K.; Meyer, T.; González, J.L.-P.; A Devriese, L.; Amin, A.; Lao, C.D.; Boni, V.; Sharfman, W.H.; Park, J.C.; et al. Nivolumab with or without ipilimumab in patients with recurrent or metastatic cervical cancer (CheckMate 358): A phase 1–2, open-label, multicohort trial. Lancet Oncol. 2024, 25, 588–602. [Google Scholar] [CrossRef]
- O’Malley, D.M.; Neffa, M.; Monk, B.J.; Melkadze, T.; Huang, M.; Kryzhanivska, A.; Bulat, I.; Meniawy, T.M.; Bagameri, A.; Wang, E.W.; et al. Dual PD-1 and CTLA-4 Checkpoint Blockade Using Balstilimab and Zalifrelimab Combination as Second-Line Treatment for Advanced Cervical Cancer: An Open-Label Phase II Study. J. Clin. Oncol. 2022, 40, 762–771. [Google Scholar] [CrossRef]
- Rodrigues, M.; Vanoni, G.; Loap, P.; Dubot, C.; Timperi, E.; Minsat, M.; Bazire, L.; Durdux, C.; Fourchotte, V.; Laas, E.; et al. Nivolumab plus chemoradiotherapy in locally-advanced cervical cancer: The NICOL phase 1 trial. Nat. Commun. 2023, 14, 3698. [Google Scholar] [CrossRef]
- Xia, L.; Wang, J.; Wang, C.; Zhang, Q.; Zhu, J.; Rao, Q.; Cheng, H.; Liu, Z.; Yin, Y.; Ai, X.; et al. Efficacy and safety of zimberelimab (GLS-010) monotherapy in patients with recurrent or metastatic cervical cancer: A multicenter, single-arm, phase II study. Int. J. Gynecol. Cancer 2023, 33, 1861–1868. [Google Scholar] [CrossRef]
- Lan, C.; Shen, J.; Wang, Y.; Li, J.; Liu, Z.; He, M.; Cao, X.; Ling, J.; Huang, J.; Zheng, M.; et al. Camrelizumab Plus Apatinib in Patients with Advanced Cervical Cancer (CLAP): A Multicenter, Open-Label, Single-Arm, Phase II Trial. J. Clin. Oncol. 2020, 38, 4095–4106. [Google Scholar] [CrossRef]
- Oaknin, A.; Monk, B.J.; Vergote, I.; de Melo, A.C.; Kim, Y.-M.; Lisyanskaya, A.S.; Samouëlian, V.; Kim, H.S.; Gotovkin, E.A.; Damian, F.; et al. EMPOWER CERVICAL-1: Effects of cemiplimab versus chemotherapy on patient-reported quality of life, functioning and symptoms among women with recurrent cervical cancer. Eur. J. Cancer 2022, 174, 299–309. [Google Scholar] [CrossRef]
- Rajan, A.; Kim, C.; Heery, C.R.; Guha, U.; Gulley, J.L. Nivolumab, anti-programmed death-1 (PD-1) monoclonal antibody immunotherapy: Role in advanced cancers. Hum. Vaccines Immunother. 2016, 12, 2219–2231. [Google Scholar] [CrossRef]
- Lou, H.; Cai, H.; Huang, X.; Li, G.; Wang, L.; Liu, F.; Qin, W.; Liu, T.; Liu, W.; Wang, Z.M.; et al. Cadonilimab Combined with Chemotherapy with or without Bevacizumab as First-Line Treatment in Recurrent or Metastatic Cervical Cancer (COMPASSION-13): A Phase 2 Study. Clin. Cancer Res. 2024, 30, 1501–1508. [Google Scholar] [CrossRef]
- Kalim, M.; Khan, M.S.I.; Zhan, J. Programmed cell death ligand-1: A dynamic immune checkpoint in cancer therapy. Chem. Biol. Drug Des. 2020, 95, 552–566. [Google Scholar] [CrossRef]
- Chitsike, L.; Duerksen-Hughes, P. The Potential of Immune Checkpoint Blockade in Cervical Cancer: Can Combinatorial Regimens Maximize Response? A Review of the Literature. Curr. Treat. Options Oncol. 2020, 21, 95. [Google Scholar] [CrossRef]
- Salani, R.; McCormack, M.; Kim, Y.-M.; Ghamande, S.; Hall, S.L.; Lorusso, D.; Barraclough, L.; Gilbert, L.; Ramirez, A.G.; Lu, C.-H.; et al. A non-comparative, randomized, phase II trial of atezolizumab or atezolizumab plus tiragolumab for programmed death-ligand 1-positive recurrent cervical cancer (SKYSCRAPER-04). Int. J. Gynecol. Cancer 2024, 34, 1140–1148. [Google Scholar] [CrossRef]
- Lorusso, D.; Xiang, Y.; Hasegawa, K.; Scambia, G.; Leiva, M.; Ramos-Elias, P.; Acevedo, A.; Sukhin, V.; Cloven, N.; Gomes, A.J.P.d.S.; et al. Pembrolizumab or placebo with chemoradiotherapy followed by pembrolizumab or placebo for newly diagnosed, high-risk, locally advanced cervical cancer (ENGOT-cx11/GOG-3047/KEYNOTE-A18): A randomised, double-blind, phase 3 clinical trial. Lancet 2024, 403, 1341–1350. [Google Scholar] [CrossRef]
- Zuo, J.; Duan, W.; Zhao, M.; Chen, Z.; Lin, J.; Shi, H.; Jiang, O.; Zhang, Y.; Fang, M.; Wang, L.; et al. Efficacy, safety and biomarkers of SG001 for patients with previously treated recurrent or metastatic cervical cancer: An open-label, multicenter, phase Ib trial. Cancer Commun. 2024, 44, 1042–1046. [Google Scholar] [CrossRef]
- Oaknin, A.; Gladieff, L.; Martínez-García, J.; Villacampa, G.; Takekuma, M.; De Giorgi, U.; Lindemann, K.; Woelber, L.; Colombo, N.; Duska, L.; et al. Atezolizumab plus bevacizumab and chemotherapy for metastatic, persistent, or recurrent cervical cancer (BEATcc): A randomised, open-label, phase 3 trial. Lancet 2023, 403, 31–43. [Google Scholar] [CrossRef]
- García, E.; Ayoub, N.; Tewari, K.S. Recent breakthroughs in the management of locally advanced and recurrent/metastatic cervical cancer. J. Gynecol. Oncol. 2024, 35, 118, Erratum in J. Gynecol. Oncol. 2024, 35, 30. https://doi.org/10.3802/jgo.2024.35.e30. [Google Scholar] [CrossRef]
- Li, G.; Li, X.; Yin, R.; Feng, M.; Zuo, J.; Wei, S.; Kang, S.; Sun, H.; Li, X.; Wang, Y.; et al. Phase II study of enlonstobart (SG001), a novel PD-1 inhibitor in patients with PD-L1 positive recurrent/metastatic cervical cancer. Gynecol. Oncol. 2024, 191, 165–171. [Google Scholar] [CrossRef]
- Oaknin, A.; Monk, B.J.; de Melo, A.C.; Kim, H.S.; Kim, Y.M.; Lisyanskaya, A.S.; Samouëlian, V.; Lorusso, D.; Damian, F.; Chang, C.-L.; et al. Cemiplimab in recurrent cervical cancer: Final analysis of overall survival in the phase III EMPOWER-Cervical 1/GOG-3016/ENGOT-cx9 trial. Eur. J. Cancer 2025, 216, 115146. [Google Scholar] [CrossRef]
- Santin, A.D.; Deng, W.; Frumovitz, M.; Buza, N.; Bellone, S.; Huh, W.; Khleif, S.; Lankes, H.A.; Ratner, E.S.; O’CEarbhaill, R.E.; et al. Phase II evaluation of nivolumab in the treatment of persistent or recurrent cervical cancer (NCT02257528/NRG-GY002). Gynecol. Oncol. 2020, 157, 161–166. [Google Scholar] [CrossRef]
- Petre, I.; Vernic, C.; Petre, I.; Vlad, C.S.; Sipos, S.I.; Bordianu, A.; Luciana, M.; Dragomir, R.D.; Fizedean, C.M.; Daliborca, C.V. Systematic Review on the Effectiveness and Outcomes of Nivolumab Treatment Schemes in Advanced and Metastatic Cervical Cancer. Diseases 2024, 12, 77. [Google Scholar] [CrossRef]
- An, J.; Tang, J.; Li, B.X.; Xiong, H.; Qiu, H.; Luo, L.; Wang, L.; Wang, D.; Zhou, Q.; Xu, Q.; et al. Efficacy and Safety of the Anti–PD-L1 mAb Socazolimab for Recurrent or Metastatic Cervical Cancer: A Phase I Dose-Escalation and Expansion Study. Clin. Cancer Res. 2022, 28, 5098–5106. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, M.; Gong, L.; Luo, G.; Zhang, Y.; Zhou, Y.; Li, Z. Promising outcomes of the PD-L1 inhibitor Socazolimab in recurrent and metastatic cervical cancer: A case report. Front. Oncol. 2025, 15, 1541760. [Google Scholar] [CrossRef]
- Mayadev, J.S.; Enserro, D.; Lin, Y.G.; Da Silva, D.M.; Lankes, H.A.; Aghajanian, C.; Ghamande, S.; Moore, K.N.; Kennedy, V.A.; Fracasso, P.M.; et al. Sequential Ipilimumab After Chemoradiotherapy in Curative-Intent Treatment of Patients with Node-Positive Cervical Cancer. JAMA Oncol. 2020, 6, 92–99. [Google Scholar] [CrossRef]
- Di Tucci, C.; Schiavi, M.C.; Faiano, P.; D’oRia, O.; Prata, G.; Sciuga, V.; Giannini, A.; Palaia, I.; Muzii, L.; Panici, P.B. Therapeutic vaccines and immune checkpoints inhibition options for gynecological cancers. Crit. Rev. Oncol. 2018, 128, 30–42. [Google Scholar] [CrossRef]
- Wu, X.; Sun, Y.; Yang, H.; Wang, J.; Lou, H.; Li, D.; Wang, K.; Zhang, H.; Wu, T.; Li, Y.; et al. Cadonilimab plus platinum-based chemotherapy with or without bevacizumab as first-line treatment for persistent, recurrent, or metastatic cervical cancer (COMPASSION-16): A randomised, double-blind, placebo-controlled phase 3 trial in China. Lancet 2024, 404, 1668–1676. [Google Scholar] [CrossRef]
- Chauvin, J.-M.; Zarour, H.M. TIGIT in cancer immunotherapy. J. Immunother. Cancer 2020, 8, e000957. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, J.; Sun, Y.; Lin, Y.; Liu, J.; Zhuo, Y.; Huang, Z.; Huang, S.; Chen, Y.; Chen, L.; et al. Efficacy and Safety of Sintilimab Plus Anlotinib for PD-L1–Positive Recurrent or Metastatic Cervical Cancer: A Multicenter, Single-Arm, Prospective Phase II Trial. J. Clin. Oncol. 2022, 40, 1795–1805. [Google Scholar] [CrossRef]
- Li, H.; Xu, Y.; Jiao, X.; Xu, Q.; Peng, Z.; Tang, Y.; Zhang, J.; Huang, B.; Shen, Y.; Chang, B.; et al. IBI310 plus sintilimab vs. placebo plus sintilimab in recurrent/metastatic cervical cancer: A double-blind, randomized controlled trial. Med 2025, 6, 100573. [Google Scholar] [CrossRef]
- Xia, L.; Zhou, Q.; Gao, Y.; Hu, W.; Lou, G.; Sun, H.; Zhu, J.; Shu, J.; Zhou, X.; Sun, R.; et al. A multicenter phase 2 trial of camrelizumab plus famitinib for women with recurrent or metastatic cervical squamous cell carcinoma. Nat. Commun. 2022, 13, 7581. [Google Scholar] [CrossRef]

| Drug Name | Mechanism of Action | Key Outcomes (PFS/OS) | Current Status |
|---|---|---|---|
| Bevacizumab [7] | Anti-VEGF monoclonal antibody | GOG-240: mPFS 8.2 vs. 5.9 m; mOS 16.8 vs. 13.3 m | Approved(FDA-approved for 1st-line) |
| Apatinib [20] | Selective VEGFR2 Tyrosine Kinase Inhibitor (TKI) | Meta-analysis (n = 243): mPFS 5.19 m; mOS 10.63 m | Clinical Trials (Phase II) |
| Pazopanib [21] | Multi-target TKI (VEGFR-1,2,3, PDGFR, c-Kit) | Phase II: mOS 50.7 w (vs. Lapatinib 39.1 w) | Not standard, needs further study |
| Cediranib [22] | TKI (VEGFR1–3, PDGFR-α) | Phase II: mPFS 8.1 vs. 6.7 m (with chemo vs. chemo) | Clinical Trials (Phase II) |
| Nintedanib [23] | TKI (VEGFR 1–3, FGFR 1–3, PDGFR-α/β) | Phase II: mOS 21.7 vs. 16.4 m (with chemo vs. chemo) | Clinical Trials (Phase II) |
| Sunitinib [24] | Multi-target TKI (VEGFR, PDGFR, c-Kit, FLT3) | Phase II (n = 16): mPFS 3.5 m | Inconclusive evidence, needs further study |
| Tisotumab Vedotin [25] | Tissue Factor-targeting Antibody-Drug Conjugate (ADC) | innovaTV 301 Phase III: mOS 11.5 vs. 9.5 m; mPFS 4.2 vs. 2.9 m | Approved(FDA-approved for 2nd-line) |
| Nimotuzumab [26] | Anti-EGFR monoclonal antibody | Multiple studies showed improved CR rate and PFS when combined with chemoradiation | Clinical Trials (primarily in China) |
| Cetuximab [27] | Anti-EGFR monoclonal antibody | Phase II: No significant improvement in PFS or OS when added to chemotherapy | Trial endpoint not met, not standard |
| Gefitinib [28] | EGFR Tyrosine Kinase Inhibitor (TKI) | Studies showed limited efficacy as monotherapy | Under investigation, potential for combination |
| Olaparib [29] | PARP Inhibitor | Preclinical and case report data show efficacy; associated with cisplatin resistance | Preclinical/Early Clinical Trials (Phase I/II) |
| Veliparib | PARP Inhibitor | Phase I/II: ORR 60%, mPFS 6.2 m, mOS 14.5 m (with chemo) | Clinical Trials (Phase I/II) |
| Rucaparib [30] | PARP Inhibitor | Phase II: ORR of 14% in cervical cancer when combined with bevacizumab | Approved(FDA-approved for maintenance therapy) |
| Target | Agent | Stage | Studies |
|---|---|---|---|
| TF | TV [25] | Recurrent and metastatic cervical cancer with disease progression on or after chemotherapy | NCT03438396 NCT04697628 NCT03786081 |
| HER2 | T-DXd [53] | Unresectable or metastatic HER2positive solid tumors | NCT04482309 NCT04639219 |
| IBI354 [54] | Solid tumors | NCT05636215 | |
| Trop-2 | SG [55,56] | Metastatic TNBC, HR+/HER2BC | NCT05119907 |
| SKB264 [57] | Locally advanced or metastatic TNBC and EGFR mutationpositive nonsquamous NSCLC after 2L systemic therapy | NCT05642780 NCT06459180 | |
| Mesothelin | RC88 [58] | Solid tumors | NCT04175847 |
| Nectin-4 | 9MW-2821 [59] | Solid tumors | NCT05216965 |
| Studies | Agent | Target | Stage |
|---|---|---|---|
| NCT03972722 [72] | Zimberelimab | Anti-PD-1 | Recurrent or metastatic cervical cancer |
| NCT03676959 [73] | Socazolimab | Anti-PD-L1 | Recurrent or metastatic cervical cancer |
| NCT04886700 [74] | Enlonstobart | Anti-PD-1 | PD-L1+ Recurrent or metastatic cervical cancer |
| NCT03852823 [75] | Enlonstobart | Anti-PD-1 | Recurrent or metastatic cervical cancer |
| NCT03852251 [76] | Cadonilimab | Anti-PD-1 and CTLA-4 | Recurrent or metastatic cervical cancer |
| NCT05557565 | Iparomlimab and Tuvonralimab | Anti-PD-1 and CTLA-4 | Recurrent or metastatic cervical cancer |
| NCT02054806 [77] | Pembrolizumab | Anti-PD-1 | PD-L1+ Recurrent or metastatic cervical cancer |
| NCT02628067 [78] | Pembrolizumab | Anti-PD-1 | Recurrent or metastatic cervical cancer |
| NCT02488759 [79] | Nivolumab | Anti-PD-1 | Recurrent or metastatic cervical cancer |
| Combination Regimen | Trial Name/Type | Median PFS (Months) | Median OS (Months) | Other Survival Outcomes |
|---|---|---|---|---|
| Pembrolizumab + Chemotherapy (±Bevacizumab) | KEYNOTE-826 (Phase III) | - | 26.4 | 28.6 (CPS ≥ 1); 29.6 (CPS ≥ 10 |
| Pembrolizumab + Chemoradiotherapy | KEYNOTE-A18 (Phase III) | 24 m PFS Rate: 68% | 24 m OS Rate: 87% | Control: 57% PFS, 81% OS |
| Atezolizumab + Chemotherapy + Bevacizumab | BEATcc (Phase III) | 13.7 | 32.1 | Control: 10.4 PFS, 22.8 OS |
| Cadonilimab + Chemotherapy (±Bevacizumab) | COMPASSION-16 (Phase III) | 12.7 | Not Reached | Control: 8.1 PFS, 22.8 OS |
| Camrelizumab + Apatinib | CLAP (Phase II) | 8.8 | 11.3 | ORR 55.6% |
| Sintilimab + Anlotinib | Phase II | 9.4 | Not Reached | ORR 59.0% |
| Nivolumab + Chemoradiotherapy | NiCOL (Phase I) | 2-y PFS Rate: 75% | - | ORR 93.8%, CR 50% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Zou, K.; Zou, L. Treatment of Pelvic Recurrence After Radiotherapy for Cervical Cancer. Cancers 2025, 17, 3934. https://doi.org/10.3390/cancers17243934
Song Y, Zou K, Zou L. Treatment of Pelvic Recurrence After Radiotherapy for Cervical Cancer. Cancers. 2025; 17(24):3934. https://doi.org/10.3390/cancers17243934
Chicago/Turabian StyleSong, Yanan, Kun Zou, and Lijuan Zou. 2025. "Treatment of Pelvic Recurrence After Radiotherapy for Cervical Cancer" Cancers 17, no. 24: 3934. https://doi.org/10.3390/cancers17243934
APA StyleSong, Y., Zou, K., & Zou, L. (2025). Treatment of Pelvic Recurrence After Radiotherapy for Cervical Cancer. Cancers, 17(24), 3934. https://doi.org/10.3390/cancers17243934

