Emerging and Investigational Systemic Therapies in Recurrent/Metastatic Head and Neck Cancer After Progression on Immunotherapy
Simple Summary
Abstract
1. Introduction
2. From Guidelines to Chemotherapy Combinations: Benchmark and Novel Strategies
2.1. FID-007 (Nanoparticle Paclitaxel)
2.2. SI-B001 (Izalontamab) Plus Paclitaxel
3. Next-Generation Immunotherapy Combinations
3.1. Retlirafusp Alfa (SHR-1701)
3.2. FLX475 (Tivumecirnon) Plus Pembrolizumab
4. Targeted Therapies: Small Molecule Inhibitors
4.1. Targeting CDK4/6 with Dalpiciclib and Palbociclib
4.2. Targeting PI3K/AKT/mTOR with Bimiralisib and Duvelisib
4.3. Targeting RAS/MAPK with Tipifarnib
4.4. Targeting IRS1/2 and the STAT3 Axis with NT219
4.5. Targeting HER with Afatinib
5. Targeted Therapies: Bispecific Antibody-Based Therapies
5.1. Petosemtamab (MCLA-158) Monotherapy
5.2. Ficlatuzumab (HGF) + Cetuximab
6. Targeted Therapies: Antibody-Drug Conjugates (ADCs)
6.1. MRG003 (Becotatug Vedotin)—EGFR-Targeted ADC
6.2. Tisotumab Vedotin (TV)—Tissue Factor (TF)-Targeted ADC
6.3. Enfortumab Vedotin (EV)—Nectin-4-Targeted ADCs
6.4. Sacituzumab Govitecan (SG)—Trop-2-Targeted ADCs
6.5. Sigvotatug Vedotin (SGN-B6A)—Integrin Beta-6 (ITGB6)-Targeted ADCs
6.6. Ozuriftamab Vedotin (BA3021)—ROR2-Targeted ADCs
7. Next-Generation Therapies: Vaccines
7.1. MVX-ONCO-1
7.2. ISA101 (Peltopepimut-S)
7.3. CUE-101
8. Comparative Evidence Synthesis Across Classes
Qualitative Comparative Synthesis
9. Challenges and Future Directions
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fasano, M.; Della Corte, C.M.; Viscardi, G.; Di Liello, R.; Paragliola, F.; Sparano, F.; Iacovino, M.L.; Castrichino, A.; Doria, F.; Sica, A.; et al. Head and neck cancer: The role of anti-EGFR agents in the era of immunotherapy. Ther. Adv. Med. Oncol. 2021, 13, 1758835920949418. [Google Scholar] [CrossRef]
- Kok, V.C. Current Understanding of the Mechanisms Underlying Immune Evasion From PD-1/PD-L1 Immune Checkpoint Blockade in Head and Neck Cancer. Front. Oncol. 2020, 10, 268. [Google Scholar] [CrossRef]
- Siano, M.; Infante, G.; Resteghini, C.; Cau, M.C.; Alfieri, S.; Bergamini, C.; Granata, R.; Miceli, R.; Locati, L.; Licitra, L.; et al. Outcome of recurrent and metastatic head and neck squamous cell cancer patients after first line platinum and cetuximab therapy. Oral Oncol. 2017, 69, 33–37. [Google Scholar] [CrossRef]
- Cho, B.C.; Braña, I.; Cirauqui, B.; Aksoy, S.; Couture, F.; Hong, R.-L.; Miller, W.H.; Chaves-Conde, M.; Teixeira, M.; Leopold, L.; et al. Pembrolizumab plus epacadostat in patients with recurrent/metastatic head and neck squamous cell carcinoma (KEYNOTE-669/ECHO-304): A phase 3, randomized, open-label study. BMC Cancer 2024, 23, 1254. [Google Scholar] [CrossRef]
- Yilmaz, E.; Ismaila, N.; Bauman, J.E.; Dabney, R.; Gan, G.; Jordan, R.; Kaufman, M.; Kirtane, K.; McBride, S.M.; Old, M.O.; et al. Immunotherapy and Biomarker Testing in Recurrent and Metastatic Head and Neck Cancers: ASCO Guideline. J. Clin. Oncol. 2023, 41, 1132–1146. [Google Scholar] [CrossRef]
- Tahara, M.; Lim, D.W.-T.; Keam, B.; Ma, B.; Zhang, L.; Wang, C.; Guo, Y. Management approaches for recurrent or metastatic head and neck squamous cell carcinoma after anti-PD-1/PD-L1 immunotherapy. Cancer Treat. Rev. 2025, 136, 102938. [Google Scholar] [CrossRef]
- Koyama, T.; Kiyota, N.; Boku, S.; Imamura, Y.; Shibata, N.; Satake, H.; Tanaka, K.; Hayashi, H.; Onoe, T.; Asada, Y.; et al. A phase II trial of paclitaxel plus biweekly cetuximab for patients with recurrent or metastatic head and neck cancer previously treated with both platinum-based chemotherapy and anti-PD-1 antibody. ESMO Open 2024, 9, 103476. [Google Scholar] [CrossRef] [PubMed]
- Park, J.C.; Ahn, J.S.; Merkin, R.; Patel, M.; Wirth, L.; Roberts, T.J. Correlates of Cetuximab Efficacy in Recurrent and Metastatic Head and Neck Squamous Cell Carcinoma Previously Treated With Immunotherapy. JCO Precis. Oncol. 2025, 9, e2400741. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®): Head and Neck Cancers, Version 2.2025; NCCN: Plymouth Meeting, PA, USA, 2025; Available online: https://www.nccn.org/professionals/physician_gls/pdf/head-and-neck.pdf (accessed on 14 September 2025).
- Machiels, J.-P.; Leemans, C.R.; Golusinski, W.; Grau, C.; Licitra, L.; Gregoire, V. Squamous cell carcinoma of the oral cavity, larynx, oropharynx and hypopharynx: EHNS–ESMO–ESTRO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020, 31, 1462–1475. [Google Scholar] [CrossRef] [PubMed]
- Merck & Co., Inc. Merck’s KEYTRUDA® (pembrolizumab) Met Primary Endpoint of Event-Free Survival (EFS) as Perioperative Treatment Regimen in Patients with Resected, Locally Advanced Head and Neck Squamous Cell Carcinoma. 2025. Available online: https://www.merck.com/news/mercks-keytruda-pembrolizumab-met-primary-endpoint-of-event-free-survival-efs-as-perioperative-treatment-regimen-in-patients-with-resected-locally-advanced-head-and-neck-squamous-c/ (accessed on 14 September 2025).
- BioSpace. GORTEC Announces New Trial Success for Head and Neck Cancer Treatment. 2025. Available online: https://www.biospace.com/press-releases/gortec-announces-new-trial-success-for-head-and-neck-cancer-treatment (accessed on 14 September 2025).
- Vermorken, J.B.; Trigo, J.; Hitt, R.; Koralewski, P.; Diaz-Rubio, E.; Rolland, F.; Knecht, R.; Amellal, N.; Schueler, A.; Baselga, J. Open-label, uncontrolled, multicenter phase II study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum-based therapy. J. Clin. Oncol. 2007, 25, 2171–2177. [Google Scholar] [CrossRef]
- Cohen, E.E.W.; Le Tourneau, C.; Licitra, L.; Ahn, M.-J.; Soria, A.; Machiels, J.-P.; Mach, N.; Mehra, R.; Burtness, B.; Zhang, P.; et al. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): A randomised, open-label, phase 3 study. Lancet 2019, 393, 156–167. [Google Scholar] [CrossRef]
- Ferris, R.L.; Blumenschein, G., Jr.; Fayette, J.; Guigay, J.; Colevas, A.D.; Licitra, L.; Harrington, K.; Kasper, S.; Vokes, E.E.; Even, C.; et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 2016, 375, 1856–1867. [Google Scholar] [CrossRef]
- Fayette, J.; Harrington, K.; Siu, L.L.; Liu, Y.-C.; Tahara, M.; Machiels, J.-P.; Rischin, D.; Seiwert, T.Y.; Ferris, R.L.; Keilholz, U.; et al. INTERLINK-1: A Phase III, Randomized, Placebo-Controlled Study of Monalizumab plus Cetuximab in Recurrent/Metastatic Head and Neck Squamous Cell Carcinoma. Clin. Cancer Res. 2025, 31, 2617–2627. [Google Scholar] [CrossRef]
- Burcher, K.M.; Bloomer, C.H.; Gavrila, E.; Kalada, J.M.; Chang, M.J.; Gebeyehu, R.R.; Song, A.H.; Khoury, L.M.; Lycan, T.W.; Kinney, R.; et al. Study protocol: Phase II study to evaluate the effect of cetuximab monotherapy after immunotherapy with PD-1 inhibitors in patients with head and neck squamous cell cancer. Ther. Adv. Med. Oncol. 2024, 16. [Google Scholar] [CrossRef]
- Fuereder, T.; Klinghammer, K.; Hahn, D.; Grünberger, B.; Melchardt, T.; Greil, R.; Kocher, F.; Gamerith, G.; Wagner, C.; Berchtold, L.; et al. 880P Paclitaxel plus cetuximab for the treatment of recurrent and/or metastatic head and neck cancer after first-line checkpoint inhibitor failure: Primary analysis from the pace ace trial. Ann. Oncol. 2024, 35, S629. [Google Scholar] [CrossRef]
- Chow, L.D.; Hsu, R.; Nieva, J.J.; Umayam, R.; Bryant, A.S.; Tsao-Wei, D.; Hsieh, M.; Yin, R.; El-Khoueiry, A.B.; Thomas, J.S. Efficacy from the phase 1 study of FID-007, a novel nanoparticle paclitaxel formulation, in patients with head and neck squamous cell carcinoma. J. Clin. Oncol. 2024, 42, 6042. [Google Scholar] [CrossRef]
- Fulgent Pharma LLC. A Phase 2, Randomized, Multicenter, Open-label, Study of FID-007 in Combination with Cetuximab in Patients with Advanced Head and Neck Squamous Cell Carcinoma; NCT06332092; Fulgent Pharma LLC.: Temple City, CA, USA, 2024; Clinical Trial Registration Record. Available online: https://clinicaltrials.gov/study/NCT06332092 (accessed on 14 September 2025).
- Xue, J.; Kong, D.; Yao, Y.; Yang, L.; Yao, Q.; Zhu, Y.; Ding, Y.; Yang, F.; Gong, J.; Shen, L.; et al. Prediction of Human Pharmacokinetics and Clinical Effective Dose of SI-B001, an EGFR/HER3 Bi-specific Monoclonal Antibody. J. Pharm. Sci. 2020, 109, 3172–3180. [Google Scholar] [CrossRef]
- Xue, J.; Ma, Y.; Zhao, Y.; Wang, Y.; Hong, W.; Huang, Y.; Yang, Y.; Fang, W.; Hong, S.; Zhang, Y.; et al. Izalontamab (SI-B001), a novel EGFRxHER3 bispecific antibody in patients with Locally Advanced or Metastatic Epithelial Tumor: Results from first-in-human phase I/Ib study. Clin. Cancer Res. 2025, 31, 4438–4445. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Yang, K.; Fang, M.; Ma, X.; Zou, W.; Ding, M.; Wang, Z.; Peng, Y.; Xiao, S.; Wang, H.; et al. Results from two phase II studies of SI-B001, an EGFR×HER3 bispecific antibody, with/without chemotherapy in patients with recurrent and metastatic head and neck squamous cell carcinoma (HNSCC). J. Clin. Oncol. 2023, 41, 6037. [Google Scholar] [CrossRef]
- Mariathasan, S.; Turley, S.J.; Nickles, D.; Castiglioni, A.; Yuen, K.; Wang, Y.; Kadel, E.E., III; Koeppen, H.; Astarita, J.L.; Cubas, R.; et al. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 2018, 554, 544–548. [Google Scholar] [CrossRef]
- Liu, D.; Zhou, J.; Wang, Y.; Li, M.; Jiang, H.; Liu, Y.; Yin, X.; Ge, M.; Xiang, X.; Ying, J.; et al. Bifunctional anti-PD-L1/TGF-betaRII agent SHR-1701 in advanced solid tumors: A dose-escalation, dose-expansion, and clinical-expansion phase 1 trial. BMC Med. 2022, 20, 408. [Google Scholar] [CrossRef]
- Ji, D.; Liu, X.; Guo, Y.; Yang, Y.; Sang, Y.; Chen, G.; Dong, S.; Wang, Y.; He, X.; Ying, H.; et al. Retlirafusp alfa-a bifunctional anti-PD-L1/TGF-bRII agent plus nab-paclitaxel and carboplatin in pre-treated recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC): A prospective, single-arm, phase II clinical trial. J. Clin. Oncol. 2025, 43, 6029. [Google Scholar] [CrossRef]
- Brockstedt, D.G.; Grant, A.; Adamik, J.; Trujillo, D.; Goyal, R.K.; Ho, W.; Ikeda, S.; Zhu, Q.; Anders, R.A.; Sabouri, M.; et al. Clinical and biological activity of FLX475, an oral CCR4 antagonist, in advanced cancer. J. Clin. Oncol. 2023, 41, 2625. [Google Scholar] [CrossRef]
- Muzaffar, J.; Kirtane, K.; Redman, R.; Yang, M.-H.; Kim, T.M.; Liu, S.; Lynch, R.; Brahmer, J.; LoRusso, P.; Henick, B.; et al. Abstract CT226: Phase 2 study of oral CCR4 antagonist FLX475 (tivumecirnon) plus pembrolizumab in subjects with head and neck squamous cell carcinoma (HNSCC) previously treated with checkpoint inhibitor. Cancer Res. 2024, 84, CT226. [Google Scholar] [CrossRef]
- Riess, C.; Irmscher, N.; Salewski, I.; Strüder, D.; Classen, C.-F.; Große-Thie, C.; Junghanss, C.; Maletzki, C. Cyclin-dependent kinase inhibitors in head and neck cancer and glioblastoma-backbone or add-on in immune-oncology? Cancer Metastasis Rev. 2020, 40, 153–171. [Google Scholar] [CrossRef]
- Seront, E.E.A. Phase 1 study evaluating the association of the cyclin D1-CDK4/6 complex and the EGFR/AKT pathway in squamous cell carcinoma of the head and neck. Front. Oncol. 2019, 9, 155. [Google Scholar] [CrossRef]
- Network, C.G.A. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015, 517, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Zahavi, D.J.; Weiner, L.M. Targeting Multiple Receptors to Increase Checkpoint Blockade Efficacy. Int. J. Mol. Sci. 2019, 20, 158. [Google Scholar] [CrossRef] [PubMed]
- Smeets, S.J.; Braakhuis, B.J.M.; Abbas, S.; Snijders, P.J.F.; Ylstra, B.; A van de Wiel, M.; Meijer, G.A.; Leemans, C.R.; Brakenhoff, R.H. Genome-wide DNA copy number alterations in head and neck squamous cell carcinomas with or without oncogene-expressing human papillomavirus. Oncogene 2005, 25, 2558–2564. [Google Scholar] [CrossRef]
- Scantlebury, J.B.; Luo, J.; Thorstad, W.L.; El-Mofty, S.K.; Lewis, J.S. Cyclin D1-a prognostic marker in oropharyngeal squamous cell carcinoma that is tightly associated with high-risk human papillomavirus status. Hum. Pathol. 2013, 44, 1672–1680. [Google Scholar] [CrossRef]
- Reed, A.L.; Califano, J.; Cairns, P.; Westra, W.H.; Jones, R.M.; Koch, W.; Ahrendt, S.; Eby, Y.; Sewell, D.; Nawroz, H.; et al. High frequency of p16 (CDKN2/MTS-1/INK4A) inactivation in head and neck squamous cell carcinoma. Cancer Res. 1996, 56, 3630–3633. [Google Scholar]
- Beck, T.N.; Georgopoulos, R.; Shagisultanova, E.I.; Sarcu, D.; Handorf, E.A.; Dubyk, C.; Lango, M.N.; Ridge, J.A.; Astsaturov, I.; Serebriiskii, I.G.; et al. EGFR and RB1 as Dual Biomarkers in HPV-Negative Head and Neck Cancer. Mol. Cancer Ther. 2016, 15, 2486–2497. [Google Scholar] [CrossRef]
- Kalish, L.H.; Kwong, R.A.; Cole, I.E.; Gallagher, R.M.; Sutherland, R.L.; Musgrove, E.A. Deregulated cyclin D1 expression is associated with decreased efficacy of the selective epidermal growth factor receptor tyrosine kinase inhibitor gefitinib in head and neck squamous cell carcinoma cell lines. Clin. Cancer Res. 2004, 10, 7764–7774. [Google Scholar] [CrossRef]
- Houyu, J.; Wu, Y.; Shi, C.; Chen, L.; Sun, L.; Xia, R.; Sun, S.; Hu, J.; He, Y.; Ren, G. 881P Cetuximab with dalpicilib in patients with HPV-negative, anti-PD-1 resistant R/M HNSCC. Ann. Oncol. 2024, 35, S629. [Google Scholar] [CrossRef]
- Ju, H.; Hu, J.; Wu, Y.; Xia, R.-H.; Shi, C.; Ren, G.; Hu, Y. Cetuximab plus dalpiciclib in patients with HPV-negative, anti-PD-1-resistant recurrent or metastatic head and neck squamous cell carcinoma. J. Clin. Oncol. 2025, 43, 6026. [Google Scholar] [CrossRef]
- Adkins, D.; Ley, J.B.; Cohen, J.; Oppelt, P. The Potential for Selective Cyclin-Dependent Kinase 4/6 Inhibition in the Therapy for Head and Neck Squamous Cell Carcinoma. Cancer J. 2022, 28, 377–380. [Google Scholar] [CrossRef]
- Worden, F.P.; Pisick, E.; Rothe, M.; Mangat, P.K.; Garrett-Mayer, E.; Khalil, M.F.; Carrizosa, D.R.; Bauman, J.R.; Leidner, R.S.; Duvivier, H.L.; et al. Palbociclib in Patients With Head and Neck Cancer and Other Tumors With CDKN2A Alterations: Results From the Targeted Agent and Profiling Utilization Registry Study. JCO Precis. Oncol. 2024, 8, e2400477. [Google Scholar] [CrossRef] [PubMed]
- Michel, L.; Ley, J.; Wildes, T.M.; Schaffer, A.; Robinson, A.; Chun, S.-E.; Lee, W.; Lewis, J., Jr.; Trinkaus, K.; Adkins, D. Phase I trial of palbociclib, a selective cyclin dependent kinase 4/6 inhibitor, in combination with cetuximab in patients with recurrent/metastatic head and neck squamous cell carcinoma. Oral Oncol. 2016, 58, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Adkins, D.; Ley, J.; Neupane, P.; Wordem, F.; Sacco, A.G.; Palka, K.; Grilley-Olson, J.E.; Maggiore, R.; Salama, N.N.; Trinkaus, K.; et al. Palbociclib and cetuximab in platinum-resistant and in cetuximab-resistant human papillomavirus-unrelated head and neck cancer: A multicentre, multigroup, phase 2 trial. Lancet Oncol. 2019, 20, 1295–1305. [Google Scholar] [CrossRef]
- Oppelt, P.; Ley, J.C.; Worden, F.; Palka, K.; Maggiore, R.; Liu, J.; Adkins, D. Palbociclib and cetuximab in cetuximab-resistant human papillomavirus-related oropharynx squamous-cell carcinoma: A multicenter phase 2 trial. Oral Oncol. 2021, 1125, 105164. [Google Scholar] [CrossRef]
- Adkins, D.R.; Lin, J.-C.; Sacco, A.; Ley, J.; Oppelt, P.; Vanchenko, V.; Komashko, N.; Yen, C.-J.; Wise-Draper, T.; Gonzalez, J.L.-P.; et al. Palbociclib and cetuximab compared with placebo and cetuximab in platinum-resistant, cetuximab-naïve, human papillomavirus-unrelated recurrent or metastatic head and neck squamous cell carcinoma: A double-blind, randomized, phase 2 trial. Oral Oncol. 2021, 115, 105192. [Google Scholar] [CrossRef]
- Ley, J.C.; Cohen, J.; Liu, J.; Thomeczek, B.; Oppelt, P.J.; Adkins, D. Palbociclib + cetuximab versus cetuximab in patients with CDKN2A-altered, anti-PD-1 resistant, HPV-negative head and neck squamous cell carcinoma (HNSCC): A phase 3 trial. J. Clin. Oncol. 2023, 41, TPS6103. [Google Scholar] [CrossRef]
- Marquard, F.E.; Jucker, M. PI3K/AKT/mTOR signaling as a molecular target in head and neck cancer. Biochem. Pharmacol. 2020, 172, 113729. [Google Scholar] [CrossRef]
- Jung, K.; Kang, H.; Mehra, R. Targeting phosphoinositide 3-kinase (PI3K) in head and neck squamous cell carcinoma (HNSCC). Cancers Head Neck 2018, 3, 3. [Google Scholar] [CrossRef]
- Glaviano, A.; Foo, A.S.C.; Lam, H.Y.; Yap, K.C.H.; Jacot, W.; Jones, R.H.; Eng, H.; Nair, M.G.; Makvandi, P.; Geoerger, B.; et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 2023, 22, 138. [Google Scholar] [CrossRef] [PubMed]
- Engelman, J.A. Targeting PI3K signalling in cancer: Opportunities, challenges and limitations. Nat. Rev. Cancer 2009, 9, 550–562. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Wang, Y.; Zhou, C.; Mei, W.; Zeng, C. PI3K/Akt/mTOR Pathway and Its Role in Cancer Therapeutics: Are We Making Headway? Front. Oncol. 2022, 12, 819128. [Google Scholar] [CrossRef]
- Castel, P.; Toska, E.; Engelman, J.A.; Scaltriti, M. The present and future of PI3K inhibitors for cancer therapy. Nat. Cancer 2021, 2, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Vanhaesebroeck, B.; Perry, M.W.D.; Brown, J.R.; André, F.; Okkenhaug, K. PI3K inhibitors are finally coming of age. Nat. Rev. Drug Discov. 2021, 20, 741–769. [Google Scholar] [CrossRef]
- Yang, J.; Nie, J.; Ma, X.; Wei, Y.; Peng, Y.; Wei, X. Targeting PI3K in cancer: Mechanisms and advances in clinical trials. Mol. Cancer 2019, 18, 26. [Google Scholar] [CrossRef]
- Alsahafi, E.; Begg, K.; Amelio, I.; Raulf, N.; Lucarelli, P.; Sauter, T.; Tavassoli, M. Clinical update on head and neck cancer: Molecular biology and ongoing challenges. Cell Death Dis. 2019, 10, 540. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Tie, Y.; Alu, A.; Ma, X.; Shi, H. Targeted therapy for head and neck cancer: Signaling pathways and clinical studies. Signal Transduct. Target. Ther. 2023, 8, 31. [Google Scholar] [CrossRef]
- Beck, T.N.; Golemis, E.A. Genomic insights into head and neck cancer. Cancers Head Neck 2016, 1, 1. [Google Scholar] [CrossRef]
- Grandis, J.R.; Tweardy, D.J. Elevated levels of transforming growth factor alpha and epidermal growth factor receptor messenger RNA are early markers of carcinogenesis in head and neck cancer. Cancer Res. 1993, 53, 3579–3584. [Google Scholar]
- Smith, A.E.; Chan, S.; Wang, Z.; McCloskey, A.; Reilly, Q.; Wang, J.Z.; Patel, H.V.; Koshizuka, K.; Soifer, H.S.; Kessler, L.; et al. Tipifarnib Potentiates the Antitumor Effects of PI3Kalpha Inhibition in PIK3CA- and HRAS-Dysregulated HNSCC via Convergent Inhibition of mTOR Activity. Cancer Res. 2023, 83, 3252–3263. [Google Scholar] [CrossRef]
- Song, M.S.; Salmena, L.; Pandolfi, P.P. The functions and regulation of the PTEN tumour suppressor. Nat. Rev. Mol. Cell Biol. 2012, 13, 283–296. [Google Scholar] [CrossRef]
- Hoxhaj, G.M.; Brendan, D. The PI3K-AKT network at the interface of oncogenic signaling and cancer metabolism. Nat. Rev. Cancer 2020, 20, 74–88. [Google Scholar] [CrossRef] [PubMed]
- Eze, N.; Lee, J.-W.; Yang, D.-H.; Zhu, F.; Neumeister, V.; Sandoval-Schaefer, T.; Mehra, R.; Ridge, J.A.; Forastiere, A.; Chung, C.H.; et al. PTEN loss is associated with resistance to cetuximab in patients with head and neck squamous cell carcinoma. Oral Oncol. 2019, 91, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Zandberg, D.P.; Menk, A.V.; Velez, M.; Normolle, D.; DePeaux, K.; Liu, A.; Ferris, R.L.; Delgoffe, G.M. Tumor hypoxia is associated with resistance to PD-1 blockade in squamous cell carcinoma of the head and neck. J. Immunother. Cancer 2021, 9, e002088. [Google Scholar] [CrossRef]
- Hanna, G.J.; Oakley, L.B.; Shi, R.; Oneill, A.; Shin, K.Y.; Scarfo, N.; Sehgal, K.; Dennis, M.J.; Quinn, N.; Jo, V.Y.; et al. Duvelisib with Docetaxel for Patients with Anti–PD-1 Refractory, Recurrent, or Metastatic Head and Neck Squamous Cell Carcinoma. Clin. Cancer Res. 2024, 31, 619–627. [Google Scholar] [CrossRef]
- Tarantelli, C.; Gaudio, E.; Arribas, A.J.; Kwee, I.; Hillmann, P.; Rinaldi, A.; Cascione, L.; Spriano, F.; Bernasconi, E.; Guidetti, F.; et al. PQR309 Is a Novel Dual PI3K/mTOR Inhibitor with Preclinical Antitumor Activity in Lymphomas as a Single Agent and in Combination Therapy. Clin. Cancer Res. 2018, 24, 120–129. [Google Scholar] [CrossRef]
- Beaufils, F.; Cmiljanovic, N.; Cmiljanovic, V.; Bohnacker, T.; Melone, A.; Marone, R.; Jackson, E.; Zhang, X.; Sele, A.; Borsari, C.; et al. 5-(4,6-Dimorpholino-1,3,5-triazin-2-yl)-4-(trifluoromethyl)pyridin-2-amine (PQR309), a Potent, Brain-Penetrant, Orally Bioavailable, Pan-Class I PI3K/mTOR Inhibitor as Clinical Candidate in Oncology. J. Med. Chem. 2017, 60, 7524–7538. [Google Scholar] [CrossRef] [PubMed]
- Johnson, F.M.; Janku, F.; Gouda, M.A.; Tran, H.T.; Kawedia, J.D.; Schmitz, D.; Streefkerk, H.; Lee, J.J.; Andersen, C.R.; Deng, D.; et al. Inhibition of the Phosphatidylinositol-3 Kinase Pathway Using Bimiralisib in Loss-of-Function NOTCH1-Mutant Head and Neck Cancer. Oncologist 2022, 27, 1004-e926. [Google Scholar] [CrossRef]
- Janku, F.; Choong, G.M.; Opyrchal, M.; Dowlati, A.; Hierro, C.; Rodon, J.; Wicki, A.; Forster, M.D.; Blagden, S.P.; Yin, J.; et al. A Phase I Study of the Oral Dual-Acting Pan-PI3K/mTOR Inhibitor Bimiralisib in Patients with Advanced Solid Tumors. Cancers 2024, 16, 1137. [Google Scholar] [CrossRef]
- Schinke, H.; Shi, E.; Lin, Z.; Quadt, T.; Kranz, G.; Zhou, J.; Wang, H.; Hess, J.; Heuer, S.; Belka, C.; et al. A transcriptomic map of EGFR-induced epithelial-to-mesenchymal transition identifies prognostic and therapeutic targets for head and neck cancer. Mol. Cancer 2022, 21, 178. [Google Scholar] [CrossRef]
- Mountzios, G.; Rampias, T.; Psyrri, A. The mutational spectrum of squamous-cell carcinoma of the head and neck: Targetable genetic events and clinical impact. Ann. Oncol. 2014, 25, 1889–1900. [Google Scholar] [CrossRef] [PubMed]
- Yahia, H.B.; Petit, F.M.; Saada-Bouzid, E. Targeting Harvey rat sarcoma viral oncogene homolog in head and neck cancer: How to move forward? Curr. Opin. Oncol. 2023, 35, 178–185. [Google Scholar] [CrossRef]
- Whyte, D.B.; Kirschmeier, P.; Hockenberry, T.N.; Nunez-Oliva, I.; James, L.; Catino, J.J.; Bishop, W.R.; Pai, J.-K. K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J. Biol. Chem. 1997, 272, 14459–14464. [Google Scholar] [CrossRef]
- Cox, A.D.; Der, C.J.; Philips, M.R. Targeting RAS Membrane Association: Back to the Future for Anti-RAS Drug Discovery? Clin. Cancer Res. 2015, 21, 1819–1827. [Google Scholar] [CrossRef]
- Gilardi, M.; Wang, Z.; Proietto, M.; Chillà, A.; Calleja-Valera, J.L.; Goto, Y.; Vanoni, M.; Janes, M.R.; Mikulski, Z.; Gualberto, A.; et al. Tipifarnib as a Precision Therapy for HRAS-Mutant Head and Neck Squamous Cell Carcinomas. Mol. Cancer Ther. 2020, 19, 1784–1796. [Google Scholar] [CrossRef] [PubMed]
- Ho, A.L.; Brana, I.; Haddad, R.; Bauman, J.; Bible, K.; Oosting, S.; Wong, D.J.; Ahn, M.-J.; Boni, V.; Even, C.; et al. Tipifarnib in Head and Neck Squamous Cell Carcinoma With HRAS Mutations. J. Clin. Oncol. 2021, 39, 1856–1864. [Google Scholar] [CrossRef]
- Haddad, R.I.; Adkins, D.; Licitra, L.F.; Bruce, J.Y.; Gillison, M.L.; Ahn, M.-J.; Hsieh, C.-Y.; Wang, H.-M.; Psyrri, A.; Machiels, J.-P.H.; et al. The AIM-HN Study: A pivotal study evaluating the efficacy of tipifarnib in patients with recurrent or metastatic head and neck squamous cell carcinoma with HRAS mutations. J. Clin. Oncol. 2021, 39, TPS6087. [Google Scholar] [CrossRef]
- Ho, A.; Adkins, D.; Hanna, G.; Bruce, J.; Ahn, M.-J.; Docampo, L.I.; Kang, H.; Wong, D.; Psyrri, A.; Gillison, M.; et al. LBA47 A phase II study evaluating tipifarnib in mHRAS, recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) (AIM-HN study). Ann. Oncol. 2023, 34, S1286–S1287. [Google Scholar] [CrossRef]
- Jagadeeshan, S.; Suryamohan, K.; Shin, N.; Mathukkada, S.; Boyko, A.; Melikhova, D.; Tsareva, A.; Yunusova, L.; Pravdivtseva, E.; Stupichev, D.; et al. Evolutionary dynamics of tipifarnib in HRAS mutated head and neck squamous cell carcinoma. Oral Oncol. 2024, 149, 106688. [Google Scholar] [CrossRef]
- Kura Oncology, Inc. Combination Trial of Tipifarnib and Alpelisib in Adult Recurrent/Metastatic Head and Neck Squamous Cell Carcinoma (R/M HNSCC); NCT04997902; Kura Oncology, Inc.: San Diego, CA, USA, 2021. Available online: https://clinicaltrials.gov/study/NCT04997902 (accessed on 14 September 2025).
- Shah, N.; Trivedi, T.; Tankshali, R.; Goswami, J.; Jetly, D.; Kobawala, T.; Shukla, S.; Shah, P.; Verma, R. Stat3 Expression in Oral Squamous Cell Carcinoma: Association with Clinicopathological Parameters and Survival. Int. J. Biol. Markers 2006, 21, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, A.J.; Kato, S.; Johnson, D.; Popovtzer, A.; Chiu, V.K.; Geva, R.; Ben-David, H.; Meirson, T.; Schickler, M.; Reuveni, H. Abstract 5181: Early activity and biomarker evaluation of NT219 in combination with cetuximab in a Phase 1/2 study of recurrent/metastatic squamous cell carcinoma of the head and neck (R/M SCCHN). Cancer Res. 2024, 84, 5181. [Google Scholar] [CrossRef]
- Lee, T.L.; Yeh, J.; Van Waes, C.; Chen, Z. Epigenetic modification of SOCS-1 differentially regulates STAT3 activation in response to interleukin-6 receptor and epidermal growth factor receptor signaling through JAK and/or MEK in head and neck squamous cell carcinomas. Mol. Cancer Ther. 2006, 5, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Masuda, M.; Suzui, M.; Yasumatu, R.; Nakashima, T.; Kuratomi, Y.; Azuma, K.; Tomita, K.; Komiyama, S.; Weinstein, I.B. Constitutive activation of signal transducers and activators of transcription 3 correlates with cyclin D1 overexpression and may provide a novel prognostic marker in head and neck squamous cell carcinoma. Cancer Res. 2002, 62, 3351–3355. [Google Scholar]
- Gaykalova, D.A.; Manola, J.B.; Ozawa, H.; Zizkova, V.; Morton, K.; Bishop, J.A.; Sharma, R.; Zhang, C.; Michailidi, C.; Considine, M.; et al. NF-κB and stat3 transcription factor signatures differentiate HPV-positive and HPV-negative head and neck squamous cell carcinoma. Int. J. Cancer 2015, 137, 1879–1889. [Google Scholar] [CrossRef]
- Dale, O.T.; Aleksic, T.; Shah, K.A.; Han, C.; Mehanna, H.; Rapozo, D.C.; Sheard, J.D.H.; Goodyear, P.; Upile, N.S.; Robinson, M.; et al. IGF-1R expression is associated with HPV-negative status and adverse survival in head and neck squamous cell carcinoma. Carcinogenesis 2015, 36, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, A.; Kato, S.; Johnson, D.; Popovtzer, A.; Chiu, V.; Geva, R.; Schickler, M.; Reuveni, H. 27O Interim results of a phase I/II trial of NT219 in combination with cetuximab in patients with advanced/metastatic squamous cell carcinoma of the head and neck (SCCHN). ESMO Open 2024, 9, 102355. [Google Scholar] [CrossRef]
- Kalyankrishna, S.; Grandis, J.R. Epidermal growth factor receptor biology in head and neck cancer. J. Clin. Oncol. 2006, 24, 2666–2672. [Google Scholar] [CrossRef]
- Chakravarti, A.; Loeffler, J.S.; Dyson, N.J. Insulin-like growth factor receptor I mediates resistance to anti-epidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signaling. Cancer Res. 2002, 62, 200–207. [Google Scholar]
- Erjala, K.; Sundvall, M.; Junttila, T.T.; Zhang, N.; Savisalo, M.; Mali, P.; Kulmala, J.; Pulkkinen, J.; Grenman, R.; Elenius, K. Signaling via erbB2 and erbB3 associates with resistance and epidermal growth factor receptor (EGFR) amplification with sensitivity to EGFR inhibitor gefitinib in head and neck squamous cell carcinoma cells. Clin. Cancer Res. 2006, 12, 4103–4111. [Google Scholar] [CrossRef]
- Saddawi-Konefka, R.; Schokrpur, S.; Lui, A.J.; Gutkind, J.S. HER2 and HER3 as Therapeutic Targets in Head and Neck Cancer. Cancer J. 2022, 28, 339–345. [Google Scholar] [CrossRef]
- Gazzah, A.; Boni, V.; Soria, J.-C.; Calles, A.; Even, C.; Doger, B.; Mahjoubi, L.; Bahleda, R.; Ould-Kaci, M.; Esler, A.; et al. A phase 1b study of afatinib in combination with standard-dose cetuximab in patients with advanced solid tumours. Eur. J. Cancer 2018, 104, 1–8. [Google Scholar] [CrossRef]
- Yonesaka, K.; Tanaka, K.; Kitano, M.; Kawakami, H.; Hayashi, H.; Takeda, M.; Sakai, K.; Nishio, K.; Doi, K.; Nakagawa, K. Aberrant HER3 ligand heregulin-expressing head and neck squamous cell carcinoma is resistant to anti-EGFR antibody cetuximab, but not second-generation EGFR-TKI. Oncogenesis 2019, 8, 54. [Google Scholar] [CrossRef]
- Bhatia, A.K.; Wei, W.; Chiorazzi, M.; Deshpande, H.A.; Reynolds, J.; Gehan, D.; Tara, H.H.; Newton, B.R.; Verma, A.; Sayed, Z.; et al. Phase 2 trial of dual EGFR inhibition with cetuximab and afatinib in patients with recurrent/metastatic head and neck squamous cell cancers (HNSCC). J. Clin. Oncol. 2025, 43, 6023. [Google Scholar] [CrossRef]
- Bhatia, A.; Mehra, R.; Bauman, J.; Khan, S.A.; Wei, W.; Neumeister, V.; Sandoval-Schaefer, T.; Alpaugh, R.K.; Lango, M.; Rimm, D.L.; et al. Phase II Trial of Chemotherapy, Cetuximab, and Erlotinib in Patients With Metastatic or Recurrent Squamous Cell Carcinoma of the Head and Neck. Head Neck 2025, 47, 2373–2382. [Google Scholar] [CrossRef] [PubMed]
- Machiels, J.-P.H.; I Haddad, R.; Fayette, J.; Licitra, L.F.; Tahara, M.; Vermorken, J.B.; Clement, P.M.; Gauler, T.; Cupissol, D.; Grau, J.J.; et al. Afatinib versus methotrexate as second-line treatment in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck progressing on or after platinum-based therapy (LUX-Head & Neck 1): An open-label, randomised phase 3 trial. Lancet Oncol. 2015, 16, 583–594. [Google Scholar] [PubMed]
- van de Donk, N.W.C.J.; Zweegman, S. T-cell-engaging bispecific antibodies in cancer. Lancet 2023, 402, 142–158. [Google Scholar] [CrossRef]
- Paul, S.; Konig, M.F.; Pardoll, D.M.; Bettegowda, C.; Papadopoulos, N.; Wright, K.M.; Gabelli, S.B.; Ho, M.; van Elsas, A.; Zhou, S. Cancer therapy with antibodies. Nat. Rev. Cancer 2024, 24, 399–426. [Google Scholar] [CrossRef]
- Dalley, A.J.; Majeed, A.A.A.; Pitty, L.P.; Major, A.G.; Farah, C.S. LGR5 expression in oral epithelial dysplasia and oral squamous cell carcinoma. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2015, 119, 436–440.e1. [Google Scholar] [CrossRef] [PubMed]
- Herpers, B.; Eppink, B.; James, M.I.; Cortina, C.; Cañellas-Socias, A.; Boj, S.F.; Hernando-Momblona, X.; Glodzik, D.; Roovers, R.C.; van de Wetering, M.; et al. Functional patient-derived organoid screenings identify MCLA-158 as a therapeutic EGFR x LGR5 bispecific antibody with efficacy in epithelial tumors. Nat. Cancer 2022, 3, 418–436. [Google Scholar] [CrossRef]
- Lundberg, A.S.; Geuijen, C.A.W.; Hill, S.; van Bueren, J.J.L.; Fumagalli, A.; de Kruif, J.; Silverman, P.B.; Tabernero, J. Petosemtamab, a Bispecific Antibody Targeting Epidermal Growth Factor Receptor (EGFR) and Leucine-Rich G Repeat-Containing Protein-Coupled Receptor (LGR5) Designed for Broad Clinical Applications. Cancers 2025, 17, 1665. [Google Scholar] [CrossRef]
- Le Tourneau, C.; Fayette, J.; Even, C.; Sacco, A.; Daste, A.; Braña, I.; van Herpen, C.; Mazard, T.; Henry, S.; Saerens, M.; et al. 411MO Petosemtamab (MCLA-158) monotherapy in previously treated (2L+) recurrent/metastatic (r/m) head and neck squamous cell carcinoma (HNSCC): Phase II trial. Ann. Oncol. 2024, 35, S1557–S1558. [Google Scholar] [CrossRef]
- Machiels, J.-P.; Fayette, J.; Haddad, R.; Adkins, D.; Gillison, M.; Harrington, K.J.; Kim, S.-B.; Le Tourneau, C.; Psyrri, A.; Rosenberg, A.; et al. LiGeR-HN phase III trials of petosemtamab + pembrolizumab and petosemtamab monotherapy in recurrent or metastatic HNSCC. Futur. Oncol. 2025, 21, 2007–2016. [Google Scholar] [CrossRef] [PubMed]
- Haddad, R.; Gillison, M.; Harrington, K.; Kim, S.-B.; Le Tourneau, C.; Rosenberg, A.; Ford, J.; Shen, Y.-M.; Yao, D.; Zohren, F.; et al. 943TiP Petosemtamab compared with investigator’s choice monotherapy in previously treated patients (pts) with recurrent/metastatic (r/m) head and neck squamous cell carcinoma (HNSCC): A randomized, open-label, phase III trial. Ann. Oncol. 2024, 35, S653–S654. [Google Scholar] [CrossRef]
- Xu, H.; Stabile, L.P.; Gubish, C.T.; Gooding, W.E.; Grandis, J.R.; Siegfried, J.M. Dual blockade of EGFR and c-Met abrogates redundant signaling and proliferation in head and neck carcinoma cells. Clin. Cancer Res. 2011, 17, 4425–4438. [Google Scholar] [CrossRef] [PubMed]
- Rothenberger, N.J.; Stabile, L.P. Hepatocyte Growth Factor/c-Met Signaling in Head and Neck Cancer and Implications for Treatment. Cancers 2017, 9, 39. [Google Scholar] [CrossRef]
- Kumar, D.; Kandl, C.; Hamilton, C.D.; Shnayder, Y.; Tsue, T.T.; Kakarala, K.; Ledgerwood, L.; Sun, X.S.; Huang, H.J.; Girod, D.; et al. Mitigation of Tumor-Associated Fibroblast-Facilitated Head and Neck Cancer Progression With Anti-Hepatocyte Growth Factor Antibody Ficlatuzumab. JAMA Otolaryngol. Head Neck Surg. 2015, 141, 1133–1139. [Google Scholar] [CrossRef]
- Centuori, S.M.; Bauman, J.E. c-Met Signaling as a Therapeutic Target in Head and Neck Cancer. Cancer J. 2022, 28, 346–353. [Google Scholar] [CrossRef]
- Mandal, M.; Myers, J.N.; Lippman, S.M.; Johnson, F.M.; Williams, M.D.; Rayala, S.; Ohshiro, K.; Rosenthal, D.I.; Weber, R.S.; Gallick, G.E.; et al. Epithelial to mesenchymal transition in head and neck squamous carcinoma. Cancer 2008, 112, 2088–2100. [Google Scholar] [CrossRef] [PubMed]
- Bauman, J.E.; Saba, N.F.; Roe, D.; Bauman, J.R.; Kaczmar, J.; Bhatia, A.; Muzaffar, J.; Julian, R.; Wang, S.; Bearelly, S.; et al. Randomized Phase II Trial of Ficlatuzumab With or Without Cetuximab in Pan-Refractory, Recurrent/Metastatic Head and Neck Cancer. J. Clin. Oncol. 2023, 41, 3851–3862. [Google Scholar] [CrossRef] [PubMed]
- Bauman, J.E.; Ohr, J.; Gooding, W.E.; Ferris, R.L.; Duvvuri, U.; Kim, S.; Johnson, J.T.; Soloff, A.C.; Wallweber, G.; Winslow, J.; et al. Phase I Study of Ficlatuzumab and Cetuximab in Cetuximab-Resistant, Recurrent/Metastatic Head and Neck Cancer. Cancers 2020, 12, 1537. [Google Scholar] [CrossRef] [PubMed]
- Bauman, J.; Allman, K.; Haddad, R. FIERCE-HN: A Multicenter, Randomized, Placebo-controlled, Phase 3 Study of ficlatuzumab + cetuximab in pts w/ recurrent or Metastatic (R/M) HPV-negative Head and Neck Squamous Cell Carcinoma (HNSCC). Int. J. Radiat. Oncol. 2024, 118, e36. [Google Scholar] [CrossRef]
- Gogia, P.; Ashraf, H.; Bhasin, S.; Xu, Y. Antibody-Drug Conjugates: A Review of Approved Drugs and Their Clinical Level of Evidence. Cancers 2023, 15, 3886. [Google Scholar] [CrossRef]
- Shastry, M.; Gupta, A.; Chandarlapaty, S.; Young, M.; Powles, T.; Hamilton, E. Rise of Antibody-Drug Conjugates: The Present and Future. Am. Soc. Clin. Oncol. Educ. Book 2023, 43, e390094. [Google Scholar] [CrossRef]
- Qiu, M.-Z.; Zhang, Y.; Guo, Y.; Guo, W.; Nian, W.; Liao, W.; Xu, Z.; Zhang, W.; Zhao, H.-Y.; Wei, X.; et al. Evaluation of Safety of Treatment With Anti–Epidermal Growth Factor Receptor Antibody Drug Conjugate MRG003 in Patients With Advanced Solid Tumors. JAMA Oncol. 2022, 8, 1042–1046. [Google Scholar] [CrossRef]
- Xue, L.; Han, Y.; Zhang, Q.; Li, X.; Fang, M.; Zhong, L.; Wang, S.; Liu, Y.; Zhang, S.; Guo, Y. 939P Efficacy and safety of a novel anti-EGFR ADC MRG003 in recurrent or metastatic squamous cell carcinoma of the head and neck patients. Ann. Oncol. 2023, 34, S590. [Google Scholar] [CrossRef]
- Shanghai Miracogen Inc. A Study to Evaluate MRG003 vs. Cetuximab/Methotrexate in the Treatment of Patients with RM-SCCHN; NCT05751512; Shanghai Miracogen Inc.: Shanghai, China, 2023. Available online: https://clinicaltrials.gov/study/NCT05751512 (accessed on 14 September 2025).
- de Goeij, B.E.; Satijn, D.; Freitag, C.M.; Wubbolts, R.; Bleeker, W.K.; Khasanov, A.; Zhu, T.; Chen, G.; Miao, D.; van Berkel, P.H.; et al. High Turnover of Tissue Factor Enables Efficient Intracellular Delivery of Antibody–Drug Conjugates. Mol. Cancer Ther. 2015, 14, 1130–1140. [Google Scholar] [CrossRef]
- Theunissen, J.-W.; Cai, A.G.; Bhatti, M.M.; Cooper, A.B.; Avery, A.D.; Dorfman, R.; Guelman, S.; Levashova, Z.; Migone, T.-S. Treating Tissue Factor-Positive Cancers with Antibody-Drug Conjugates That Do Not Affect Blood Clotting. Mol. Cancer Ther. 2018, 17, 2412–2426. [Google Scholar] [CrossRef]
- Smith, S.A.; Travers, R.J.; Morrissey, J.H. How it all starts: Initiation of the clotting cascade. Crit. Rev. Biochem. Mol. Biol. 2015, 50, 326–336. [Google Scholar] [CrossRef]
- Grover, S.P.; Mackman, N. Tissue Factor: An Essential Mediator of Hemostasis and Trigger of Thrombosis. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 709–725. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, Y.W.; Osanto, S.; Reitsma, P.H.; Versteeg, H. The relationship between tissue factor and cancer progression: Insights from bench and bedside. Blood 2012, 119, 924–932. [Google Scholar] [CrossRef] [PubMed]
- Unruh, D.; Horbinski, C. Beyond thrombosis: The impact of tissue factor signaling in cancer. J. Hematol. Oncol. 2020, 13, 93. [Google Scholar] [CrossRef] [PubMed]
- Doronina, S.; Toki, B.E.; Torgov, M.Y.; Mendelsohn, B.A.; Cerveny, C.G.; Chace, D.F.; DeBlanc, R.L.; Gearing, R.P.; Bovee, T.D.; Siegall, C.B.; et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat. Biotechnol. 2003, 21, 778–784. [Google Scholar] [CrossRef]
- Koga, Y.; Manabe, S.; Aihara, Y.; Sato, R.; Tsumura, R.; Iwafuji, H.; Furuya, F.; Fuchigami, H.; Fujiwara, Y.; Hisada, Y.; et al. Antitumor effect of antitissue factor antibody-MMAE conjugate in human pancreatic tumor xenografts. Int. J. Cancer 2015, 137, 1457–1466. [Google Scholar] [CrossRef]
- Bakema, J.E.; Walsum, M.S.-V.; Harris, J.R.; Ganzevles, S.H.; Muthuswamy, A.; Houtkamp, M.; Plantinga, T.S.; Bloemena, E.; Brakenhoff, R.H.; Breij, E.C.; et al. An Antibody-Drug Conjugate Directed to Tissue Factor Shows Preclinical Antitumor Activity in Head and Neck Cancer as a Single Agent and in Combination with Chemoradiotherapy. Mol. Cancer Ther. 2024, 23, 187–198. [Google Scholar] [CrossRef]
- Bogani, G.; Coleman, R.L.; Vergote, I.; Raspagliesi, F.; Lorusso, D.; Monk, B.J. Tisotumab vedotin in recurrent or metastatic cervical cancer. Curr. Probl. Cancer 2023, 47, 100952. [Google Scholar] [CrossRef]
- Shanghai Miracogen Inc. Efficacy and Safety Study of Tisotumab Vedotin for Patients with Solid Tumors (innovaTV 207); NCT03485209; Shanghai Miracogen Inc.: Shanghai, China, 2018. Available online: https://clinicaltrials.gov/study/NCT03485209 (accessed on 14 September 2025).
- Sun, L.; Fayette, J.; Salas, S.; Hong, D.S.; Adkins, D.; Dunn, L.; Ciardiello, F.; Cirauqui, B.; William, W.N.; Saba, N.F.; et al. Tisotumab Vedotin in Head and Neck Squamous Cell Carcinoma: Updated Analysis from innovaTV 207 Part C. J. Clin. Oncol. 2024, 42, 6012. [Google Scholar] [CrossRef]
- Sanders, C.; Lau, J.-F.; Dietrich, D.; Strieth, S.; Brossart, P.; Kristiansen, G. Nectin-4 is widely expressed in head and neck squamous cell carcinoma. Oncotarget 2022, 13, 1166–1173. [Google Scholar] [CrossRef]
- Challita-Eid, P.M.; Satpayev, D.; Yang, P.; An, Z.; Morrison, K.; Shostak, Y.; Raitano, A.; Nadell, R.; Liu, W.; Lortie, D.R.; et al. Enfortumab Vedotin Antibody-Drug Conjugate Targeting Nectin-4 Is a Highly Potent Therapeutic Agent in Multiple Preclinical Cancer Models. Cancer Res. 2016, 76, 3003–3013. [Google Scholar] [CrossRef]
- Olson, D.; Younan, P.; Liu, B.; Blahnik-Fagan, G.; Gosink, J.; Snead, K.; Tenn, E.; Hensley, K.; Sahetya, D.; Nesterova, A.; et al. 1187 Enfortumab vedotin induces immunogenic cell death, elicits antitumor immune memory, and shows enhanced preclinical activity in combination with immune checkpoint inhibitors. J. Immunother. Cancer 2022, 10, A1231. [Google Scholar] [CrossRef]
- Rosenberg, J.; Sridhar, S.S.; Zhang, J.; Smith, D.; Ruether, D.; Flaig, T.W.; Baranda, J.; Lang, J.; Plimack, E.R.; Sangha, R.; et al. EV-101: A Phase I Study of Single-Agent Enfortumab Vedotin in Patients With Nectin-4-Positive Solid Tumors, Including Metastatic Urothelial Carcinoma. J. Clin. Oncol. 2020, 38, 1041–1049. [Google Scholar] [CrossRef]
- Swiecicki, P.L.; Yilmaz, E.; Rosenberg, A.J.; Fujisawa, T.; Bruce, J.Y.; Meng, C.; Wozniak, M.; Zhao, Y.; Mihm, M.; Kaplan, J.; et al. Phase II Trial of Enfortumab Vedotin in Patients With Previously Treated Advanced Head and Neck Cancer. J. Clin. Oncol. 2025, 43, 578–588. [Google Scholar] [CrossRef]
- Swiecicki, P.; Yilmaz, E.; Rosenberg, A.; Fujisawa, T.; Bruce, J.; Meng, C.; Wozniak, M.; Wang, L.; Gorla, S.; Geiger, J. Enfortumab Vedotin (EV) in the Previously Treated Advanced Head and Neck Cancer (HNC) Cohort of EV-202. Int. J. Radiat. Oncol. 2024, 118, e18. [Google Scholar] [CrossRef]
- Goldenberg, D.M.; Cardillo, T.M.; Govindan, S.V.; Rossi, E.A.; Sharkey, R.M. Trop-2 is a novel target for solid cancer therapy with sacituzumab govitecan (IMMU-132), an antibody-drug conjugate (ADC). Oncotarget 2015, 6, 22496–22512. [Google Scholar] [CrossRef]
- Goldenberg, D.M.; Sharkey, R.M. Antibody-drug conjugates targeting TROP-2 and incorporating SN-38: A case study of anti-TROP-2 sacituzumab govitecan. MAbs 2019, 11, 987–995. [Google Scholar] [CrossRef] [PubMed]
- Cardillo, T.M.; Govindan, S.V.; Sharkey, R.M.; Trisal, P.; Goldenberg, D.M. Humanized anti-Trop-2 IgG-SN-38 conjugate for effective treatment of diverse epithelial cancers: Preclinical studies in human cancer xenograft models and monkeys. Clin. Cancer Res. 2011, 17, 3157–3169. [Google Scholar] [CrossRef] [PubMed]
- Starodub, A.N.; Ocean, A.J.; Shah, M.A.; Guarino, M.J.; Picozzi, V.J.; Vahdat, L.T.; Thomas, S.S.; Govindan, S.V.; Maliakal, P.P.; Wegener, W.A.; et al. First-in-Human Trial of a Novel Anti-Trop-2 Antibody-SN-38 Conjugate, Sacituzumab Govitecan, for the Treatment of Diverse Metastatic Solid Tumors. Clin. Cancer Res. 2015, 21, 3870–3878. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ma, L.; Li, J.; Sun, L.; Yang, Y.; Liu, T.; Xing, D.; Yan, S.; Zhang, M. Trop2-targeted therapies in solid tumors: Advances and future directions. Theranostics 2024, 14, 3674–3692. [Google Scholar] [CrossRef]
- Bardia, A.; Messersmith, W.; Kio, E.; Berlin, J.; Vahdat, L.; Masters, G.; Moroose, R.; Santin, A.; Kalinsky, K.; Picozzi, V.; et al. Sacituzumab govitecan, a Trop-2-directed antibody-drug conjugate, for patients with epithelial cancer: Final safety and efficacy results from the phase I/II IMMU-132-01 basket trial. Ann. Oncol. 2021, 32, 746–756. [Google Scholar] [CrossRef]
- Michel, L.; Jimeno, A.; Sukari, A.; Beck, J.T.; Chiu, J.; Ahern, E.; Hilton, J.; Even, C.; Zanetta, S.; Mekan, S.; et al. Sacituzumab Govitecan in Patients with Relapsed/Refractory Advanced Head and Neck Squamous Cell Carcinoma: Results from the Phase II TROPiCS-03 Basket Study. Clin. Cancer Res. 2024, 31, 832–838. [Google Scholar] [CrossRef]
- Gilead Sciences, Inc. A Study of Sacituzumab Govitecan in Combination with Cetuximab in People with Head and Neck Squamous Cell Cancer (HNSCC); NCT07063212; Gilead Sciences, Inc.: Foster City, CA, USA, 2025. Available online: https://clinicaltrials.gov/study/NCT07063212 (accessed on 14 September 2025).
- Lyon, R.P.; Jonas, M.; Frantz, C.; Trueblood, E.S.; Yumul, R.; Westendorf, L.; Hale, C.J.; Stilwell, J.L.; Yeddula, N.; Snead, K.M.; et al. SGN-B6A: A New Vedotin Antibody-Drug Conjugate Directed to Integrin Beta-6 for Multiple Carcinoma Indications. Mol. Cancer Ther. 2023, 22, 1444–1453. [Google Scholar] [CrossRef]
- Hollebecque, A.; Lopez, J.S.; Piha-Paul, S.A.; Dowlati, A.; Patnaik, A.; Galvao, V.; Bockorny, B.; Sehgal, K.; Kingsley, E.; Sanborn, R.E.; et al. SGN-B6A, an integrin beta-6 (ITGB6)-targeted antibody-drug conjugate (ADC), in patients with advanced solid tumors: Updated results from a phase 1 study (SGNB6A-001). J. Clin. Oncol. 2023, 41, 3024. [Google Scholar] [CrossRef]
- Avincsal, M.O.; Kamizaki, K.; Jimbo, N.; Shinomiya, H.; Nibu, K.-I.; Nishita, M.; Minami, Y. Oncogenic E6 and/or E7 proteins drive proliferation and invasion of human papilloma virus-positive head and neck squamous cell cancer through upregulation of Ror2 expression. Oncol. Rep. 2021, 46, 148. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.W.; Frey, G.; Wang, J.; Liu, H.; Xing, C.; Chen, J.; Boyle, W.J.; Short, J.M. Preclinical development of ozuriftamab vedotin (BA3021), a novel ROR2-specific conditionally active biologic antibody-drug conjugate. MAbs 2025, 17, 2490078. [Google Scholar] [CrossRef] [PubMed]
- B.H.P. Inc. A Study to Evaluate BA3021 in Participants with Solid Tumors; NCT03504488; B.H.P. Inc.: Melbourne, VIC, Australia, 2022. Available online: https://clinicaltrials.gov/study/NCT03504488?tab=results (accessed on 14 September 2025).
- Keeling, J.; Barsh, E.R.; Melchor, N.; Aysola, K.; Weight, R.M.; Falchook, G.S. First report of ROR2 directed therapy with a conditionally active antibody drug conjugate in advanced melanoma. J. Clin. Oncol. 2025, 43, 3077. [Google Scholar] [CrossRef]
- Wong, W.; Adkins, D.; Misleh, J.; Lorch, J.; Grewal, J.; Russell, J.; Cetnar, J.; Ho, A.; Chen, K.; Aysola, K.; et al. 868P Phase II trial of ozuriftamab vedotin (BA3021), a conditionally active biologic (CAB)-ROR2-ADC, in patients with recurrent or metastatic squamous cell carcinoma of the head and neck (R/M SCCHN). Ann. Oncol. 2024, 35, S622–S623. [Google Scholar] [CrossRef]
- Llop, S.; Jiménez-Labaig, P.; Micheletto, I.; Saba, N.F.; O’LEary, B. Novel Treatment Approaches in Recurrent/Metastatic Squamous Head and Neck Cancer. Otolaryngol. Clin. N. Am. 2025, 59, 211–224. [Google Scholar] [CrossRef]
- Hanna, G.J.; Lizotte, P.; Cavanaugh, M.; Kuo, F.C.; Shivdasani, P.; Frieden, A.; Chau, N.G.; Schoenfeld, J.D.; Lorch, J.H.; Uppaluri, R.; et al. Frameshift events predict anti-PD-1/L1 response in head and neck cancer. J. Clin. Investig. Insight 2018, 3, e98811. [Google Scholar] [CrossRef]
- Saxena, M.; van der Burg, S.H.; Melief, C.J.M.; Bhardwaj, N. Therapeutic cancer vaccines. Nat. Rev. Cancer 2021, 21, 360–378. [Google Scholar] [CrossRef]
- Zeng, Q.; Zhang, S.; Leng, N.; Xing, Y. Advancing tumor vaccines: Overcoming TME challenges, delivery strategies, and biomaterial-based vaccine for enhanced immunotherapy. Crit. Rev. Oncol. 2024, 205, 104576. [Google Scholar] [CrossRef]
- Fernandez, E.; Vernet, R.; Urwyler, M.; Von Rohr, O.; Charrier, E.; Belkouch, M.-C.; Saingier, V.; Courtout, F.; DeVito, C.; Ancrenaz, V.; et al. Overall survival of recurrent/metastatic head & neck squamous cell carcinoma patients progressing after ≥1 line of systemic therapy, treated with MVX-ONCO-1, a novel, first-in-class cell encapsulation-based immunotherapy: Results of SAKK 11/16, a phase IIa trial. Exp. Hematol. Oncol. 2025, 14, 113. [Google Scholar] [PubMed]
- Vernet, R.; Fernandez, E.; Migliorini, D.; Ancrenaz, V.; Charrier, E.; Belkouch, M.-C.; Von Rohr, O.; Urwyler, M.; De Vito, C.; Renaux, J.; et al. A First-in-Human Phase I Clinical Study with MVX-ONCO-1, a Personalized Active Immunotherapy, in Patients with Advanced Solid Tumors. Cancer Res. Commun. 2024, 4, 2089–2100. [Google Scholar] [CrossRef]
- Kenter, G.G.; Welters, M.J.P.; Valentijn, A.R.P.M.; Löwik, M.J.G.; Berends-van der Meer, D.M.A.; Vloon, A.P.G.; Drijfhout, J.W.; Wafelman, A.R.; Oostendorp, J.; Fleuren, G.J.; et al. Phase I immunotherapeutic trial with long peptides spanning the E6 and E7 sequences of high-risk human papillomavirus 16 in end-stage cervical cancer patients shows low toxicity and robust immunogenicity. Clin. Cancer Res. 2008, 14, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Zwaveling, S.; Mota, S.C.F.; Nouta, J.; Johnson, M.; Lipford, G.B.; Offringa, R.; van der Burg, S.H.; Melief, C.J.M. Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptides. J. Immunol. 2002, 169, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Staff, C.N.E. FDA Gives ISA101b Fast Track Designation for HPV 16+ Oropharyngeal Cancer. 2021. Available online: https://www.cancernetwork.com/view/fda-gives-isa101b-fast-track-designation-for-hpv-16-oropharyngeal-cancer (accessed on 14 September 2025).
- de Sousa, L.G.; Rajapakshe, K.; Canales, J.R.; Chin, R.L.; Feng, L.; Wang, Q.; Barrese, T.Z.; Massarelli, E.; William, W.; Johnson, F.M.; et al. ISA101 and nivolumab for HPV-16+ cancer: Updated clinical efficacy and immune correlates of response. J. Immunother. Cancer 2022, 10, e004232. [Google Scholar] [CrossRef]
- Kong, A.; Even, C.; Aguilera, B.; Hesselink, M.K.; Visscher, S.; Chung, C.; Park, J.; Adkins, D.; Salas, S.; Harrington, K.; et al. 878P Final results of a phase II study of peltopepimut-S and cemiplimab in patients with relapsed/metastatic HPV16+ oropharyngeal cancer that progressed with prior anti-PD-1 therapy. Ann. Oncol. 2024, 35, S627–S628. [Google Scholar] [CrossRef]
- Kong, A.H.; Hesselink, M.S.K.; Aguilera, B.; Adkins, D.; Even, C.; Fayette, J.; Muzaffar, J.; Visscher, S.; Melief, C.J.M.; Hooftman, L.W. Phase 2 study of ISA101b (peltopeimut-S) and cemiplimab in patients with advanced HPV16+ oropharyngeal cancer who failed anti-PD-1 therapy. J. Clin. Oncol. 2023, 41, 6028. [Google Scholar] [CrossRef]
- Quayle, S.N.; Girgis, N.; Thapa, D.R.; Merazga, Z.; Kemp, M.M.; Histed, A.; Zhao, F.; Moreta, M.; Ruthardt, P.; Hulot, S.; et al. CUE-101, a Novel E7-pHLA-IL2-Fc Fusion Protein, Enhances Tumor Antigen-Specific T-Cell Activation for the Treatment of HPV16-Driven Malignancies. Clin. Cancer Res. 2020, 26, 1953–1964. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.; Colevas, A.D.; Gibson, M.; Adkins, D.; Sukari, A.; Wirth, L.; Burtness, B.; Bauman, J.; Rodriguez, C.; Worden, F.; et al. A phase 1 trial of CUE-101, a novel HPV16 E7-pHLA-IL2-Fc fusion protein, alone and in combination with pembrolizumab in patients with recurrent/metastatic HPV16+ head and neck cancer. J. Immunother. Cancer 2021, 9, A468. [Google Scholar]
- Chung, C.H.; Colevas, A.D.D.; Adkins, D.; Rodriguez, C.P.; Park, J.C.; Gibson, M.K.; Burtness, B.; Johnson, F.M.; Julian, R.A.; Saba, N.F.; et al. A phase 1 dose-escalation and expansion study of CUE-101, a novel HPV16 E7-pHLA-IL2-Fc fusion protein, given as monotherapy and in combination with pembrolizumab in patients with recurrent/metastatic HPV16+ head and neck cancer. J. Clin. Oncol. 2023, 41, 6013. [Google Scholar] [CrossRef]
| Treatment | Mechanism/Target | Phase | ORR (Latest) | Key Survival Outcomes |
|---|---|---|---|---|
| Dalpiciclib + cetuximab | CDK4/6 inhibitor plus anti-EGFR monoclonal antibody (EGFR/cell-cycle blockade) | Phase II | ORR 67.9% (95% CI 49.0–82.0) | mPFS 5.3 months; mOS 17.0 months |
| Palbociclib + cetuximab | CDK4/6 inhibitor plus anti-EGFR monoclonal antibody | Phase III | ORR 19% in Phase II cetuximab-resistant HPV-unrelated disease | Exploratory OS advantage in CDKN2A-altered tumors (HR 0.38; OS 9.7 vs. 4.6 mos) |
| Duvelisib + docetaxel | PI3Kδ/γ inhibitor plus taxane chemotherapy | Phase II | ORR 19% | mPFS 2.8 months; mOS 10.2 months |
| Ficlatuzumab + cetuximab | Anti-HGF monoclonal antibody plus anti-EGFR monoclonal antibody (dual pathway inhibition) | Phase III | ORR 38% in the HPV-negative subgroup in Phase II | mPFS 4.1 months; mOS 7.4 months in HPV-negative subgroup |
| NT219 + cetuximab | IRS1/2 degrader and STAT3 inhibitor plus anti-EGFR monoclonal antibody | Phase I/II | ORR 33% in higher-dose cohorts | DCR 67% |
| Afatinib + cetuximab | Pan-HER tyrosine kinase inhibitor plus anti-EGFR monoclonal antibody (vertical ErbB blockade) | Phase II | ORR 23.4% | mPFS 3.8 months; mOS 7.5 months |
| Treatment | Mechanism/Target | Phase | ORR (Latest) | Key Survival Outcomes |
|---|---|---|---|---|
| FLX475 + pembrolizumab | CCR4 antagonist blocking Treg recruitment + anti-PD-1 checkpoint inhibitor | Phase II | ORR 22.2% in HPV-positive cohort | Generally well tolerated; reversible QT prolongation is manageable by dose reduction |
| ISA101b + cemiplimab | Synthetic long-peptide vaccine targeting HPV16 E6/E7 plus anti-PD-1 | Phase II | ORR 6.3% overall (11.5% in stage 1); CBR 56.3% | mOS 11.3 months (53); manageable grade 3 AEs with no grade 4–5 events |
| CUE-101 | HPV16 E7-pHLA-IL2-Fc fusion protein selectively expanding antigen-specific CD8+ T cells | Phase I/II | Clinical benefit rate 37% (1 PR and 6 durable SD ≥ 12 weeks) | mOS 24.4 months in a heavily pretreated cohort |
| Ozuriftamab vedotin (BA3021) | ROR2-targeted conditionally active biologic ADC delivering MMAE | Phase II | ORR 32% overall (including 1 CR) | HPV-associated subset: mPFS 4.8 months; mOS 11.6 months |
| Treatment | Mechanism/Target | Phase | ORR (Latest) | Key Survival Outcomes |
|---|---|---|---|---|
| Paclitaxel + cetuximab | Taxane chemotherapy plus anti-EGFR monoclonal antibody | Phase II | ORR 69.6% (Japan) and 47.4% (PACE-ACE) | mOS 13.3 months (Japan) and 14.0 months (PACE-ACE) |
| FID-007 (nanoparticle paclitaxel) | Nanoparticle paclitaxel with PEOX excipient for tumor-selective delivery | Phase I; Phase II combo planned | ORR 56% in the HNSCC cohort | No high-grade neuropathy reported; Phase I RP2D 125 mg/m2 |
| SI-B001 (izalontamab) + paclitaxel | Bispecific EGFR × HER3 antibody plus taxane chemotherapy | Phase II | ORR 64.3% | mPFS 5.6 months |
| Retlirafusp alfa (SHR-1701) ± chemotherapy | Bifunctional anti–PD-L1/TGF-βRII fusion protein, sometimes combined with carboplatin/nab-paclitaxel | Phase I; prospective single-arm Phase II with chemo | ORR 20% in heavily pretreated HNSCC cohort | Hematologic toxicities common; dose 30 mg/kg Q3W established |
| Petosemtamab (MCLA-158) | Bispecific EGFR × LGR5 antibody with enhanced ADCC/ADCP and EGFR degradation in LGR5+ cells | Phase II; Phase III | ORR 36–40.4% | mPFS ≈ 5.0 months; mOS 11.5–12.5 months |
| MRG003 (becotatud vedotin) | EGFR-targeted ADC delivering MMAE via a cleavable linker with bystander effect | Phase II; Phase III | ORR 43% at 2.3 mg/kg | mPFS 4.2 months; mOS 11.3 months |
| Tisotumab vedotin | Tissue Factor (TF)-targeted ADC delivering MMAE via a cleavable linker | Phase II | ORR 32.5% overall; 40% in 2nd–3rd line | Median DOR 5.6 months |
| Enfortumab vedotin | Nectin-4-targeted ADC delivering MMAE | Phase II | ORR 23.9% | DCR 56.5%; DOR 9.4 months; mOS 6.0 months |
| Sacituzumab govitecan | Trop-2-targeted ADC delivering SN-38 via a hydrolyzable linker | Phase II; Phase II combo planned | ORR 16% (95% CI 7–31%) | mPFS 4.1 months; mOS 9.0 months; DOR 4.8 months |
| Sigvotatug vedotin (SGN-B6A) | Integrin β6-targeted ADC delivering MMAE | Phase I | ORR 20–23% | DCR 61% |
| Bimiralisib (PQR309) | Dual pan-PI3K/mTOR inhibitor with intermittent dosing | Phase I | ORR 17% (1 PR among 6 evaluable) | mPFS 5 months; mOS 7 months |
| Tipifarnib | Farnesyl transferase inhibitor targeting HRAS-dependent signaling | Phase II | ORR 55% in RUN-HN; ORR 30% investigator and 20% independent in AIM-HN | mPFS 5.6 months; mOS 15.4 months in RUN-HN |
| MVX-ONCO-1 | Personalized, cell-based vaccine (Irradiated autologous tumor cells + GM-CSF secreting allogeneic cells). | Phase I; Phase II | ORR modest | Median OS 11.4 months (95% CI, 4.4–NR) in PII; 68.8% alive at six months |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abraham, F.F.; Julian, R. Emerging and Investigational Systemic Therapies in Recurrent/Metastatic Head and Neck Cancer After Progression on Immunotherapy. Cancers 2025, 17, 3817. https://doi.org/10.3390/cancers17233817
Abraham FF, Julian R. Emerging and Investigational Systemic Therapies in Recurrent/Metastatic Head and Neck Cancer After Progression on Immunotherapy. Cancers. 2025; 17(23):3817. https://doi.org/10.3390/cancers17233817
Chicago/Turabian StyleAbraham, Freya F., and Ricklie Julian. 2025. "Emerging and Investigational Systemic Therapies in Recurrent/Metastatic Head and Neck Cancer After Progression on Immunotherapy" Cancers 17, no. 23: 3817. https://doi.org/10.3390/cancers17233817
APA StyleAbraham, F. F., & Julian, R. (2025). Emerging and Investigational Systemic Therapies in Recurrent/Metastatic Head and Neck Cancer After Progression on Immunotherapy. Cancers, 17(23), 3817. https://doi.org/10.3390/cancers17233817

