Evaluation of Nanoparticle-Based Plasma Enrichment on Individuals with Primary and Metastatic Pancreatic Cancer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients’ Plasma Collection
2.2. Nanoparticle-Based Enrichment of Plasma and Tryptic Digestion
2.3. LC MS/MS
2.4. LC MS/MS
2.5. Informatics
3. Results
3.1. Identification of Proteins from Nanoparticle Enrichment and Neat Plasma
3.2. Comparing the Plasma Proteome of Individuals with Primary or Metastatic PC and Healthy Controls, Acquired Using Orbitrap Astral (Depth)
3.3. Comparing the Plasma Proteome of Individuals with Primary or Metastatic PC and Healthy Controls, Acquired Using Orbitrap Ascend and Orbitrap Astral (HTP)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| PC | Pancreatic cancer |
| DIA | Data Independent Acquisition |
| HPPP | Human Plasma Proteome Project |
| ADH | Alcohol Dehydrogenase |
| MMNPs | Multi-Affinity Nanoprobes |
| HCD | High Energy Collision Dissociation |
| AGC | Automate Gain Control |
| SPD | Sample Per Day |
| HTP | High Throughput |
| bRP | Basic Reversed Phased |
| PBMC | Periphery Mono Blood Cells |
| CPS1 | Carbamoyl Phosphate Synthase 1 |
| SEC | Secreted |
| SUR | Surface |
| AD | Astral (Orbitrap) Depth |
| AH | Astral (Orbitrap) High Throughput |
| AS | Ascend (Orbitrap) |
References
- Yang, H.; Li, W.; Ren, L.; Yang, Y.; Zhang, Y.; Ge, B.; Li, S.; Zheng, X.; Liu, J.; Zhang, S.; et al. Progress on diagnostic and prognostic markers of pancreatic cancer. Oncol. Res. 2023, 31, 83–99. [Google Scholar] [CrossRef]
- Wagner, P.D.; Srivastava, S. National Cancer Institute’s early detection research network: A model organization for biomarker research. J. Natl. Cancer Cent. 2023, 3, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Geyer, P.E.; Holdt, L.M.; Teupser, D.; Mann, M. Revisiting biomarker discovery by plasma proteomics. Mol. Syst. Biol. 2017, 13, 942. [Google Scholar] [CrossRef] [PubMed]
- Anderson, N.L.; Anderson, N.G. The human plasma proteome: History, character, and diagnostic prospects. Mol. Cell Proteom. 2002, 1, 845–867. [Google Scholar] [CrossRef] [PubMed]
- Viode, A.; van Zalm, P.; Smolen, K.K.; Fatou, B.; Stevenson, D.; Jha, M.; Levy, O.; Steen, J.; Steen, H.; Network, I. A simple, time- and cost-effective, high-throughput depletion strategy for deep plasma proteomics. Sci. Adv. 2023, 9, eadf9717. [Google Scholar] [CrossRef]
- Vegesna, M.; Sundararaman, N.; Bharadwaj, A.; Washington, K.; Pandey, R.; Haghani, A.; Chazarin, B.; Binek, A.; Fu, Q.; Cheng, S.; et al. Enhancing Proteomics Quality Control: Insights from the Visualization Tool QCeltis. J. Proteome Res. 2025, 24, 1148–1160. [Google Scholar] [CrossRef]
- Tu, C.; Rudnick, P.A.; Martinez, M.Y.; Cheek, K.L.; Stein, S.E.; Slebos, R.J.; Liebler, D.C. Depletion of abundant plasma proteins and limitations of plasma proteomics. J. Proteome Res. 2010, 9, 4982–4991. [Google Scholar] [CrossRef]
- Chutipongtanate, S.; Chatchen, S.; Svasti, J. Plasma prefractionation methods for proteomic analysis and perspectives in clinical applications. Proteom. Clin. Appl. 2017, 11, 1600135. [Google Scholar] [CrossRef]
- Cao, Z.; Tang, H.Y.; Wang, H.; Liu, Q.; Speicher, D.W. Systematic comparison of fractionation methods for in-depth analysis of plasma proteomes. J. Proteome Res. 2012, 11, 3090–3100. [Google Scholar] [CrossRef]
- Xue, L.; Lin, L.; Zhou, W.; Chen, W.; Tang, J.; Sun, X.; Huang, P.; Tian, R. Mixed-mode ion exchange-based integrated proteomics technology for fast and deep plasma proteome profiling. J. Chromatogr. A 2018, 1564, 76–84. [Google Scholar] [CrossRef]
- Davies, D.R.; Gelinas, A.D.; Zhang, C.; Rohloff, J.C.; Carter, J.D.; O’Connell, D.; Waugh, S.M.; Wolk, S.K.; Mayfield, W.S.; Burgin, A.B.; et al. Unique motifs and hydrophobic interactions shape the binding of modified DNA ligands to protein targets. Proc. Natl. Acad. Sci. USA 2012, 109, 19971–19976. [Google Scholar] [CrossRef]
- Wik, L.; Nordberg, N.; Broberg, J.; Bjorkesten, J.; Assarsson, E.; Henriksson, S.; Grundberg, I.; Pettersson, E.; Westerberg, C.; Liljeroth, E.; et al. Proximity Extension Assay in Combination with Next-Generation Sequencing for High-throughput Proteome-wide Analysis. Mol. Cell Proteom. 2021, 20, 100168. [Google Scholar] [CrossRef] [PubMed]
- Tenzer, S.; Docter, D.; Kuharev, J.; Musyanovych, A.; Fetz, V.; Hecht, R.; Schlenk, F.; Fischer, D.; Kiouptsi, K.; Reinhardt, C.; et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 2013, 8, 772–781. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Gause, K.T.; Kamphuis, M.M.; Ang, C.S.; O’Brien-Simpson, N.M.; Lenzo, J.C.; Reynolds, E.C.; Nice, E.C.; Caruso, F. Differential roles of the protein corona in the cellular uptake of nanoporous polymer particles by monocyte and macrophage cell lines. ACS Nano 2013, 7, 10960–10970. [Google Scholar] [CrossRef] [PubMed]
- Docter, D.; Westmeier, D.; Markiewicz, M.; Stolte, S.; Knauer, S.K.; Stauber, R.H. The nanoparticle biomolecule corona: Lessons learned—Challenge accepted? Chem. Soc. Rev. 2015, 44, 6094–6121. [Google Scholar] [CrossRef]
- Walkey, C.D.; Chan, W.C. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev. 2012, 41, 2780–2799. [Google Scholar] [CrossRef]
- Monopoli, M.P.; Aberg, C.; Salvati, A.; Dawson, K.A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 2012, 7, 779–786. [Google Scholar] [CrossRef]
- Blume, J.E.; Manning, W.C.; Troiano, G.; Hornburg, D.; Figa, M.; Hesterberg, L.; Platt, T.L.; Zhao, X.; Cuaresma, R.A.; Everley, P.A.; et al. Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona. Nat. Commun. 2020, 11, 3662. [Google Scholar] [CrossRef]
- Wu, C.C.; Tsantilas, K.A.; Park, J.; Plubell, D.; Sanders, J.A.; Naicker, P.; Govender, I.; Buthelezi, S.; Stoychev, S.; Jordaan, J.; et al. Mag-Net: Rapid enrichment of membrane-bound particles enables high coverage quantitative analysis of the plasma proteome. bioRxiv, 2024; in press. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, Y.; Wang, Y.; Ouyang, X. ProteonanoTM: A Robust Platform for Large Cohort Deep Plasma Proteomic Studies. bioRxiv, 2025; in press. [Google Scholar] [CrossRef]
- Stewart, H.I.; Grinfeld, D.; Giannakopulos, A.; Petzoldt, J.; Shanley, T.; Garland, M.; Denisov, E.; Peterson, A.C.; Damoc, E.; Zeller, M.; et al. Parallelized Acquisition of Orbitrap and Astral Analyzers Enables High-Throughput Quantitative Analysis. Anal. Chem. 2023, 95, 15656–15664. [Google Scholar] [CrossRef]
- Suhre, K.; Venkataraman, G.R.; Guturu, H.; Halama, A.; Stephan, N.; Thareja, G.; Sarwath, H.; Motamedchaboki, K.; Donovan, M.K.R.; Siddiqui, A.; et al. Nanoparticle enrichment mass-spectrometry proteomics identifies protein-altering variants for precise pQTL mapping. Nat. Commun. 2024, 15, 989. [Google Scholar] [CrossRef]
- Vitko, D.; Chou, W.F.; Nouri Golmaei, S.; Lee, J.Y.; Belthangady, C.; Blume, J.; Chan, J.K.; Flores-Campuzano, G.; Hu, Y.; Liu, M.; et al. timsTOF HT Improves Protein Identification and Quantitative Reproducibility for Deep Unbiased Plasma Protein Biomarker Discovery. J. Proteome Res. 2024, 23, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Anthis, N.J.; Clore, G.M. Sequence-specific determination of protein and peptide concentrations by absorbance at 205 nm. Protein Sci. 2013, 22, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Ameen, S.S.; Griem-Krey, N.; Dufour, A.; Hossain, M.I.; Hoque, A.; Sturgeon, S.; Nandurkar, H.; Draxler, D.F.; Medcalf, R.L.; Kamaruddin, M.A.; et al. N-Terminomic Changes in Neurons During Excitotoxicity Reveal Proteolytic Events Associated With Synaptic Dysfunctions and Potential Targets for Neuroprotection. Mol. Cell Proteom. 2023, 22, 100543. [Google Scholar] [CrossRef] [PubMed]
- Demichev, V.; Messner, C.B.; Vernardis, S.I.; Lilley, K.S.; Ralser, M. DIA-NN: Neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 2020, 17, 41–44. [Google Scholar] [CrossRef]
- Perez-Riverol, Y.; Bai, J.; Bandla, C.; Garcia-Seisdedos, D.; Hewapathirana, S.; Kamatchinathan, S.; Kundu, D.J.; Prakash, A.; Frericks-Zipper, A.; Eisenacher, M.; et al. The PRIDE database resources in 2022: A hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022, 50, D543–D552. [Google Scholar] [CrossRef]
- Tyanova, S.; Cox, J. Perseus: A Bioinformatics Platform for Integrative Analysis of Proteomics Data in Cancer Research. Methods Mol. Biol. 2018, 1711, 133–148. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef]
- Zhang, F.; Ge, W.; Huang, L.; Li, D.; Liu, L.; Dong, Z.; Xu, L.; Ding, X.; Zhang, C.; Sun, Y.; et al. A Comparative Analysis of Data Analysis Tools for Data-Independent Acquisition Mass Spectrometry. Mol. Cell Proteom. 2023, 22, 100623. [Google Scholar] [CrossRef]
- Deutsch, E.W.; Omenn, G.S.; Sun, Z.; Maes, M.; Pernemalm, M.; Palaniappan, K.K.; Letunica, N.; Vandenbrouck, Y.; Brun, V.; Tao, S.C.; et al. Advances and Utility of the Human Plasma Proteome. J. Proteome Res. 2021, 20, 5241–5263. [Google Scholar] [CrossRef]
- Beimers, W.F.; Overmyer, K.A.; Sinitcyn, P.; Lancaster, N.M.; Quarmby, S.T.; Coon, J.J. Technical Evaluation of Plasma Proteomics Technologies. J. Proteome Res. 2025, 24, 3074–3087. [Google Scholar] [CrossRef]
- Ferdosi, S.; Tangeysh, B.; Brown, T.R.; Everley, P.A.; Figa, M.; McLean, M.; Elgierari, E.M.; Zhao, X.; Garcia, V.J.; Wang, T.; et al. Engineered nanoparticles enable deep proteomics studies at scale by leveraging tunable nano-bio interactions. Proc. Natl. Acad. Sci. USA 2022, 119, e2106053119. [Google Scholar] [CrossRef]
- Gao, H.; Zhan, Y.; Liu, Y.; Zhu, Z.; Zheng, Y.; Qian, L.; Xue, Z.; Cheng, H.; Nie, Z.; Ge, W.; et al. Systematic evaluation of blood contamination in nanoparticle-based plasma proteomics. bioRxiv, 2025; in press. [Google Scholar] [CrossRef]
- Navarro, P.; Kuharev, J.; Gillet, L.C.; Bernhardt, O.M.; MacLean, B.; Rost, H.L.; Tate, S.A.; Tsou, C.C.; Reiter, L.; Distler, U.; et al. A multicenter study benchmarks software tools for label-free proteome quantification. Nat. Biotechnol. 2016, 34, 1130–1136. [Google Scholar] [CrossRef]
- Farrah, T.; Deutsch, E.W.; Omenn, G.S.; Campbell, D.S.; Sun, Z.; Bletz, J.A.; Mallick, P.; Katz, J.E.; Malmstrom, J.; Ossola, R.; et al. A high-confidence human plasma proteome reference set with estimated concentrations in PeptideAtlas. Mol. Cell Proteom. 2011, 10, M110.006353. [Google Scholar] [CrossRef]
- Uhlen, M.; Fagerberg, L.; Hallstrom, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, A.; Kampf, C.; Sjostedt, E.; Asplund, A.; et al. Proteomics. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef] [PubMed]
- Korff, K.; Mueller-Reif, J.B.; Fichtl, D.; Albrecht, V.; Schebesta, A.-S.; Itang, E.C.M.; Winter, S.V.; Holdt, L.M.; Teupser, D.; Mann, M.; et al. Pre-Analytical Drivers of Bias in Bead-Enriched Plasma Proteomics. bioRxiv, 2025; in press. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.C.; Tsantilas, K.A.; Park, J.; Plubell, D.; Sanders, J.A.; Naicker, P.; Govender, I.; Buthelezi, S.; Stoychev, S.; Jordaan, J.; et al. Enrichment of extracellular vesicles using Mag-Net for the analysis of the plasma proteome. Nat. Commun. 2025, 16, 5447. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Li, L.; Iliuk, A.; Tao, W.A. Highly Efficient Phosphoproteome Capture and Analysis from Urinary Extracellular Vesicles. J. Proteome Res. 2018, 17, 3308–3316. [Google Scholar] [CrossRef]
- Lee, L.; Gupta, M.; Sahasranaman, S. Immune Checkpoint inhibitors: An introduction to the next-generation cancer immunotherapy. J. Clin. Pharmacol. 2016, 56, 157–169. [Google Scholar] [CrossRef]
- Mounce, L.T.; Hamilton, W.; Bailey, S.E. Cancer incidence following a high-normal platelet count: Cohort study using electronic healthcare records from English primary care. Br. J. Gen. Pract. 2020, 70, e622–e628. [Google Scholar] [CrossRef]
- Knox, C.; Wilson, M.; Klinger, C.M.; Franklin, M.; Oler, E.; Wilson, A.; Pon, A.; Cox, J.; Chin, N.E.L.; Strawbridge, S.A.; et al. DrugBank 6.0: The DrugBank Knowledgebase for 2024. Nucleic Acids Res. 2024, 52, D1265–D1275. [Google Scholar] [CrossRef]
- Jelski, W.; Zalewski, B.; Szmitkowski, M. Alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) activity in the sera of patients with liver cancer. J. Clin. Lab. Anal. 2008, 22, 204–209. [Google Scholar] [CrossRef]
- Liu, X.; Li, T.; Kong, D.; You, H.; Kong, F.; Tang, R. Prognostic implications of alcohol dehydrogenases in hepatocellular carcinoma. BMC Cancer 2020, 20, 1204. [Google Scholar] [CrossRef]
- Liang, L.; Liu, M.; Sun, X.; Yuan, Y.; Peng, K.; Rashid, K.; Yu, Y.; Cui, Y.; Chen, Y.; Liu, T. Identification of key genes involved in tumor immune cell infiltration and cetuximab resistance in colorectal cancer. Cancer Cell Int. 2021, 21, 135. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Bankura, B.; Ghosh, S.; Saha, M.L.; Pattanayak, A.K.; Ghatak, S.; Guha, M.; Nachimuthu, S.K.; Panda, C.K.; Maji, S.; et al. Polymorphisms in ADH1B and ALDH2 genes associated with the increased risk of gastric cancer in West Bengal, India. BMC Cancer 2017, 17, 782. [Google Scholar] [CrossRef] [PubMed]
- Park, B.; Kim, J.H.; Lee, E.S.; Jung, S.Y.; Lee, S.Y.; Kang, H.S.; Lee, E.G.; Han, J.H. Role of aldehyde dehydrogenases, alcohol dehydrogenase 1B genotype, alcohol consumption, and their combination in breast cancer in East-Asian women. Sci. Rep. 2020, 10, 6564. [Google Scholar] [CrossRef] [PubMed]
- Keshet, R.; Szlosarek, P.; Carracedo, A.; Erez, A. Rewiring urea cycle metabolism in cancer to support anabolism. Nat. Rev. Cancer 2018, 18, 634–645. [Google Scholar] [CrossRef]
- Yao, S.; Nguyen, T.V.; Rolfe, A.; Agrawal, A.A.; Ke, J.; Peng, S.; Colombo, F.; Yu, S.; Bouchard, P.; Wu, J.; et al. Small Molecule Inhibition of CPS1 Activity through an Allosteric Pocket. Cell Chem. Biol. 2020, 27, 259–268.e255. [Google Scholar] [CrossRef]
- Stastna, M.; Van Eyk, J.E. Secreted proteins as a fundamental source for biomarker discovery. Proteomics 2012, 12, 722–735. [Google Scholar] [CrossRef]
- Bausch-Fluck, D.; Goldmann, U.; Muller, S.; van Oostrum, M.; Muller, M.; Schubert, O.T.; Wollscheid, B. The in silico human surfaceome. Proc. Natl. Acad. Sci. USA 2018, 115, E10988–E10997. [Google Scholar] [CrossRef]
- Wishart, D.S.; Bartok, B.; Oler, E.; Liang, K.Y.H.; Budinski, Z.; Berjanskii, M.; Guo, A.; Cao, X.; Wilson, M. MarkerDB: An online database of molecular biomarkers. Nucleic Acids Res. 2021, 49, D1259–D1267. [Google Scholar] [CrossRef]
- Meyer, J.G.; Schilling, B. Clinical applications of quantitative proteomics using targeted and untargeted data-independent acquisition techniques. Expert. Rev. Proteom. 2017, 14, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Jiang, A. Long noncoding RNA CCDC26 as a potential predictor biomarker contributes to tumorigenesis in pancreatic cancer. Biomed. Pharmacother. 2016, 83, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Wang, S.; Wang, C.; Tang, Y.; Zhang, C.; Yu, D.; Hou, S.; Lin, N. Comprehensive analysis of CYBB as a prognostic marker and therapeutic target in glioma: A bioinformatics approach. Heliyon 2024, 10, e29549. [Google Scholar] [CrossRef] [PubMed]
- Yi, W.; Qiao, T.; Yang, Z.; Hu, L.; Sun, M.; Fan, H.; Xu, Y.; Lv, Z. The regulation role and diagnostic value of fibrinogen-like protein 1 revealed by pan-cancer analysis. Mater. Today Bio 2022, 17, 100470. [Google Scholar] [CrossRef]
- Bao, C.; Wang, J.; Ma, W.; Wang, X.; Cheng, Y. HDGF: A novel jack-of-all-trades in cancer. Future Oncol. 2014, 10, 2675–2685. [Google Scholar] [CrossRef]
- Filippou, P.S.; Karagiannis, G.S.; Constantinidou, A. Midkine (MDK) growth factor: A key player in cancer progression and a promising therapeutic target. Oncogene 2020, 39, 2040–2054. [Google Scholar] [CrossRef]
- Gasparrini, M.; Audrito, V. NAMPT: A critical driver and therapeutic target for cancer. Int. J. Biochem. Cell Biol. 2022, 145, 106189. [Google Scholar] [CrossRef]
- Xue, X.M.; Liu, Y.Y.; Chen, X.M.; Tao, B.Y.; Liu, P.; Zhou, H.W.; Zhang, C.; Wang, L.; Jiang, Y.K.; Ding, Z.W.; et al. Pan-cancer analysis identifies NT5E as a novel prognostic biomarker on cancer-associated fibroblasts associated with unique tumor microenvironment. Front. Pharmacol. 2022, 13, 1064032. [Google Scholar] [CrossRef]
- Suo, W.H.; Zhang, N.; Wu, P.P.; Zhao, L.; Song, L.J.; Shen, W.W.; Zheng, L.; Tao, J.; Long, X.D.; Fu, G.H. Anti-tumour effects of small interfering RNA targeting anion exchanger 1 in experimental gastric cancer. Br. J. Pharmacol. 2012, 165, 135–147. [Google Scholar] [CrossRef]
- Geyer, P.E.; Voytik, E.; Treit, P.V.; Doll, S.; Kleinhempel, A.; Niu, L.; Muller, J.B.; Buchholtz, M.L.; Bader, J.M.; Teupser, D.; et al. Plasma Proteome Profiling to detect and avoid sample-related biases in biomarker studies. EMBO Mol. Med. 2019, 11, e10427. [Google Scholar] [CrossRef]
- Kang, J.; Brajanovski, N.; Chan, K.T.; Xuan, J.; Pearson, R.B.; Sanij, E. Ribosomal proteins and human diseases: Molecular mechanisms and targeted therapy. Signal Transduct. Target. Ther. 2021, 6, 323. [Google Scholar] [CrossRef]
- Tosar, J.P.; Segovia, M.; Castellano, M.; Gambaro, F.; Akiyama, Y.; Fagundez, P.; Olivera, A.; Costa, B.; Possi, T.; Hill, M.; et al. Fragmentation of extracellular ribosomes and tRNAs shapes the extracellular RNAome. Nucleic Acids Res. 2020, 48, 12874–12888. [Google Scholar] [CrossRef]
- Giraldez, M.D.; Spengler, R.M.; Etheridge, A.; Goicochea, A.J.; Tuck, M.; Choi, S.W.; Galas, D.J.; Tewari, M. Phospho-RNA-seq: A modified small RNA-seq method that reveals circulating mRNA and lncRNA fragments as potential biomarkers in human plasma. EMBO J. 2019, 38, e101695. [Google Scholar] [CrossRef] [PubMed]
- Bockorny, B.; Muthuswamy, L.; Huang, L.; Hadisurya, M.; Lim, C.M.; Tsai, L.L.; Gill, R.R.; Wei, J.L.; Bullock, A.J.; Grossman, J.E.; et al. A large-scale proteomics resource of circulating extracellular vesicles for biomarker discovery in pancreatic cancer. eLife 2024, 12, RP87369. [Google Scholar] [CrossRef] [PubMed]
- Pathan, M.; Keerthikumar, S.; Ang, C.S.; Gangoda, L.; Quek, C.Y.; Williamson, N.A.; Mouradov, D.; Sieber, O.M.; Simpson, R.J.; Salim, A.; et al. FunRich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics 2015, 15, 2597–2601. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Shishkova, E.; Peters-Clarke, T.M.; Brademan, D.R.; Westphall, M.S.; Bergen, D.; Huang, J.; Huguet, R.; Senko, M.W.; Zabrouskov, V.; et al. Evaluation of the Orbitrap Ascend Tribrid Mass Spectrometer for Shotgun Proteomics. Anal. Chem. 2023, 95, 10655–10663. [Google Scholar] [CrossRef]
- Yu, Q.; Paulo, J.A.; Naverrete-Perea, J.; McAlister, G.C.; Canterbury, J.D.; Bailey, D.J.; Robitaille, A.M.; Huguet, R.; Zabrouskov, V.; Gygi, S.P.; et al. Benchmarking the Orbitrap Tribrid Eclipse for Next Generation Multiplexed Proteomics. Anal. Chem. 2020, 92, 6478–6485. [Google Scholar] [CrossRef]
- Heil, L.R.; Damoc, E.; Arrey, T.N.; Pashkova, A.; Denisov, E.; Petzoldt, J.; Peterson, A.C.; Hsu, C.; Searle, B.C.; Shulman, N.; et al. Evaluating the Performance of the Astral Mass Analyzer for Quantitative Proteomics Using Data-Independent Acquisition. J. Proteome Res. 2023, 22, 3290–3300. [Google Scholar] [CrossRef]
- Serrano, L.R.; Peters-Clarke, T.M.; Arrey, T.N.; Damoc, E.; Robinson, M.L.; Lancaster, N.M.; Shishkova, E.; Moss, C.; Pashkova, A.; Sinitcyn, P.; et al. The One Hour Human Proteome. Mol. Cell Proteom. 2024, 23, 100760. [Google Scholar] [CrossRef]
- Lancaster, N.M.; Sinitcyn, P.; Forny, P.; Peters-Clarke, T.M.; Fecher, C.; Smith, A.J.; Shishkova, E.; Arrey, T.N.; Pashkova, A.; Robinson, M.L.; et al. Fast and deep phosphoproteome analysis with the Orbitrap Astral mass spectrometer. Nat. Commun. 2024, 15, 7016. [Google Scholar] [CrossRef]





| Label | Age | Sex | Organs Cancer Metastasized to | Group |
|---|---|---|---|---|
| No_1 | 55 | F | None | Non-PC samples |
| No_2 | 33 | F | None | |
| No_3 | 42 | M | None | |
| No_4 | 31 | M | None | |
| Pri_1 | 70 | F | None | PC (primary tumor) |
| Pri_2 | 60 | M | None | |
| Pri_3 | 69 | M | None | |
| Pri_4 | 80 | F | None | |
| Pri_5 | 66 | M | None | |
| Pri_6 | 79 | M | None | |
| Met_1 | 34 | M | Liver metastases | PC (metastases) |
| Met_2 | 74 | F | Liver metastases | |
| Met_3 | 69 | F | Liver metastases | |
| Met_4 | 66 | M | Liver metastases | |
| Met_5 | 70 | F | Peritoneal metastases |
| Spectronaut (Sparse Prot ID) | Ascend | Astral (HTP) | Astral (Depth) |
|---|---|---|---|
| Direct DIA (15 samples) | 4940 | 3734 | 5934 |
| 8 pooled bRP fractions | 5248 | 4896 | 6166 |
| Neat Plasma | 775 | 387 | 697 |
| 8 pooled Neat Plasma bRP fractions | 1437 | 660 | 1267 |
| DIA-NN | Ascend | Astral (HTP) | Astral (Depth) |
| Direct DIA (15 samples) | 4794 | 4684 | 6957 |
| 8 pooled bRP fractions | 4695 | 5369 | 6401 |
| Neat Plasma | 607 | 352 | 742 |
| 8 pooled Neat Plasma bRP fractions | 1050 | 626 | 1052 |
| Gene | UniProt | Protein Description | Localization ^ | Met vs. Control # | MarkerDB $ | NIH-EDRN * | ID @ | Comment |
|---|---|---|---|---|---|---|---|---|
| CCDC126 | Q96EE4 | Coiled-coil domain-containing protein 126 | SEC | 4.6 | AD | Potential predictor pancreatic cancer [55] | ||
| CYBB | P04839 | NADPH oxidase 2 | SUR | 7.2 | AD | Potential prognostic target in glioma [56] | ||
| FGL1 | Q08830 | Fibrinogen-like protein 1 | SEC | 6.6 | AD | Potential marker for diagnostic and prognosis [57] | ||
| GYPC | P04921 | Glycophorin-C | SUR | 4.0 | AD | Potential marker for breast and ovarian cancer (PMID: 39497123) | ||
| HDGF | P51858 | Hepatoma-derived growth factor | SEC | 5.8 | AD | Potential marker for broad range cancer [58] | ||
| IGFBP2 | P18065 | Insulin-like growth factor-binding protein 2 | SEC | 6.9 | 2, 3 | AD AH AS | Breast, Colon, Lung, Ovary (NIH-EDRN data) | |
| LRG1 | P02750 | Leucine-rich alpha-2-glycoprotein | SUR/SEC | 5.9 | 1, 2 | AD AS | Breast, Ovary, Pancreas (NIH-EDRN data) | |
| MDK | P21741 | Midkine | SEC | 10.4 | 2 | AD AH AS | Potential diagnostic and prognostic cancer marker [59] | |
| NAMPT | P43490 | Nicotinamide phosphoribosyltransferase | SEC | 5.4 | AD AS | Over expression in cancer and potential target [60] | ||
| NT5E | P21589 | 5′-nucleotidase | SUR | 5.5 | 1 | AD AS | Prostate (NIH-EDRN data). Potential prognostic in pan-cancer [61] | |
| PRL | P01236 | Prolactin | SEC | 12.7 | Yes | 3 | AD | Mayo Clinic. Breast, Ovary, Pancreas (NIH-EDRN data) |
| RETN | Q9HD89 | Resistin | SEC | 4.5 | 2 | AD | Breast (NIH-EDRN data) | |
| SHBG | P04278 | Sex hormone-binding globulin | SEC | 6.2 | Yes | AD AH AS | Mayo Clinic | |
| SLC4A1 | P02730 | Band 3 anion transport protein | SUR | 4.0 | AD AS | Correlate with gastric cancer progression [62] | ||
| TSPAN18 | Q96SJ8 | Tetraspanin-18 | SUR | −2.7 | AD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ang, C.-S.; Williamson, N.A.; Dumesny, C.; Leeming, M.G.; Datta, K.; Varshney, S.; Nikfarjam, M.; He, H. Evaluation of Nanoparticle-Based Plasma Enrichment on Individuals with Primary and Metastatic Pancreatic Cancer. Cancers 2025, 17, 3765. https://doi.org/10.3390/cancers17233765
Ang C-S, Williamson NA, Dumesny C, Leeming MG, Datta K, Varshney S, Nikfarjam M, He H. Evaluation of Nanoparticle-Based Plasma Enrichment on Individuals with Primary and Metastatic Pancreatic Cancer. Cancers. 2025; 17(23):3765. https://doi.org/10.3390/cancers17233765
Chicago/Turabian StyleAng, Ching-Seng, Nicholas A. Williamson, Chelsea Dumesny, Michael G. Leeming, Keshava Datta, Swati Varshney, Mehrdad Nikfarjam, and Hong He. 2025. "Evaluation of Nanoparticle-Based Plasma Enrichment on Individuals with Primary and Metastatic Pancreatic Cancer" Cancers 17, no. 23: 3765. https://doi.org/10.3390/cancers17233765
APA StyleAng, C.-S., Williamson, N. A., Dumesny, C., Leeming, M. G., Datta, K., Varshney, S., Nikfarjam, M., & He, H. (2025). Evaluation of Nanoparticle-Based Plasma Enrichment on Individuals with Primary and Metastatic Pancreatic Cancer. Cancers, 17(23), 3765. https://doi.org/10.3390/cancers17233765

