The Effects of Vitamin D on the Breast Cancer Tumor Microenvironment
Simple Summary
Abstract
1. Introduction
2. Methodology
3. VD Biogenesis and Metabolism
VD Role in Normal Breast Homeostasis
4. Vitamin D and Breast Cancer
4.1. VD Role in Cancer Cell Proliferation
4.2. VD Role in Apoptosis
4.3. VD Role in Inhibition of Angiogenesis
4.4. Anti-Metastatic and Anti-Invasive Role of VD
4.5. VD Role in Autophagy
5. Role of VD in the Tumor Microenvironment
5.1. Cancer Associated Fibroblasts
5.2. Adipocytes
5.3. Cancer Stem Cells
5.4. Immune Cells
5.4.1. Lymphocytes
5.4.2. Myeloid Cells
5.5. Extracellular Matrix
6. Therapeutic Role of VD in the Prevention and Treatment of BC
| NCT Number | Phase | Number of Patients | Parameters Studied | Intervention/Dosage | Menopause Status | Status | Results | Refs. |
|---|---|---|---|---|---|---|---|---|
| NCT04091178 | II | 57 | This study evaluates the high dose efficacy of VD supplementation for BC treated adjuvant chemotherapy | 25-OH VD (/one dose of 100,000 IU every 3 weeks) | Both premenopausal and postmenopausal women | Completed | High-dose VD supplementation found to correct deficiency, although some patients experienced asymptomatic grade 1 hypercalciuria. | [173,180,181,182,183,184,185,186,187,188,189,190,191] |
| NCT04166253 | II | 100 | This study assesses the VD’s protective effect in doxorubicin induced toxicity in BC patients, Echocardiography changes and levels of biomarkers (VD, LDH, troponin-T and IL-6) | Alfacalcidol/ 0.5 mcg | Both premenopausal and postmenopausal women | Completed | No | No |
| NCT00656019 | II | 63 | This study investigates whether levels of VD impact the characteristics of a woman’s breast cancer at diagnosis, and if low levels of VD change gene expression of their BC. | Calcipotriene/0, 2000, 4000, or 6000 IU per day orally | Both premenopausal and postmenopausal women | Completed | No observable effects | No |
| NCT01224678 | III | 300 | This study assesses the effect of VD supplementation on mammographic density and to explore changes in the serum biomarkers (IGF1, atypia and Ki67) | VD/2000 IU | Premenopausal | Completed | −1.4% reduction in breast density | No |
| NCT03986268 | NA | 64 | This study evaluates the relationship between the VD replacement and complete pathological response in patients undergoing neoadjuvant therapy | Cholecalciferol/50,000 IU weekly | Both premenopausal and postmenopausal women | Completed | VD supplementation during chemotherapy significantly improved pathological complete response rate, with a trend towards better overall survival. | [174] |
| NCT00976339 | I | 20 | This study assesses the effect of high dose of VD on premenopausal women at high risk of developing BC | Cholecalciferol/20,000 IU, or 30,000 IU weekly) | Premenopausal | Completed | High dose of VD significantly increased the circulating levels of VD and have favorable effects on IGF signaling, but no notable changes in mammographic density. | [192] |
| NCT01948128 | II | 83 | This study investigates the short-term effect of VD administration on BC clinical and translational markers | Cholecalciferol/40,000 IU | Both premenopausal and postmenopausal women | Completed | Higher VD levels have no significant effects on tumor proliferation or apoptosis | [193] |
| NCT01965522 | II | 100 | Investigates the antiproliferative effect of VD and melatonin in BC (Ki67 expression and microRNA profile) | Melatonin/20 mg VD/2000 IU | Both premenopausal and postmenopausal women | Completed | No | [194] |
| NCT05331807 | I | 88 | Evaluates the effect of co-supplementation of VD and omega-3 fatty acids on inflammatory biomarker | Omega-3 FA+ VD Supplementation/50,000 IU | Both premenopausal and postmenopausal women | Completed | Preliminary results show that combined omega-3 and VD supplementation can improve nutritional status and reduce inflammation markers. | [195] |
| NCT01747720 | NA | 405 | Assesses the effect of VD supplementation in reducing mammographic breast density | Cholecalciferol/1000, 2000 or 3000 IU | Premenopausal | Completed | One year VD supplementation did not significantly reduce mammographic breast density compared to placebo in premenopausal women. | [196] |
| NCT01166763 | NA | 30 | Explore the effect of VD dose (10,000 ul) in Mammographic Breast Density and expression of genes important in BC. | VD supplementation/10,000 IU | Premenopausal | Completed | Change in Mammographic Breast Density and a decrease as assessed by Ki-67 staining. | No |
| NCT01425476 | I/II | 45 | Determine the effect of VD (cholecalciferol) alone and in combination with celecoxib on certain biomarkers of BC (PGE2, COX-2, and 15-PGDH) | Celecoxib/400 mg + Cholecalciferol/400 IU or 2000 IU | Both premenopausal and postmenopausal women | Completed | VD modulated molecular markers differently, resulting in distinct protective effects depending on BC risk level. | [197] |
| NCT01480869 | III | 215 | This study aims to compare VD normalization after 6 months of baseline-adjusted versus standard supplementation | Calcium/500 mg and Cholecalciferol/100 000 IU | Both premenopausal and postmenopausal women | Completed | Tailored high-dose VD is a safe and more effective option for VD restoration in chemotherapy-treated BC patients, with better outcomes than conventional dosing. | [198] |
| NCT00859651 | II | 20 | This phase II study enrolled 20 high-risk postmenopausal women to assess whether one year of high-dose VD (20,000 or 30,000 IU/week) increases serum levels and provides preliminary insights into its preventive effects against BC. | Cholecalciferol/20,000 IU or 30,000 IU | Postmenopausal women | Completed | Preliminary results show a significant increase in serum VD levels for both doses, and a favorable effect on IGF-1/IGFBP-3 ratio. | [192] |
| NCT00000611 | III | 68,135. | The study investigated the effects of hormone therapy, dietary changes, and calcium/VD supplementation on cardiovascular disease (CVD), BC, and osteoporosis in postmenopausal women. | VD supplementation/400 IU + calcium/1000 mg + hormone replacement therapy (Estrogen/progestin) | Postmenopausal women | Completed | The supplement regimen of calcium + vitamin D did not reduce overall mortality, but in long-term follow-up it appeared to reduce cancer deaths while increasing CVD deaths, with no net benefit on all-cause death. | [199] |
| NCT02274623 | I | 33 | The study evaluated the safety and efficacy of CTAP101 in breast and prostate cancer patients with bone metastases, focusing on VD metabolism, serum calcium, bone pain, and quality of life. | CTAP101/30 μg + Calcifediol/1200 IU | Both premenopausal and postmenopausal women | Completed | No | No |
| NCT00867217 | 160 | The study assessed whether high-dose VD3 reduces musculoskeletal symptoms in early-stage BC patients with low VD levels receiving letrozole. | VD supplementation/10,000 IU + Letrozole/2.5 mg | Both premenopausal and postmenopausal women | Completed | Adding high-dose VD3 to standard supplementation may help prevent worsening musculoskeletal symptoms and improve quality of life in early-stage BC patients on letrozole. | ||
| NCT06551688 | NA | 184 | The study investigates the association between preoperative VD levels and acute postoperative pain in BC surgery patients. | Serum VD levels/30 nmol/L | Both premenopausal and postmenopausal women | Completed | No | [30,33,185,200,201,202,203,204] |
| NCT01769625 | 31 | The study evaluates the effects of VD alone and with celecoxib on BC risk biomarkers (PGE2, COX-2, 15-PGDH) and gene methylation in breast tissue. | Celecoxib/400 mg + cholecalciferol/2000 IU | Both premenopausal and postmenopausal women | Completed | VD decreases the PG cascade and increases TGFβ2 in a dose dependent manner, while adding celecoxib did not pro-vide synergy. | [197] | |
| NCT01097278 | IIB | 208 | The study evaluates the impact of high-dose cholecalciferol on mammographic density, breast tissue biomarkers, serum VD–related markers, and gene polymorphisms in premenopausal women at high risk for BC. | Cholecalciferol/400 IU daily | Both premenopausal and postmenopausal women | Completed | VD supplementation significantly increased the serum VD levels but had no significant effect on mammographic density | [205] |
| NCT03629717 | I | 10 | The study examines the effects of RANKL inhibition with denosumab on breast tissue biomarkers in high-risk premenopausal women with dense breasts through daily VD (800 IU) and calcium (1200 mg) supplementation. | Denosumab/60 mg + Calcium/1200 mg +VD/800 IU | Premenopausal women | Completed | No | No |
| NCT01669343 | NA | 121 | The study evaluates the impact of VD levels and BMI on estrogen suppression by letrozole in postmenopausal women, and assesses whether a higher letrozole dose enhances estrogen suppression in overweight/obese patients. | Letrozole/2.5 mg, 5 mg | Both premenopausal and postmenopausal women | Completed | Neither elevated BMI nor higher VD status impacted estrogen suppression by letrozole in the short term. Escalating the letrozole dose in women with BMI > 25 kg/m2 did not further suppress circulating estrogens during the 4-week intervention. | [206] |
| NCT01817231 | NA | 240 | The study examined the association between serum 25(OH)D levels and BC risk in Saudi Arabian women through a case–control analysis. | Not provided | Both premenopausal and postmenopausal women | Completed | An inverse association exists between serum VD concentration and risk of BC | [207] |
| NCT04677816 | II | 50 | The study investigates the effect of VD supplementation on pathological complete response in patients with VD deficiency and triple negative BC undergoing standard neoadjuvant chemotherapy | VD supplementation/50,000 IU | Both premenopausal and postmenopausal women | Recruiting | No | No |
| NCT06642441 | NA | 100 | Evaluate the effect of VD supplementation on chemotherapy side effects following adjuvant chemotherapy in BC | Chemotherapy + VD2/10 mg | Both premenopausal and postmenopausal women | Recruiting | No | No |
| NCT04067726 | II | 210 | The study determines the RANKL inhibition with denosumab, Calcium and VD to decrease mammographic density in high-risk premenopausal women with dense breasts. | Denosumab/60 mg + Calcium/500 mg + VD supplementation/400 IU | Both premenopausal and postmenopausal women | Active, not recruiting | No | No |
| NCT06596122 | II | 132 | Exploring the neuroprotective effect of VD3 (Cholecalciferol) supplementation in conjunction with paclitaxel-based chemotherapy among BC patients with VD insufficiency or deficiency. | Cholecalciferol/100,000 IU | Both premenopausal and postmenopausal women | Not yet recruiting | No | No |
| NCT02856503 | I/II | Not provided | Assessing the effect of high dose VD on the following biomarkers in the BC cells: VDR, estrogen receptor (ER), progesterone receptor (PR), epidermal growth factor receptor 2 (Her2/neu), androgen receptor (AR), as well as epidermal growth factor receptor 1 (EGFR) and Ki-67, as markers of proliferation, and E-cadherin, a marker of invasion and metastasis. | Toxiferol/ Cholecalciferol/50,000 IU | Both premenopausal and postmenopausal women | Withdrawn | No | No |
Future Prospects and Limitations of Current Evidence
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| BC | Breast Cancer |
| VD | Vitamin D |
| TME | Tumor Microenvironment |
| CAFs | Cancer-Associated Fibroblasts |
| ECM | Extracellular Matrix |
| VDR | Vitamin D Receptor |
| VDRE | Vitamin D Response Element |
| CYP | Cytochrome P450 |
| ER | Estrogen Receptor |
| TNBC | Triple Negative Breast Cancer |
| EMT | Epithelial–Mesenchymal Transition |
| CDKs | Cyclin Dependent Kinases |
| AMPK | AMP-Activated Protein Kinase |
| CAMKK2 | Calcium/Calmodulin-Dependent Protein Kinase Kinase 2 |
| LC3B | Microtubule-associated protein 1A/1B-light chain 3B |
| VEGF | Vascular Endothelial Growth Factor |
| COX-2 | Cyclooxygenase-2 |
| PGE2 | Prostaglandin E2 |
| IL | Interleukin |
| CCL | Chemokine Ligand |
| CXCL | Chemokine (C-X-C motif) Ligand |
| CSCs | Cancer Stem Cells |
| DCIS | Ductal Carcinoma In Situ |
| DCs | Dendritic Cells |
| TAMs | Tumor-Associated Macrophages |
| NK cells | Natural Killer Cells |
| TILs | Tumor-Infiltrating Lymphocytes |
| Th17 | T Helper 17 Cells |
| MMPs | Matrix Metalloproteinases |
| TIMPs | Tissue Inhibitors of Metalloproteinases |
| VM | Vasculogenic Mimicry |
| THBS1 | Thrombospondin-1 |
| HAS2 | Hyaluronan Synthase 2 |
| HA | Hyaluronan |
| IGF | Insulin-like Growth Factor |
| IGFBP | Insulin-like Growth Factor Binding Protein |
| RXR | Retinoid X Receptor |
| PPARγ | Peroxisome Proliferator-Activated Receptor Gamma |
| C/EBP | CCAAT/Enhancer Binding Protein |
| DR6 | Direct Repeat 6-type VDRE |
| NRG1 | Neuregulin 1 |
| WNT5A | Wingless-Type Family Member 5A |
| PDGFC | Platelet-Derived Growth Factor C |
| SOD2 | Superoxide Dismutase 2 |
| DPP4 | Dipeptidyl Peptidase-4 |
| CA2 | Carbonic Anhydrase 2 |
| CD44 | Cluster of Differentiation 44 |
| CD133 | Cluster of Differentiation 133 |
| JAG | Jagged |
| Notch | Notch Receptors |
| HMECs | Human Mammary Epithelial Cells |
| MCF | Michigan Cancer Foundation cell lines |
| MDA-MB | MD Anderson-Metastatic Breast cell lines |
| FAP | Fibroblast Activation Protein |
| NFs | Normal Fibroblasts |
| CAMs | Cancer-Associated Mesothelial Cells |
| MCs | Mesothelial Cells |
| TGF-β | Transforming Growth Factor Beta |
| AR | Androgen Receptor |
| EGFR | Epidermal Growth Factor Receptor |
| PR | Progesterone Receptor |
| Her2/neu | Human Epidermal Growth Factor Receptor 2 |
| NCT | National Clinical Trial |
References
- Breast Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/breast-cancer (accessed on 2 September 2025).
- Ji, P.; Gong, Y.; Jin, M.-L.; Hu, X.; Di, G.-H.; Shao, Z.-M. The burden and trends of breast cancer from 1990 to 2017 at the global, regional, and national levels: Results from the global burden of disease study 2017. Front. Oncol. 2020, 10, 650. [Google Scholar] [CrossRef] [PubMed]
- Vanhevel, J.; Verlinden, L.; Doms, S.; Wildiers, H.; Verstuyf, A. The role of vitamin D in breast cancer risk and progression. Endocr.-Relat. Cancer 2022, 29, R33–R55. [Google Scholar] [CrossRef]
- Malla, R.R.; Kiran, P. Tumor microenvironment pathways: Cross regulation in breast cancer metastasis. Genes Dis. 2022, 9, 310–324. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Q.; Park, N.H.; Lee, J.K.; Madak Erdogan, Z. Liver Metastatic Breast Cancer: Epidemiology, Dietary Interventions, and Related Metabolism. Nutrients 2022, 14, 2376. [Google Scholar] [CrossRef] [PubMed]
- Dekker, Y.; Le Dévédec, S.E.; Danen, E.H.J.; Liu, Q. Crosstalk between hypoxia and extracellular matrix in the tumor microenvironment in breast cancer. Genes 2022, 13, 1585. [Google Scholar] [CrossRef] [PubMed]
- Linke, F.; Harenberg, M.; Nietert, M.M.; Zaunig, S.; von Bonin, F.; Arlt, A.; Szczepanowski, M.; Weich, H.A.; Lutz, S.; Dullin, C.; et al. Microenvironmental interactions between endothelial and lymphoma cells: A role for the canonical WNT pathway in Hodgkin lymphoma. Leukemia 2017, 31, 361–372. [Google Scholar] [CrossRef]
- Henke, E.; Nandigama, R.; Ergün, S. Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Front. Mol. Biosci. 2020, 6, 160. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhang, H.; Wang, J.; Liu, Y.; Luo, T.; Hua, H. Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy. J. Hematol. Oncol. 2022, 15, 34. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Cejudo, M.A.; Gil-Torralvo, A.; Cejuela, M.; Molina-Pinelo, S.; Salvador Bofill, J. Targeting the Tumor Microenvironment in Breast Cancer: Prognostic and Predictive Significance and Therapeutic Opportunities. Int. J. Mol. Sci. 2023, 24, 16771. [Google Scholar] [CrossRef]
- Atoum, M.; Alzoughool, F. Vitamin D and breast cancer: Latest evidence and future steps. Breast Cancer Basic Clin. Res. 2017, 11, 1178223417749816. [Google Scholar] [CrossRef] [PubMed]
- Narvaez, C.J.; Balinth, S.; Welsh, J. Vitamin D inhibits hyaluronan synthesis and extracellular matrix gene expression in triple negative breast cancer. Cancer Res. 2018, 78, 3742. [Google Scholar] [CrossRef]
- Guo, L.-S.; Li, H.-X.; Li, C.-Y.; Zhang, S.-Y.; Chen, J.; Wang, Q.-L.; Gao, J.-M.; Liang, J.-Q.; Gao, M.-T.; Wu, Y.-J. Synergistic antitumor activity of vitamin D3 combined with metformin in human breast carcinoma MDA-MB-231 cells involves m-TOR related signaling pathways. Die Pharm.-Int. J. Pharm. Sci. 2015, 70, 117–122. [Google Scholar]
- Wu, X.; Hu, W.; Lu, L.; Zhao, Y.; Zhou, Y.; Xiao, Z.; Zhang, L.; Zhang, H.; Li, X.; Li, W.; et al. Repurposing vitamin D for treatment of human malignancies via targeting tumor microenvironment. Acta Pharm. Sin. B 2019, 9, 203–219. [Google Scholar] [CrossRef] [PubMed]
- Rangsinth, P.; Sharika, R.; Pattarachotanant, N.; Duangjan, C.; Wongwan, C.; Sillapachaiyaporn, C.; Nilkhet, S.; Wongsirojkul, N.; Prasansuklab, A.; Tencomnao, T.; et al. Potential beneficial effects and pharmacological properties of ergosterol, a common bioactive compound in edible mushrooms. Foods 2023, 12, 2529. [Google Scholar] [CrossRef]
- Ketharanathan, V.; Torgersen, G.R.; Petrovski, B.É.; Preus, H.R. Radiographic alveolar bone level and levels of serum 25-OH-Vitamin D3 in ethnic Norwegian and Tamil periodontitis patients and their periodontally healthy controls. BMC Oral Health 2019, 19, 83. [Google Scholar] [CrossRef] [PubMed]
- Akgül, Z. Biological Properties of Vitamin D and Its Effect on the Pathogenesis of Periodontal. In Theory and Research in Health Sciences; Serüven Publishing House: Ankara, Turkey, 2022. [Google Scholar]
- Christakos, S.; Dhawan, P.; Verstuyf, A.; Verlinden, L.; Carmeliet, G. Vitamin D: Metabolism, molecular mechanism of action, and pleiotropic effects. Physiol. Rev. 2016, 96, 365–408. [Google Scholar] [CrossRef] [PubMed]
- Alonso, N.; Zelzer, S.; Eibinger, G.; Herrmann, M. Vitamin D metabolites: Analytical challenges and clinical relevance. Calcif. Tissue Int. 2023, 112, 158–177. [Google Scholar] [CrossRef]
- Kamiya, S.; Nakamori, Y.; Takasawa, A.; Takasawa, K.; Kyuno, D.; Ono, Y.; Magara, K.; Osanai, M. Vitamin D metabolism in cancer: Potential feasibility of vitamin D metabolism blocking therapy. Med. Mol. Morphol. 2023, 56, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Ercisli, M.F.; Kahrizi, D.; Aziziaram, Z. Environmental factors affecting the risk of breast cancer and the modulating role of vitamin D on this malignancy. Cent. Asian J. Environ. Sci. Technol. Innov. 2021, 2, 175–183. [Google Scholar]
- Zinser, G.M.; Welsh, J. Accelerated mammary gland development during pregnancy and delayed postlactational involution in vitamin D3 receptor null mice. Mol. Endocrinol. 2004, 18, 2208–2223. [Google Scholar] [CrossRef]
- Welsh, J. Function of the vitamin D endocrine system in mammary gland and breast cancer. Mol. Cell. Endocrinol. 2017, 453, 88–95. [Google Scholar] [CrossRef]
- Townsend, K.; Banwell, C.M.; Guy, M.; Colston, K.W.; Mansi, J.L.; Stewart, P.M.; Campbell, M.J.; Hewison, M. Autocrine metabolism of vitamin D in normal and malignant breast tissue. Clin. Cancer Res. 2005, 11, 3579–3586. [Google Scholar] [CrossRef]
- Dennis, C.; Dillon, J.; Cohen, D.J.; Halquist, M.S.; Pearcy, A.C.; Schwartz, Z.; Boyan, B.D. Local production of active vitamin D3 metabolites in breast cancer cells by CYP24A1 and CYP27B1. J. Steroid Biochem. Mol. Biol. 2023, 232, 106331. [Google Scholar] [CrossRef]
- Garland, C.F.; Gorham, E.D.; Mohr, S.B.; Grant, W.B.; Giovannucci, E.L.; Lipkin, M.; Newmark, H.; Holick, M.F.; Garland, F.C. Vitamin D and prevention of breast cancer: Pooled analysis. J. Steroid Biochem. Mol. Biol. 2007, 103, 708–711. [Google Scholar] [CrossRef] [PubMed]
- de Sousa Almeida-Filho, B.; Vespoli, H.D.L.; Pessoa, E.C.; Machado, M.; Nahas-Neto, J.; Nahas, E.A.P. Vitamin D deficiency is associated with poor breast cancer prognostic features in postmenopausal women. J. Steroid Biochem. Mol. Biol. 2017, 174, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Anderson, L.N.; Cotterchio, M.; Vieth, R.; Knight, J.A. Vitamin D and calcium intakes and breast cancer risk in pre-and postmenopausal women. Am. J. Clin. Nutr. 2010, 91, 1699–1707. [Google Scholar] [CrossRef]
- Palmer, J.R.; Gerlovin, H.; Bethea, T.N.; Bertrand, K.A.; Holick, M.F.; Ruiz-Narvaez, E.N.; Wise, L.A.; Haddad, S.A.; Adams-Campbell, L.L.; Kaufman, H.W. Predicted 25-hydroxyvitamin D in relation to incidence of breast cancer in a large cohort of African American women. Breast Cancer Res. 2016, 18, 86. [Google Scholar] [CrossRef]
- Feldman, D.; Krishnan, A.V.; Swami, S.; Giovannucci, E.; Feldman, B.J. The role of vitamin D in reducing cancer risk and progression. Nat. Rev. Cancer 2014, 14, 342–357. [Google Scholar] [CrossRef]
- Acevedo, F.; Perez, V.; Perez-Sepulveda, A.; Florenzano, P.; Artigas, R.; Medina, L.; Sanchez, C. High prevalence of vitamin D deficiency in women with breast cancer: The first Chilean study. Breast 2016, 29, 39–43. [Google Scholar] [CrossRef]
- Zemlin, C.; Altmayer, L.; Stuhlert, C.; Schleicher, J.T.; Wörmann, C.; Lang, M.; Scherer, L.-S.; Thul, I.C.; Spenner, L.S.; Simon, J.A.; et al. Prevalence and relevance of vitamin D deficiency in newly diagnosed breast cancer patients: A pilot study. Nutrients 2023, 15, 1450. [Google Scholar] [CrossRef] [PubMed]
- Imtiaz, S.; Siddiqui, N.; Raza, S.A.; Loya, A.; Muhammad, A. Vitamin D deficiency in newly diagnosed breast cancer patients. Indian J. Endocrinol. Metab. 2012, 16, 409–413. [Google Scholar] [CrossRef]
- Singh, C.K.; Thomas, S.; Goswami, B.; Tomer, S.; Pathania, O.M.P. Relationship of vitamin D deficiency with mammographic breast density and triple-negative breast cancer: A cross-sectional study. Natl. Med. J. India 2022, 34, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Vashi, P.G.; Trukova, K.; Lis, C.G.; Lammersfeld, C.A. Prevalence of serum vitamin D deficiency and insufficiency in cancer: Review of the epidemiological literature. Exp. Ther. Med. 2011, 2, 181–193. [Google Scholar] [CrossRef]
- Zheng, Y.; Trivedi, T.; Lin, R.C.Y.; Fong-Yee, C.; Nolte, R.; Manibo, J.; Chen, Y.; Hossain, M.; Horas, K.; Dunstan, C.; et al. Loss of the vitamin D receptor in human breast and prostate cancers strongly induces cell apoptosis through downregulation of Wnt/β-catenin signaling. Bone Res. 2017, 5, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhu, S.; Lin, G.; Song, C.; He, Z. Vitamin D enhances omega-3 polyunsaturated fatty acids-induced apoptosis in breast cancer cells. Cell Biol. Int. 2017, 41, 890–897. [Google Scholar] [CrossRef]
- Verma, A.; Cohen, D.J.; Schwartz, N.; Muktipaty, C.; Koblinski, J.E.; Boyan, B.D.; Schwartz, Z. 24R, 25-Dihydroxyvitamin D3 regulates breast cancer cells in vitro and in vivo. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2019, 1863, 1498–1512. [Google Scholar] [CrossRef] [PubMed]
- Wilmanski, T.; Barnard, A.; Parikh, M.R.; Kirshner, J.; Buhman, K.; Burgess, J.; Teegarden, D. 1α, 25-dihydroxyvitamin D inhibits the metastatic capability of MCF10CA1a and MDA-MB-231 cells in an in vitro model of breast to bone metastasis. Nutr. Cancer 2016, 68, 1202–1209. [Google Scholar] [CrossRef]
- Huss, L.; Butt, S.T.; Borgquist, S.; Elebro, K.; Sandsveden, M.; Rosendahl, A.; Manjer, J. Vitamin D receptor expression in invasive breast tumors and breast cancer survival. Breast Cancer Res. 2019, 21, 84. [Google Scholar] [CrossRef]
- Larriba, M.J.; García de Herreros, A.; Muñoz, A. Vitamin D and the epithelial to mesenchymal transition. Stem Cells Int. 2016, 2016, 6213872. [Google Scholar] [CrossRef]
- Welsh, J. Vitamin D and Breast Cancer: Mechanistic Update. J. Bone Miner. Res. Plus 2021, 5, e10582. [Google Scholar] [CrossRef]
- Cao, Y.; Du, Y.; Liu, F.; Feng, Y.; Cheng, S.; Guan, S.; Wang, Y.; Li, X.; Li, B.; Jin, F.; et al. Vitamin D aggravates breast cancer by inducing immunosuppression in the tumor bearing mouse. Immunotherapy 2018, 10, 555–566. [Google Scholar] [CrossRef]
- Veeresh, P.K.M.; Basavaraju, C.G.; Dallavalasa, S.; Anantharaju, P.G.; Natraj, S.M.; Sukocheva, O.A.; Madhunapantula, S. V Vitamin D3 inhibits the viability of breast cancer cells in vitro and ehrlich ascites carcinomas in mice by promoting apoptosis and cell cycle arrest and by impeding tumor angiogenesis. Cancers 2023, 15, 4833. [Google Scholar] [CrossRef] [PubMed]
- Saracligil, B.; Ozturk, B.; Unlu, A.; Abusoglu, S.; Tekin, G. The effect of vitamin D on MCF-7 breast cancer cell metabolism. Bratisl. Lek. Listy 2017, 118, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Cao, L.; Ouyang, L.; Zhang, Q.; Duan, B.; Zhou, W.; Chen, S.; Peng, W.; Xie, Y.; Fan, Q.; et al. Anticancer activity of 1, 25-(OH) 2D3 against human breast cancer cell lines by targeting Ras/MEK/ERK pathway. OncoTargets Ther. 2019, 12, 721. [Google Scholar] [CrossRef]
- Vanhevel, J.; Verlinden, L.; Loopmans, S.; Doms, S.; Janssens, I.; Bevers, S.; Stegen, S.; Wildiers, H.; Verstuyf, A. The combination of the CDK4/6 inhibitor, palbociclib, with the vitamin D3 analog, inecalcitol, has potent in vitro and in vivo anticancer effects in hormone-sensitive breast cancer, but has a more limited effect in triple-negative breast cancer. Front. Endocrinol. 2022, 13, 886238. [Google Scholar] [CrossRef]
- Rossdeutscher, L.; Li, J.; Luco, A.-L.; Fadhil, I.; Ochietti, B.; Camirand, A.; Huang, D.C.; Reinhardt, T.A.; Muller, W.; Kremer, R. Chemoprevention activity of 25-hydroxyvitamin D in the MMTV-PyMT mouse model of breast cancer. Cancer Prev. Res. 2015, 8, 120–128. [Google Scholar] [CrossRef]
- Umar, M.; Sastry, K.S.; Chouchane, A.I. Role of vitamin D beyond the skeletal function: A review of the molecular and clinical studies. Int. J. Mol. Sci. 2018, 19, 1618. [Google Scholar] [CrossRef]
- Chiang, K.-C.; Chen, T.C. The anti-cancer actions of vitamin D. Anti-Cancer Agents Med. Chem. 2013, 13, 126–139. [Google Scholar] [CrossRef]
- Fathi, N.; Ahmadian, E.; Shahi, S.; Roshangar, L.; Khan, H.; Kouhsoltani, M.; Dizaj, S.M.; Sharifi, S. Role of vitamin D and vitamin D receptor (VDR) in oral cancer. Biomed. Pharmacother. 2019, 109, 391–401. [Google Scholar] [CrossRef]
- Stambolsky, P.; Tabach, Y.; Fontemaggi, G.; Weisz, L.; Maor-Aloni, R.; Sigfried, Z.; Shiff, I.; Kogan, I.; Shay, M.; Kalo, E.; et al. Modulation of the vitamin D3 response by cancer-associated mutant p53. Cancer Cell 2010, 17, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Mantell, D.J.; Owens, P.E.; Bundred, N.J.; Mawer, E.B.; Canfield, A.E. 1α, 25-dihydroxyvitamin D3 inhibits angiogenesis in vitro and in vivo. Circ. Res. 2000, 87, 214–220. [Google Scholar] [CrossRef]
- García-Quiroz, J.; García-Becerra, R.; Santos-Cuevas, C.; Ramírez-Nava, G.J.; Morales-Guadarrama, G.; Cárdenas-Ochoa, N.; Segovia-Mendoza, M.; Prado-Garcia, H.; Ordaz-Rosado, D.; Avila, E.; et al. Synergistic antitumorigenic activity of calcitriol with curcumin or resveratrol is mediated by angiogenesis inhibition in triple negative breast cancer xenografts. Cancers 2019, 11, 1739. [Google Scholar] [CrossRef]
- Bajbouj, K.; Al-Ali, A.; Shafarin, J.; Sahnoon, L.; Sawan, A.; Shehada, A.; Elkhalifa, W.; Saber-Ayad, M.; Muhammad, J.S.; Elmoselhi, A.B. Vitamin d exerts significant antitumor effects by suppressing vasculogenic mimicry in breast cancer cells. Front. Oncol. 2022, 12, 918340. [Google Scholar] [CrossRef]
- Chiang, K.-C.; Yeh, T.-S.; Chen, S.-C.; Pang, J.-H.S.; Yeh, C.-N.; Hsu, J.-T.; Chen, L.-W.; Kuo, S.-F.; Takano, M.; Kittaka, A.; et al. The vitamin D analog, MART-10, attenuates triple negative breast cancer cells metastatic potential. Int. J. Mol. Sci. 2016, 17, 606. [Google Scholar] [CrossRef]
- Swami, S.; Krishnan, A.V.; Williams, J.; Aggarwal, A.; Albertelli, M.A.; Horst, R.L.; Feldman, B.J.; Feldman, D. Vitamin D mitigates the adverse effects of obesity on breast cancer in mice. Endocr.-Relat. Cancer 2016, 23, 251. [Google Scholar] [CrossRef]
- Dong, H.-W.; Wang, K.; Chang, X.-X.; Jin, F.-F.; Wang, Q.; Jiang, X.-F.; Liu, J.-R.; Wu, Y.-H.; Yang, C. Beta-ionone-inhibited proliferation of breast cancer cells by inhibited COX-2 activity. Arch. Toxicol. 2019, 93, 2993–3003. [Google Scholar] [CrossRef]
- Liu, J.; Shen, J.; Mu, C.; Liu, Y.; He, D.; Luo, H.; Wu, W.; Zheng, X.; Liu, Y.; Chen, S.; et al. High-dose vitamin D metabolite delivery inhibits breast cancer metastasis. Bioeng. Transl. Med. 2022, 7, e10263. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Barral, A.; Bustamante-Madrid, P.; Ferrer-Mayorga, G.; Barbáchano, A.; Larriba, M.J.; Muñoz, A. Vitamin D effects on cell differentiation and stemness in cancer. Cancers 2020, 12, 2413. [Google Scholar] [CrossRef] [PubMed]
- Tavera-Mendoza, L.E.; Westerling, T.; Libby, E.; Marusyk, A.; Cato, L.; Cassani, R.; Cameron, L.A.; Ficarro, S.B.; Marto, J.A.; Klawitter, J.; et al. Vitamin D receptor regulates autophagy in the normal mammary gland and in luminal breast cancer cells. Proc. Natl. Acad. Sci. USA 2017, 114, E2186–E2194. [Google Scholar] [CrossRef] [PubMed]
- Høyer-Hansen, M.; Bastholm, L.; Szyniarowski, P.; Campanella, M.; Szabadkai, G.; Farkas, T.; Bianchi, K.; Fehrenbacher, N.; Elling, F.; Rizzuto, R.; et al. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-β, and Bcl-2. Mol. Cell 2007, 25, 193–205. [Google Scholar] [CrossRef]
- Bristol, M.L.; Di, X.; Beckman, M.J.; Wilson, E.N.; Henderson, S.C.; Maiti, A.; Fan, Z.; Gewirtz, D.A. Dual functions of autophagy in the response of breast tumor cells to radiation: Cytoprotective autophagy with radiation alone and cytotoxic autophagy in radiosensitization by vitamin D3. Autophagy 2012, 8, 739–753. [Google Scholar] [CrossRef]
- Jang, W.; Kim, H.J.; Li, H.; Jo, K.D.; Lee, M.K.; Song, S.H.; Yang, H.O. 1, 25-Dyhydroxyvitamin D3 attenuates rotenone-induced neurotoxicity in SH-SY5Y cells through induction of autophagy. Biochem. Biophys. Res. Commun. 2014, 451, 142–147. [Google Scholar] [CrossRef]
- Larriba, M.J.; González-Sancho, J.M.; Barbáchano, A.; Niell, N.; Ferrer-Mayorga, G.; Muñoz, A. Vitamin D is a multilevel repressor of Wnt/β-catenin signaling in cancer cells. Cancers 2013, 5, 1242–1260. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; He, L.; Luan, Z.; Lv, H.; Yang, H.; Zhou, Y.; Zhao, X.; Zhou, W.; Yu, S.; Tan, B.; et al. E-cadherin mediates the preventive effect of vitamin D3 in colitis-associated carcinogenesis. Inflamm. Bowel Dis. 2017, 23, 1535–1543. [Google Scholar] [CrossRef]
- Bini, F.; Frati, A.; Garcia-Gil, M.; Battistini, C.; Granado, M.; Martinesi, M.; Mainardi, M.; Vannini, E.; Luzzati, F.; Caleo, M.; et al. New signalling pathway involved in the anti-proliferative action of vitamin D3 and its analogues in human neuroblastoma cells. A role for ceramide kinase. Neuropharmacology 2012, 63, 524–537. [Google Scholar] [CrossRef]
- Klopotowska, D.; Matuszyk, J.; Wietrzyk, J. Steroid hormone calcitriol and its analog tacalcitol inhibit miR-125b expression in a human breast cancer MCF-7 cell line. Steroids 2019, 141, 70–75. [Google Scholar] [CrossRef]
- Liu, X.; Bi, L.; Wang, Q.; Wen, M.; Li, C.; Ren, Y.; Jiao, Q.; Mao, J.-H.; Wang, C.; Wei, G.; et al. miR-1204 targets VDR to promotes epithelial-mesenchymal transition and metastasis in breast cancer. Oncogene 2018, 37, 3426–3439. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, P.; Gao, Y.; Ta, N.; Zhang, Y.; Cai, J.; Zhao, Y.; Liu, S.; Zheng, J. MEG3 activated by vitamin D inhibits colorectal cancer cells proliferation and migration via regulating clusterin. eBioMedicine 2018, 30, 148–157. [Google Scholar] [CrossRef]
- El-Sharkawy, A.; Malki, A. Vitamin D signaling in inflammation and cancer: Molecular mechanisms and therapeutic implications. Molecules 2020, 25, 3219. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.-F.; Gao, S.-H.; Wang, P.; Zhang, H.-M.; Liu, L.-Z.; Ye, M.-X.; Zhou, G.-M.; Zhang, Z.-L.; Li, B.-Y. 1α, 25 (OH) 2D3 suppresses the migration of ovarian cancer SKOV-3 cells through the inhibition of epithelial–mesenchymal transition. Int. J. Mol. Sci. 2016, 17, 1285. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Wang, Q.; Liu, B.; Zhang, N.; Cheng, G. Vitamin D enhances radiosensitivity of colorectal cancer by reversing epithelial-mesenchymal transition. Front. Cell Dev. Biol. 2021, 9, 684855. [Google Scholar] [CrossRef] [PubMed]
- Bhutia, S.K. Vitamin D in autophagy signaling for health and diseases: Insights on potential mechanisms and future perspectives. J. Nutr. Biochem. 2022, 99, 108841. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Zhang, Y.-G.; Xia, Y.; Sun, J. Imbalance of autophagy and apoptosis in intestinal epithelium lacking the vitamin D receptor. FASEB J. 2019, 33, 11845. [Google Scholar] [CrossRef]
- Sarkhosh, H.; Mahmoudi, R.; Malekpour, M.; Ahmadi, Z.; Khiyavi, A.A. The effect of curcumin in combination chemotherapy with 5-FU on non-malignant fibroblast cells. Asian Pac. J. Cancer Care 2019, 4, 7–10. [Google Scholar] [CrossRef]
- Joshi, R.S.; Kanugula, S.S.; Sudhir, S.; Pereira, M.P.; Jain, S.; Aghi, M.K. The role of cancer-associated fibroblasts in tumor progression. Cancers 2021, 13, 1399. [Google Scholar] [CrossRef]
- Bu, L.; Baba, H.; Yoshida, N.; Miyake, K.; Yasuda, T.; Uchihara, T.; Tan, P.; Ishimoto, T. Biological heterogeneity and versatility of cancer-associated fibroblasts in the tumor microenvironment. Oncogene 2019, 38, 4887–4901. [Google Scholar] [CrossRef]
- Liu, T.; Han, C.; Wang, S.; Fang, P.; Ma, Z.; Xu, L.; Yin, R. Cancer-associated fibroblasts: An emerging target of anti-cancer immunotherapy. J. Hematol. Oncol. 2019, 12, 86. [Google Scholar] [CrossRef]
- Lee, Y.T.; Tan, Y.J.; Falasca, M.; Oon, C.E. Cancer-associated fibroblasts: Epigenetic regulation and therapeutic intervention in breast cancer. Cancers 2020, 12, 2949. [Google Scholar] [CrossRef]
- Sahai, E.; Astsaturov, I.; Cukierman, E.; DeNardo, D.G.; Egeblad, M.; Evans, R.M.; Fearon, D.; Greten, F.R.; Hingorani, S.R.; Hunter, T.; et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 2020, 20, 174–186. [Google Scholar] [CrossRef]
- LeBleu, V.S.; Kalluri, R. A peek into cancer-associated fibroblasts: Origins, functions and translational impact. Dis. Models Mech. 2018, 11, dmm029447. [Google Scholar] [CrossRef] [PubMed]
- Bochet, L.; Lehuédé, C.; Dauvillier, S.; Wang, Y.Y.; Dirat, B.; Laurent, V.; Dray, C.; Guiet, R.; Maridonneau-Parini, I.; Le Gonidec, S.; et al. Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res. 2013, 73, 5657–5668. [Google Scholar] [CrossRef]
- Marsh, T.; Pietras, K.; McAllister, S.S. Fibroblasts as architects of cancer pathogenesis. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2013, 1832, 1070–1078. [Google Scholar] [CrossRef]
- Butti, R.; Nimma, R.; Kundu, G.; Bulbule, A.; Kumar, T.V.S.; Gunasekaran, V.P.; Tomar, D.; Kumar, D.; Mane, A.; Gill, S.S.; et al. Tumor-derived osteopontin drives the resident fibroblast to myofibroblast differentiation through Twist1 to promote breast cancer progression. Oncogene 2021, 40, 2002–2017. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y. Translational horizons in the tumor microenvironment: Harnessing breakthroughs and targeting cures. Med. Res. Rev. 2015, 35, 408–436. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.; Huang, G.; Song, H.; Chen, Y.; Chen, L. Cancer associated fibroblasts: An essential role in the tumor microenvironment. Oncol. Lett. 2017, 14, 2611–2620. [Google Scholar] [CrossRef]
- Ruocco, M.R.; Avagliano, A.; Granato, G.; Imparato, V.; Masone, S.; Masullo, M.; Nasso, R.; Montagnani, S.; Arcucci, A. Involvement of breast cancer-associated fibroblasts in tumor development, therapy resistance and evaluation of potential therapeutic strategies. Curr. Med. Chem. 2018, 25, 3414–3434. [Google Scholar] [CrossRef]
- Fernández-Nogueira, P.; Fuster, G.; Gutierrez-Uzquiza, Á.; Gascón, P.; Carbó, N.; Bragado, P. Cancer-associated fibroblasts in breast cancer treatment response and metastasis. Cancers 2021, 13, 3146. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Q.; Tan, Y.; Tang, Y.; Ye, J.; Yuan, B.; Yu, W. Cancer-associated fibroblasts suppress cancer development: The other side of the coin. Front. Cell Dev. Biol. 2021, 9, 613534. [Google Scholar] [CrossRef]
- Costa, A.; Kieffer, Y.; Scholer-Dahirel, A.; Pelon, F.; Bourachot, B.; Cardon, M.; Sirven, P.; Magagna, I.; Fuhrmann, L.; Bernard, C.; et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell 2018, 33, 463–479. [Google Scholar] [CrossRef]
- Musielak, M.; Piwocka, O.; Kulcenty, K.; Ampuła, K.; Adamczyk, B.; Piotrowski, I.; Fundowicz, M.; Kruszyna-Mochalska, M.; Suchorska, W.M.; Malicki, J. Biological heterogeneity of primary cancer-associated fibroblasts determines the breast cancer microenvironment. Am. J. Cancer Res. 2022, 12, 4411. [Google Scholar] [PubMed]
- Acerbi, I.; Cassereau, L.; Dean, I.; Shi, Q.; Au, A.; Park, C.; Chen, Y.Y.; Liphardt, J.; Hwang, E.S.; Weaver, V.M. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr. Biol. 2015, 7, 1120–1134. [Google Scholar] [CrossRef] [PubMed]
- Brechbuhl, H.M.; Finlay-Schultz, J.; Yamamoto, T.M.; Gillen, A.E.; Cittelly, D.M.; Tan, A.-C.; Sams, S.B.; Pillai, M.M.; Elias, A.D.; Robinson, W.A.; et al. Fibroblast subtypes regulate responsiveness of luminal breast cancer to estrogen. Clin. Cancer Res. 2017, 23, 1710–1721. [Google Scholar] [CrossRef] [PubMed]
- Brechbuhl, H.M.; Barrett, A.S.; Kopin, E.; Hagen, J.C.; Han, A.L.; Gillen, A.E.; Finlay-Schultz, J.; Cittelly, D.M.; Owens, P.; Horwitz, K.B.; et al. Fibroblast subtypes define a metastatic matrisome in breast cancer. JCI Insight 2020, 5, e130751. [Google Scholar] [CrossRef]
- Su, S.; Chen, J.; Yao, H.; Liu, J.; Yu, S.; Lao, L.; Wang, M.; Luo, M.; Xing, Y.; Chen, F.; et al. CD10+ GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell 2018, 172, 841–856. [Google Scholar] [CrossRef] [PubMed]
- Cords, L.; Tietscher, S.; Anzeneder, T.; Langwieder, C.; Rees, M.; de Souza, N.; Bodenmiller, B. Cancer-associated fibroblast classification in single-cell and spatial proteomics data. Nat. Commun. 2023, 14, 4294. [Google Scholar] [CrossRef]
- Lefebvre, M.F.; Guillot, C.; Crepin, M.; Saez, S. Influence of tumor derived fibroblasts and 1, 25-dihydroxyvitamin D3 on growth of breast cancer cell lines. Breast Cancer Res. Treat. 1995, 33, 189–197. [Google Scholar] [CrossRef]
- Campos, L.T.; Brentani, H.; Roela, R.A.; Katayama, M.L.H.; Lima, L.; Rolim, C.F.; Milani, C.; Folgueira, M.A.A.K.; Brentani, M.M. Differences in transcriptional effects of 1α, 25 dihydroxyvitamin D3 on fibroblasts associated to breast carcinomas and from paired normal breast tissues. J. Steroid Biochem. Mol. Biol. 2013, 133, 12–24. [Google Scholar] [CrossRef]
- Milani, C.; Katayama, M.L.H.; de Lyra, E.C.; Welsh, J.; Campos, L.T.; Brentani, M.M.; Maciel, M.d.S.; Roela, R.A.; del Valle, P.R.; Góes, J.C.G.S.; et al. Transcriptional effects of 1, 25 dihydroxyvitamin D 3 physiological and supra-physiological concentrations in breast cancer organotypic culture. BMC Cancer 2013, 13, 119. [Google Scholar] [CrossRef]
- Łabędź, N.; Anisiewicz, A.; Stachowicz-Suhs, M.; Banach, J.; Kłopotowska, D.; Maciejczyk, A.; Gazińska, P.; Piotrowska, A.; Dzięgiel, P.; Matkowski, R.; et al. Dual effect of vitamin D3 on breast cancer-associated fibroblasts. BMC Cancer 2024, 24, 209. [Google Scholar] [CrossRef]
- Łabędź, N.; Stachowicz-Suhs, M.; Psurski, M.; Anisiewicz, A.; Banach, J.; Piotrowska, A.; Dzięgiel, P.; Maciejczyk, A.; Matkowski, R.; Wietrzyk, J. Modulation of fibroblast activity via vitamin D3 is dependent on tumor type—Studies on mouse mammary gland cancer. Cancers 2022, 14, 4585. [Google Scholar] [CrossRef]
- Sherman, M.H.; Ruth, T.Y.; Engle, D.D.; Ding, N.; Atkins, A.R.; Tiriac, H.; Collisson, E.A.; Connor, F.; Van Dyke, T.; Kozlov, S.; et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell 2014, 159, 80–93. [Google Scholar] [CrossRef]
- Gorchs, L.; Ahmed, S.; Mayer, C.; Knauf, A.; Fernández Moro, C.; Svensson, M.; Heuchel, R.; Rangelova, E.; Bergman, P.; Kaipe, H. The vitamin D analogue calcipotriol promotes an anti-tumorigenic phenotype of human pancreatic CAFs but reduces T cell mediated immunity. Sci. Rep. 2020, 10, 17444. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Li, L.; Wang, G.; Deng, X.; Li, Z.; Kong, X. VDR signaling inhibits cancer-associated-fibroblasts’ release of exosomal miR-10a-5p and limits their supportive effects on pancreatic cancer cells. Gut 2019, 68, 950–951. [Google Scholar] [CrossRef]
- Ferrer-Mayorga, G.; Gómez-López, G.; Barbáchano, A.; Fernández-Barral, A.; Peña, C.; Pisano, D.G.; Cantero, R.; Rojo, F.; Muñoz, A.; Larriba, M.J. Vitamin D receptor expression and associated gene signature in tumour stromal fibroblasts predict clinical outcome in colorectal cancer. Gut 2017, 66, 1449–1462. [Google Scholar] [CrossRef] [PubMed]
- Duran, A.; Hernandez, E.D.; Reina-Campos, M.; Castilla, E.A.; Subramaniam, S.; Raghunandan, S.; Roberts, L.R.; Kisseleva, T.; Karin, M.; Diaz-Meco, M.T.; et al. p62/SQSTM1 by binding to vitamin D receptor inhibits hepatic stellate cell activity, fibrosis, and liver cancer. Cancer Cell 2016, 30, 595–609. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Jian, C.; Wang, L.; Liu, Y.; Xiong, Y.; Wu, T.; Shi, C. FAP-targeting biomimetic nanosystem to restore the activated cancer-associated fibroblasts to quiescent state for breast cancer radiotherapy. Int. J. Pharm. 2025, 670, 125190. [Google Scholar] [CrossRef]
- Wu, Q.; Li, B.; Li, Z.; Li, J.; Sun, S.; Sun, S. Cancer-associated adipocytes: Key players in breast cancer progression. J. Hematol. Oncol. 2019, 12, 95. [Google Scholar] [CrossRef]
- Lapeire, L.; Hendrix, A.; Lambein, K.; Van Bockstal, M.; Braems, G.; Van Den Broecke, R.; Limame, R.; Mestdagh, P.; Vandesompele, J.; Vanhove, C.; et al. Cancer-associated adipose tissue promotes breast cancer progression by paracrine oncostatin M and Jak/STAT3 signaling. Cancer Res. 2014, 74, 6806–6819. [Google Scholar] [CrossRef]
- Rybinska, I.; Mangano, N.; Tagliabue, E.; Triulzi, T. Cancer-associated adipocytes in breast cancer: Causes and consequences. Int. J. Mol. Sci. 2021, 22, 3775. [Google Scholar] [CrossRef]
- Zhao, C.; Wu, M.; Zeng, N.; Xiong, M.; Hu, W.; Lv, W.; Yi, Y.; Zhang, Q.; Wu, Y. Cancer-associated adipocytes: Emerging supporters in breast cancer. J. Exp. Clin. Cancer Res. 2020, 39, 156. [Google Scholar] [CrossRef]
- Jorde, R.; Sneve, M.; Emaus, N.; Figenschau, Y.; Grimnes, G. Cross-sectional and longitudinal relation between serum 25-hydroxyvitamin D and body mass index: The Tromsø study. Eur. J. Nutr. 2010, 49, 401–407. [Google Scholar] [CrossRef]
- Wamberg, L.; Christiansen, T.; Paulsen, S.K.; Fisker, S.; Rask, P.; Rejnmark, L.; Richelsen, B.; Pedersen, S.B. Expression of vitamin D-metabolizing enzymes in human adipose tissue—The effect of obesity and diet-induced weight loss. Int. J. Obes. 2013, 37, 651–657. [Google Scholar] [CrossRef]
- Yum, C.; Andolino, C.; Larrick, B.; Sheeley, M.P.; Teegarden, D. 1α, 25-Dihydroxyvitamin D Downregulates Adipocyte Impact on Breast Cancer Cell Migration and Adipokine Release. Nutrients 2024, 16, 3153. [Google Scholar] [CrossRef]
- Karkeni, E.; Morin, S.O.; Bou Tayeh, B.; Goubard, A.; Josselin, E.; Castellano, R.; Fauriat, C.; Guittard, G.; Olive, D.; Nunès, J.A. Vitamin D controls tumor growth and CD8+ T cell infiltration in breast cancer. Front. Immunol. 2019, 10, 1307. [Google Scholar] [CrossRef]
- Karkeni, E.; Marcotorchino, J.; Tourniaire, F.; Astier, J.; Peiretti, F.; Darmon, P.; Landrier, J.-F. Vitamin D limits chemokine expression in adipocytes and macrophage migration in vitro and in male mice. Endocrinology 2015, 156, 1782–1793. [Google Scholar] [CrossRef]
- DeGuzman, A.; Lorenson, M.Y.; Walker, A.M. Bittersweet: Relevant amounts of the common sweet food additive, glycerol, accelerate the growth of PC3 human prostate cancer xenografts. BMC Res. Notes 2022, 15, 101. [Google Scholar] [CrossRef] [PubMed]
- Blumberg, J.M.; Tzameli, I.; Astapova, I.; Lam, F.S.; Flier, J.S.; Hollenberg, A.N. Complex role of the vitamin D receptor and its ligand in adipogenesis in 3T3-L1 cells. J. Biol. Chem. 2006, 281, 11205–11213. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Sahu, L.; Sonwal, S.; Suneetha, A.; Kim, D.H.; Kim, J.; Verma, H.K.; Pavitra, E.; Raju, G.S.R.; Bhaskar, L.; et al. Advances in biomedical applications of vitamin D for VDR targeted management of obesity and cancer. Biomed. Pharmacother. 2024, 177, 117001. [Google Scholar] [CrossRef]
- Mehraj, U.; Dar, A.H.; Wani, N.A.; Mir, M.A. Tumor microenvironment promotes breast cancer chemoresistance. Cancer Chemother. Pharmacol. 2021, 87, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, W.; Liu, S.; Chen, C. Targeting breast cancer stem cells. Int. J. Biol. Sci. 2023, 19, 552. [Google Scholar] [CrossRef]
- Bai, X.; Ni, J.; Beretov, J.; Graham, P.; Li, Y. Cancer stem cell in breast cancer therapeutic resistance. Cancer Treat. Rev. 2018, 69, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Louderbough, J.M.; Schroeder, J.A. Understanding the dual nature of CD44 in breast cancer progression. Mol. Cancer Res. 2011, 9, 1573–1586. [Google Scholar] [CrossRef]
- To, K.; Fotovati, A.; Reipas, K.M.; Law, J.H.; Hu, K.; Wang, J.; Astanehe, A.; Davies, A.H.; Lee, L.; Stratford, A.L.; et al. Y-box binding protein-1 induces the expression of CD44 and CD49f leading to enhanced self-renewal, mammosphere growth, and drug resistance. Cancer Res. 2010, 70, 2840–2851. [Google Scholar] [CrossRef] [PubMed]
- Creighton, C.J.; Li, X.; Landis, M.; Dixon, J.M.; Neumeister, V.M.; Sjolund, A.; Rimm, D.L.; Wong, H.; Rodriguez, A.; Herschkowitz, J.I.; et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc. Natl. Acad. Sci. USA 2009, 106, 13820–13825. [Google Scholar] [CrossRef]
- Hu, M.; Yao, J.; Carroll, D.K.; Weremowicz, S.; Chen, H.; Carrasco, D.; Richardson, A.; Violette, S.; Nikolskaya, T.; Nikolsky, Y.; et al. Regulation of in situ to invasive breast carcinoma transition. Cancer Cell 2008, 13, 394–406. [Google Scholar] [CrossRef] [PubMed]
- So, J.Y.; Lee, H.J.; Smolarek, A.K.; Paul, S.; Wang, C.-X.; Maehr, H.; Uskokovic, M.; Zheng, X.; Conney, A.H.; Cai, L.; et al. A novel Gemini vitamin D analog represses the expression of a stem cell marker CD44 in breast cancer. Mol. Pharmacol. 2011, 79, 360–367. [Google Scholar] [CrossRef]
- Dandawate, P.R.; Subramaniam, D.; Jensen, R.A.; Anant, S. Targeting cancer stem cells and signaling pathways by phytochemicals: Novel approach for breast cancer therapy. Semin. Cancer Biol. 2016, 40, 192–208. [Google Scholar] [CrossRef]
- Zheng, W.; Duan, B.; Zhang, Q.; Ouyang, L.; Peng, W.; Qian, F.; Wang, Y.; Huang, S. Vitamin D-induced vitamin D receptor expression induces tamoxifen sensitivity in MCF-7 stem cells via suppression of Wnt/β-catenin signaling. Biosci. Rep. 2018, 38, BSR20180595. [Google Scholar] [CrossRef]
- Katoh, M.; Katoh, M. Integrative genomic analyses on HES/HEY family: Notch-independent HES1, HES3 transcription in undifferentiated ES cells, and Notch-dependent HES1, HES5, HEY1, HEY2, HEYL transcription in fetal tissues, adult tissues, or cancer. Int. J. Oncol. 2007, 31, 461–466. [Google Scholar] [CrossRef]
- Xiu, M.; Liu, Y.; Kuang, B. The oncogenic role of Jagged1/Notch signaling in cancer. Biomed. Pharmacother. 2020, 129, 110416. [Google Scholar] [CrossRef]
- Simoes, B.M.; O’Brien, C.S.; Eyre, R.; Silva, A.; Yu, L.; Sarmiento-Castro, A.; Alférez, D.G.; Spence, K.; Santiago-Gomez, A.; Chemi, F.; et al. Anti-estrogen resistance in human breast tumors is driven by JAG1-NOTCH4-dependent cancer stem cell activity. Cell Rep. 2015, 12, 1968–1977. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.; Aster, J.C. Notch signaling in cancer: Complexity and challenges on the path to clinical translation. Semin. Cancer Biol. 2022, 85, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Grilli, G.; Hermida-Prado, F.; Álvarez-Fernández, M.; Allonca, E.; Álvarez-González, M.; Astudillo, A.; Moreno-Bueno, G.; Cano, A.; García-Pedrero, J.M.; Rodrigo, J.P. Impact of notch signaling on the prognosis of patients with head and neck squamous cell carcinoma. Oral Oncol. 2020, 110, 105003. [Google Scholar] [CrossRef]
- Palomero, T.; Lim, W.K.; Odom, D.T.; Sulis, M.L.; Real, P.J.; Margolin, A.; Barnes, K.C.; O’Neil, J.; Neuberg, D.; Weng, A.P.; et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc. Natl. Acad. Sci. USA 2006, 103, 18261–18266. [Google Scholar] [CrossRef]
- Li, L.; Jin, J.; Liu, H.; Ma, X.; Wang, D.; Song, Y.; Wang, C.; Jiang, J.; Yan, G.; Qin, X.; et al. Notch1 signaling contributes to TLR4-triggered NF-κB activation in macrophages. Pathol. Pract. 2022, 234, 153894. [Google Scholar] [CrossRef]
- Mazzone, M.; Selfors, L.M.; Albeck, J.; Overholtzer, M.; Sale, S.; Carroll, D.L.; Pandya, D.; Lu, Y.; Mills, G.B.; Aster, J.C.; et al. Dose-dependent induction of distinct phenotypic responses to Notch pathway activation in mammary epithelial cells. Proc. Natl. Acad. Sci. USA 2010, 107, 5012–5017. [Google Scholar] [CrossRef]
- Harrison, H.; Farnie, G.; Howell, S.J.; Rock, R.E.; Stylianou, S.; Brennan, K.R.; Bundred, N.J.; Clarke, R.B. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res. 2010, 70, 709–718. [Google Scholar] [CrossRef] [PubMed]
- Mandal, T.; Rangarajan, A.; Mukherjee, G.; SENGUPTA, K.; Paranjape, A.N.; Kumar, M. V Introduction of SV40ER and hTERT into Mammospheres Generates Breast Cancer Cells with Stem Cell Properties; Nature Publishing Group: London, UK, 2012. [Google Scholar]
- Liao, M.-J.; Zhang, C.C.; Zhou, B.; Zimonjic, D.B.; Mani, S.A.; Kaba, M.; Gifford, A.; Reinhardt, F.; Popescu, N.C.; Guo, W.; et al. Enrichment of a population of mammary gland cells that form mammospheres and have in vivo repopulating activity. Cancer Res. 2007, 67, 8131–8138. [Google Scholar] [CrossRef]
- Pickholtz, I.; Saadyan, S.; Keshet, G.I.; Wang, V.S.; Cohen, R.; Bouwman, P.; Jonkers, J.; Byers, S.W.; Papa, M.Z.; Yarden, R.I. Cooperation between BRCA1 and vitamin D is critical for histone acetylation of the p21waf1 promoter and for growth inhibition of breast cancer cells and cancer stem-like cells. Oncotarget 2014, 5, 11827. [Google Scholar] [CrossRef]
- Wahler, J.; So, J.Y.; Cheng, L.C.; Maehr, H.; Uskokovic, M.; Suh, N. Vitamin D compounds reduce mammosphere formation and decrease expression of putative stem cell markers in breast cancer. J. Steroid Biochem. Mol. Biol. 2015, 148, 148–155. [Google Scholar] [CrossRef]
- Pervin, S.; Hewison, M.; Braga, M.; Tran, L.; Chun, R.; Karam, A.; Chaudhuri, G.; Norris, K.; Singh, R. Down-regulation of vitamin D receptor in mammospheres: Implications for vitamin D resistance in breast cancer and potential for combination therapy. PLoS ONE 2013, 8, e53287. [Google Scholar] [CrossRef]
- Carlberg, C.; Velleuer, E. Vitamin D and the risk for cancer: A molecular analysis. Biochem. Pharmacol. 2022, 196, 114735. [Google Scholar] [CrossRef]
- Hart, P.H.; Gorman, S.; Finlay-Jones, J.J. Modulation of the immune system by UV radiation: More than just the effects of vitamin D? Nat. Rev. Immunol. 2011, 11, 584–596. [Google Scholar] [CrossRef]
- Filip-Psurska, B.; Zachary, H.; Strzykalska, A.; Wietrzyk, J. Vitamin D, Th17 lymphocytes, and breast cancer. Cancers 2022, 14, 3649. [Google Scholar] [CrossRef]
- Shibabaw, T.; Teferi, B.; Ayelign, B. The role of Th-17 cells and IL-17 in the metastatic spread of breast cancer: As a means of prognosis and therapeutic target. Front. Immunol. 2023, 14, 1094823. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Pantalena, L.-C.; Liu, X.K.; Gaffen, S.L.; Liu, H.; Rohowsky-Kochan, C.; Ichiyama, K.; Yoshimura, A.; Steinman, L.; Christakos, S.; et al. 1, 25-Dihydroxyvitamin D3 ameliorates Th17 autoimmunity via transcriptional modulation of interleukin-17A. Mol. Cell. Biol. 2011, 31, 3653–3669. [Google Scholar] [CrossRef] [PubMed]
- Cantorna, M.T.; Snyder, L.; Lin, Y.-D.; Yang, L. Vitamin D and 1, 25 (OH) 2D regulation of T cells. Nutrients 2015, 7, 3011–3021. [Google Scholar] [CrossRef] [PubMed]
- Min, D.; Lv, X.B.; Wang, X.; Zhang, B.; Meng, W.; Yu, F.; Hu, H. Downregulation of miR-302c and miR-520c by 1, 25 (OH) 2D3 treatment enhances the susceptibility of tumour cells to natural killer cell-mediated cytotoxicity. Br. J. Cancer 2013, 109, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Stachowicz-Suhs, M.; Łabędź, N.; Milczarek, M.; Kłopotowska, D.; Filip-Psurska, B.; Maciejczyk, A.; Matkowski, R.; Wietrzyk, J. Vitamin D3 reduces the expression of M1 and M2 macrophage markers in breast cancer patients. Sci. Rep. 2024, 14, 22126. [Google Scholar] [CrossRef]
- Stachowicz-Suhs, M.; Łabędź, N.; Anisiewicz, A.; Banach, J.; Kłopotowska, D.; Milczarek, M.; Piotrowska, A.; Dzięgiel, P.; Maciejczyk, A.; Matkowski, R.; et al. Calcitriol promotes M2 polarization of tumor-associated macrophages in 4T1 mouse mammary gland cancer via the induction of proinflammatory cytokines. Sci. Rep. 2024, 14, 3778. [Google Scholar] [CrossRef]
- Anisiewicz, A.; Pawlik, A.; Filip-Psurska, B.; Wietrzyk, J. Differential impact of calcitriol and its analogs on tumor stroma in young and aged ovariectomized mice bearing 4T1 mammary gland cancer. Int. J. Mol. Sci. 2020, 21, 6359. [Google Scholar] [CrossRef]
- Deshmane, S.L.; Kremlev, S.; Amini, S.; Sawaya, B.E. Monocyte chemoattractant protein-1 (MCP-1): An overview. J. Interf. Cytokine Res. 2009, 29, 313–326. [Google Scholar] [CrossRef]
- Ginhoux, F.; Jung, S. Monocytes and macrophages: Developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 2014, 14, 392–404. [Google Scholar] [CrossRef]
- Anisiewicz, A.; Łabędź, N.; Krauze, I.; Wietrzyk, J. Calcitriol in the presence of conditioned media from metastatic breast cancer cells enhances ex vivo polarization of M2 alternative murine bone marrow-derived macrophages. Cancers 2020, 12, 3485. [Google Scholar] [CrossRef] [PubMed]
- Stanton, A.E.; Tong, X.; Yang, F. Extracellular matrix type modulates mechanotransduction of stem cells. Acta Biomater. 2019, 96, 310–320. [Google Scholar] [CrossRef]
- Grassian, A.R.; Coloff, J.L.; Brugge, J.S. Extracellular matrix regulation of metabolism and implications for tumorigenesis. Cold Spring Harb. Symp. Quant. Biol. 2011, 76, 313–324. [Google Scholar] [CrossRef]
- Kamalabadi-Farahani, M.; Atashi, A.; Bitaraf, F.S. Upregulation of matrix metalloproteinases in the metastatic cascade of breast cancer to the brain. Asian Pacific J. Cancer Prev. APJCP 2023, 24, 2997. [Google Scholar] [CrossRef]
- Haque, M.M.; Desai, K. V Pathways to endocrine therapy resistance in breast cancer. Front. Endocrinol. 2019, 10, 573. [Google Scholar] [CrossRef] [PubMed]
- Al-Suhaimi, E.A.; Al-Khater, K.M.; Aljafary, M.A.; Ravinayagam, V.; Shehzad, A.; Al-Dossary, H.A.; Assuhaimi, R.A.; Tarhini, M.; Elaissari, A. Vitamin D as therapeutic agent acting against cancers caused by proteases. In Cancer-Leading Proteases; Elsevier: Amsterdam, The Netherlands, 2020; pp. 417–448. [Google Scholar]
- Wechman, S.L.; Emdad, L.; Sarkar, D.; Das, S.K.; Fisher, P.B. Vascular mimicry: Triggers, molecular interactions and in vivo models. Adv. Cancer Res. 2020, 148, 27–67. [Google Scholar] [PubMed]
- Kitami, K.; Yoshihara, M.; Tamauchi, S.; Sugiyama, M.; Koya, Y.; Yamakita, Y.; Fujimoto, H.; Iyoshi, S.; Uno, K.; Mogi, K.; et al. Peritoneal restoration by repurposing vitamin D inhibits ovarian cancer dissemination via blockade of the TGF-β1/thrombospondin-1 axis. Matrix Biol. 2022, 109, 70–90. [Google Scholar] [CrossRef]
- Pal, S.K.; Nguyen, C.T.K.; Morita, K.; Miki, Y.; Kayamori, K.; Yamaguchi, A.; Sakamoto, K. THBS 1 is induced by TGFB 1 in the cancer stroma and promotes invasion of oral squamous cell carcinoma. J. Oral Pathol. Med. 2016, 45, 730–739. [Google Scholar] [CrossRef] [PubMed]
- González-Sancho, J.M.; Alvarez-Dolado, M.; Muñoz, A. 1, 25-Dihydroxyvitamin D3 inhibits tenascin-C expression in mammary epithelial cells. FEBS Lett. 1998, 426, 225–228. [Google Scholar] [CrossRef]
- Narvaez, C.J.; LaPorta, E.; Robilotto, S.; Liang, J.; Welsh, J. Inhibition of HAS2 and hyaluronic acid production by 1, 25-Dihydroxyvitamin D3 in breast cancer. Oncotarget 2020, 11, 2889. [Google Scholar] [CrossRef] [PubMed]
- Polly, P.; Carlberg, C.; Eisman, J.A.; Morrison, N.A. Identification of a vitamin D3 response element in the fibronectin gene that is bound by a vitamin D3 receptor homodimer. J. Cell. Biochem. 1996, 60, 322–333. [Google Scholar] [CrossRef]
- Shu, C.; Yang, Q.; Huang, J.; Xie, X.; Li, H.; Wu, H.; Wang, X.; Chen, X.; Xie, Y.; Zhou, Y.; et al. Pretreatment plasma vitamin D and response to neoadjuvant chemotherapy in breast cancer: Evidence from pooled analysis of cohort studies. Int. J. Surg. 2024, 110, 8126–8135. [Google Scholar] [CrossRef]
- Guyonnet, E.; Kim, S.J.; Pullella, K.; Zhang, C.X.W.; McCuaig, J.M.; Armel, S.; Narod, S.A.; Kotsopoulos, J. Vitamin D and Calcium Supplement Use and High-Risk Breast Cancer: A Case–Control Study among BRCA1 and BRCA2 Mutation Carriers. Cancers 2023, 15, 2790. [Google Scholar] [CrossRef]
- Thomson, C.A.; Aragaki, A.K.; Prentice, R.L.; Stefanick, M.L.; Manson, J.E.; Wactawski-Wende, J.; Watts, N.B.; Van Horn, L.; Shikany, J.M.; Rohan, T.E. Long-Term Effect of Randomization to Calcium and Vitamin D Supplementation on Health in Older Women: Postintervention Follow-up of a Randomized Clinical Trial. Ann. Intern. Med. 2024, 177, 428–438. [Google Scholar] [CrossRef]
- Duffy, M.J.; Mullooly, M.; Bennett, K.; Crown, J. Vitamin D supplementation: Does it have a preventative or therapeutic role in cancer? Nutr. Cancer 2023, 75, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Abbas, S.; Linseisen, J.; Slanger, T.; Kropp, S.; Mutschelknauss, E.J.; Flesch-Janys, D.; Chang-Claude, J. Serum 25-hydroxyvitamin D and risk of post-menopausal breast cancer—Results of a large case–control study. Carcinogenesis 2008, 29, 93–99. [Google Scholar] [CrossRef]
- Özkurt, E.; Ordu, C.; Özmen, T.; Ilgun, A.S.; Soybir, G.; Celebi, F.; Koç, E.; Ak, N.; Alco, G.; Kurt, S.; et al. Vitamin D supplementation during neoadjuvant chemotherapy for breast cancer improves pathological complete response: A prospective randomized clinical trial. World J. Surg. 2025, 49, 1396–1405. [Google Scholar] [CrossRef]
- Lope, V.; Castelló, A.; Mena-Bravo, A.; Amiano, P.; Aragonés, N.; Fernández-Villa, T.; Guevara, M.; Dierssen-Sotos, T.; Fernandez-Tardón, G.; Castaño-Vinyals, G.; et al. Serum 25-hydroxyvitamin D and breast cancer risk by pathological subtype (MCC-Spain). J. Steroid Biochem. Mol. Biol. 2018, 182, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Céspedes, R.; Fernández-Martínez, M.D.; Raya, A.I.; Pineda, C.; López, I.; Millán, Y. Vitamin D receptor (VDR) expression in different molecular subtypes of canine mammary carcinoma. BMC Vet. Res. 2021, 17, 197. [Google Scholar] [CrossRef]
- Qin, B.; Xu, B.; Ji, N.; Yao, S.; Pawlish, K.; Llanos, A.A.M.; Lin, Y.; Demissie, K.; Ambrosone, C.B.; Hong, C.-C.; et al. Intake of vitamin D and calcium, sun exposure, and risk of breast cancer subtypes among black women. Am. J. Clin. Nutr. 2019, 111, 396. [Google Scholar] [CrossRef]
- Tirgar, A.; Rezaei, M.; Ehsani, M.; Salmani, Z.; Rastegari, A.; Jafari, E.; Khandani, B.K.; Nakhaee, N.; Khaksari, M.; Moazed, V. Exploring the synergistic effects of vitamin D and synbiotics on cytokines profile, and treatment response in breast cancer: A pilot randomized clinical trial. Sci. Rep. 2024, 14, 21372. [Google Scholar] [CrossRef]
- Zhang, Y.-G.; Xia, Y.; Zhang, J.; Deb, S.; Garrett, S.; Sun, J. Intestinal vitamin D receptor protects against extraintestinal breast cancer tumorigenesis. Gut Microbes 2023, 15, 2202593. [Google Scholar] [CrossRef]
- Cavalier, E.; Delanaye, P.; Chapelle, J.-P.; Souberbielle, J.-C. Vitamin D: Current status and perspectives. Clin. Chem. Lab. Med. 2009, 47, 120–127. [Google Scholar] [CrossRef]
- Peppone, L.J.; Huston, A.J.; Reid, M.E.; Rosier, R.N.; Zakharia, Y.; Trump, D.L.; Mustian, K.M.; Janelsins, M.C.; Purnell, J.Q.; Morrow, G.R. The effect of various vitamin D supplementation regimens in breast cancer patients. Breast Cancer Res. Treat. 2011, 127, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Mann, G.B.; Kang, Y.C.; Brand, C.; Ebeling, P.R.; Miller, J.A. Secondary causes of low bone mass in patients with breast cancer: A need for greater vigilance. J. Clin. Oncol. 2009, 27, 3605–3610. [Google Scholar] [CrossRef] [PubMed]
- Chartron, E.; Firmin, N.; Touraine, C.; Chapelle, A.; Legouffe, E.; Rifai, L.; Pouderoux, S.; Roca, L.; D’Hondt, V.; Jacot, W. A phase II multicenter trial on high-dose vitamin D supplementation for the correction of vitamin D insufficiency in patients with breast cancer receiving adjuvant chemotherapy. Nutrients 2021, 13, 4429. [Google Scholar] [CrossRef]
- Sinotte, M.; Diorio, C.; Bérubé, S.; Pollak, M.; Brisson, J. Genetic polymorphisms of the vitamin D binding protein and plasma concentrations of 25-hydroxyvitamin D in premenopausal women. Am. J. Clin. Nutr. 2009, 89, 634–640. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef]
- Bischoff-Ferrari, H.A.; Willett, W.C.; Wong, J.B.; Giovannucci, E.; Dietrich, T.; Dawson-Hughes, B. Fracture prevention with vitamin D supplementation: A meta-analysis of randomized controlled trials. JAMA 2005, 293, 2257–2264. [Google Scholar] [CrossRef]
- Tang, B.M.P.; Eslick, G.D.; Nowson, C.; Smith, C.; Bensoussan, A. Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: A meta-analysis. Lancet 2007, 370, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Roux, C.; Bischoff-Ferrari, H.A.; Papapoulos, S.E.; de Papp, A.E.; West, J.A.; Bouillon, R. New insights into the role of vitamin D and calcium in osteoporosis management: An expert roundtable discussion. Curr. Med. Res. Opin. 2008, 24, 1363–1370. [Google Scholar] [CrossRef] [PubMed]
- Bischoff-Ferrari, H.A.; Dawson-Hughes, B.; Willett, W.C.; Staehelin, H.B.; Bazemore, M.G.; Zee, R.Y.; Wong, J.B. Effect of vitamin D on falls: A meta-analysis. JAMA 2004, 291, 1999–2006. [Google Scholar] [CrossRef] [PubMed]
- Abbas, S.; Nieters, A.; Linseisen, J.; Slanger, T.; Kropp, S.; Mutschelknauss, E.J.; Flesch-Janys, D.; Chang-Claude, J. Vitamin D receptor gene polymorphisms and haplotypes and postmenopausal breast cancer risk. Breast Cancer Res. 2008, 10, R31. [Google Scholar] [CrossRef]
- Khan, Q.J.; Reddy, P.S.; Kimler, B.F.; Sharma, P.; Baxa, S.E.; O’Dea, A.P.; Klemp, J.R.; Fabian, C.J. Effect of vitamin D supplementation on serum 25-hydroxy vitamin D levels, joint pain, and fatigue in women starting adjuvant letrozole treatment for breast cancer. Breast Cancer Res. Treat. 2010, 119, 111–118. [Google Scholar] [CrossRef]
- Crew, K.D.; Xiao, T.; Thomas, P.S.; Terry, M.B.; Maurer, M.; Kalinsky, K.; Feldman, S.; Brafman, L.; Refice, S.R.; Hershman, D.L. Safety, feasibility, and biomarker effects of high-dose vitamin D supplementation among women at high risk for breast cancer. Int. J. Food Sci. Nutr. Diet. 2015, 2015, 1. [Google Scholar] [CrossRef]
- Arnaout, A.; Robertson, S.; Pond, G.R.; Vieth, R.; Jeong, A.; Hilton, J.; Ramsey, T.; Clemons, M. Randomized window of opportunity trial evaluating high-dose vitamin D in breast cancer patients. Breast Cancer Res. Treat. 2019, 178, 347–356. [Google Scholar] [CrossRef]
- Rana, P. MELO-D: Antiproliferative effects of melatonin and vitamin D in breast cancer. J. Clin. Oncol. 2014, 32, TPS1616. [Google Scholar] [CrossRef]
- Almassri, H.F.; Abdul Kadir, A.; Srour, M.; Foo, L.H. The Effects of Omega-3 Fatty Acids and Vitamin D Supplementation on the Nutritional Status of Women with Breast Cancer in Palestine: An Open-Label Randomized Controlled Trial. Nutrients 2024, 16, 3960. [Google Scholar] [CrossRef]
- Brisson, J.; Bérubé, S.; Diorio, C.; Mâsse, B.; Lemieux, J.; Duchesne, T.; Delvin, E.; Vieth, R.; Yaffe, M.J.; Chiquette, J. A randomized double-blind placebo-controlled trial of the effect of vitamin D3 supplementation on breast density in premenopausal women. Cancer Epidemiol. Biomark. Prev. 2017, 26, 1233–1241. [Google Scholar] [CrossRef]
- Qin, W.; Holick, M.F.; Sorensen, W.; Walker, C.R.; Sauter, E.R. Vitamin D3 treatment influences PGE2 and TGFβ in normal and increased breast cancer risk women. Anticancer Res. 2016, 36, 5347–5353. [Google Scholar] [CrossRef] [PubMed]
- Jacot, W.; Firmin, N.; Roca, L.; Topart, D.; Gallet, S.; Durigova, A.; Mirr, S.; Abach, L.; Pouderoux, S.; d’Hondt, V.; et al. Impact of a tailored oral vitamin D supplementation regimen on serum 25-hydroxyvitamin D levels in early breast cancer patients: A randomized phase III study. Ann. Oncol. 2016, 27, 1235–1241. [Google Scholar] [CrossRef] [PubMed]
- Manson, J.E.; Aragaki, A.K.; Rossouw, J.E.; Anderson, G.L.; Prentice, R.L.; LaCroix, A.Z.; Chlebowski, R.T.; Howard, B.V.; Thomson, C.A.; Margolis, K.L.; et al. Menopausal hormone therapy and long-term all-cause and cause-specific mortality: The Women’s Health Initiative randomized trials. JAMA 2017, 318, 927–938. [Google Scholar] [CrossRef]
- Zeng, X.; Chen, X.; Li, C.; Shi, H. Preoperative Vitamin D Level is Associated with Acute Pain After Video-Assisted Thoracoscopic Surgery: A Retrospective Cohort Study. J. Pain Res. 2022, 15, 3189–3196. [Google Scholar] [CrossRef]
- Roth, D.E.; Abrams, S.A.; Aloia, J.; Bergeron, G.; Bourassa, M.W.; Brown, K.H.; Calvo, M.S.; Cashman, K.D.; Combs, G.; De-Regil, L.M. Global prevalence and disease burden of vitamin D deficiency: A roadmap for action in low- and middle-income countries. Ann. N. Y. Acad. Sci. 2018, 1430, 44–79. [Google Scholar] [CrossRef]
- Bose, S.; Khanna, A.; You, J.; Arora, L.; Qavi, S.; Turan, A. Low serum vitamin D levels are not associated with increased postoperative pain and opioid requirements: A historical cohort study. Can. J. Anesth. 2015, 62, 770–776. [Google Scholar] [CrossRef] [PubMed]
- Ulitsky, A.; Ananthakrishnan, A.N.; Naik, A.; Skaros, S.; Zadvornova, Y.; Binion, D.G.; Issa, M. Vitamin D deficiency in patients with inflammatory bowel disease: Association with disease activity and quality of life. J. Parenter. Enter. Nutr. 2011, 35, 308–316. [Google Scholar] [CrossRef]
- Welsh, J. Vitamin D and breast cancer: Past and present. J. Steroid Biochem. Mol. Biol. 2018, 177, 15–20. [Google Scholar] [CrossRef]
- Crew, K.D.; Anderson, G.L.; Hershman, D.L.; Terry, M.B.; Tehranifar, P.; Lew, D.L.; Yee, M.; Brown, E.A.; Kairouz, S.S.; Kuwajerwala, N.; et al. Randomized double-blind placebo-controlled biomarker modulation study of vitamin D supplementation in premenopausal women at high risk for breast cancer (SWOG S0812). Cancer Prev. Res. 2019, 12, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Elliott, M.J.; Ennis, M.; Pritchard, K.I.; Townsley, C.; Warr, D.; Elser, C.; Amir, E.; Bedard, P.L.; Rao, L.; Stambolic, V.; et al. Association between BMI, vitamin D, and estrogen levels in postmenopausal women using adjuvant letrozole: A prospective study. NPJ Breast Cancer 2020, 6, 22. [Google Scholar] [CrossRef] [PubMed]
- Yousef, F.M.; Jacobs, E.T.; Kang, P.T.; Hakim, I.A.; Going, S.; Yousef, J.M.; Al-Raddadi, R.M.; Kumosani, T.A.; Thomson, C.A. Vitamin D status and breast cancer in Saudi Arabian women: Case-control study1. Am. J. Clin. Nutr. 2013, 98, 105. [Google Scholar] [CrossRef] [PubMed]






| Vitamin D Role | Pathways | Molecular Effects | Function | Refs. |
|---|---|---|---|---|
| Cell cycle | Cell cycle G0-S phase | Cyclin dependent kinases (CDKs)/ P21, INK4 | Significantly alters cell cycle | [43] |
| Differentiation | WNT/β-catenin | E-cadherin/ cyclin D and c-Myc | Promotes cell differentiation | [65,66] |
| Proliferation | Cell death pathways | Ceramide kinase/ P15, P16, P21 and P27, ErbB2, Ki67, Cyclin D1, ceramide kinase, miR-125b, BAK-1, miR-1204 | Anti-proliferative action | [48,49,50,67,68,69] |
| Apoptosis | Apoptotic pathways | Anti-apoptotic proteins/ BCL-2, RAS, MEK, ERK1/2, Clusterin/MEG3, p53 | Apoptosis induction | [46,51,52,70] |
| Angiogenesis | NF-kB, EMT | Interleukin-8, HIF-1/ HIF-1 α, NF-kB, IL-8, itgb3 | Inhibition of angiogenesis | [54,71,72] |
| Metastasis and invasion | Estrogen pathway | Aromatase enzyme/cyclooxygenase 2 COX-2, Prostaglandins, 15-hydroxy prostaglandins dehydrogenase | Prevents metastasis and invasion | [21,73] |
| Autophagy | ATG7 and Beclin-1 dependent pathway | Ca2+/calmodulin-dependent protein kinase kinase β and mTOR/ Beclin-1, AMPK, mTOR, MAP1LC38 (LC38), ATG16L1, BCL-2 | Induction of autophagy | [61,62,63,64,74,75] |
| Cell Lines | Model Type | Effect of VD on Cell Lines | Subtype | References |
|---|---|---|---|---|
| MCF-7 | Human | VD increased the sub-G0/G1 cell population and reduced S and G2/M phases, indicating dose-dependent growth inhibition. | ER+ | [44,45] |
| MCF-7, MDA-MB-231 | Human | VD significantly reduced the expression of the proliferation marker Ki-67. | ER+, TNBC | [46] |
| MCF-7, MDA-MB-231 | Human | Inecalcitol combined with palbociclib significantly reduced tumor growth in ER+ breast cancer while having no effect on MDA-MB-231 in vivo. | ER+, TNBC | [47] |
| MCF-7, MDA-MB-231 | Human | VD targets anti-apoptotic pathways, including inhibition of the RAS/MEK/ERK signaling pathway. | ER+, TNBC | [18] |
| MCF-7, MDA-MB-231 | Human | VD suppresses metastasis by upregulating E-cadherin and downregulating mesenchymal markers P-cadherin and N-cadherin. | ER+, TNBC | [60] |
| MCF-10A, MCF-7, ZR-75-1, MDA-MB-453, MDA-MB-231 | Human | VD activates VDR to regulate autophagy transcriptionally in breast cancer cells, promoting an autophagic signature linked to better prognosis. | ER+, ER+ PR+, ER-PR-AR+, TNBC | [61] |
| MCF-7 | Human | VD induces autophagy and subsequent autophagy-dependent cell death in MCF-7 cells via increased cytosolic Ca2+ levels | ER+ | [62] |
| MCF-7, MDA-MB-231 | Human | VD may modulate CAF phenotype and their interaction with breast cancer cells | ER+, TNBC | [102] |
| MCF-7, BT-20, NPM-21T | Human | VD metabolite calcitriol inhibited cancer cell proliferation promoted by CAFs. | ER+, TNBC | [98] |
| MDA-MB-231 | Human | VD-treated adipocytes reduced MDA-MB-231 cell migration, suggesting secretome modulation, reduced the secretion of IGF-1 and proinflammatory cytokines. | TNBC | [115] |
| MCF-7 | Human | VD reduced cancer stemness and enhanced tamoxifen sensitivity by suppressing Wnt/β-catenin signalling. | ER+ | [130] |
| MCF-7 | Human | In Th17–MCF-7 co-cultures, vitamin D reversed the Th17-induced proliferation, migration, and invasion of MCF-7 cells | ER+ | [133] |
| MCF-7 and MDA-MB-231 | Human | VD enhances NK cell–mediated cytotoxicity in MCF-7 and MDA-MB-231 cells by downregulating miR-302c and miR-520c. | ER+, TNBC | [151] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanwal, B.; Shah, S.S.; Shaheen, F.; Shiferaw, M.S.; Maurya, D.; Li, Y.; Pounraj, S.; Kovacevic, Z. The Effects of Vitamin D on the Breast Cancer Tumor Microenvironment. Cancers 2025, 17, 3751. https://doi.org/10.3390/cancers17233751
Kanwal B, Shah SS, Shaheen F, Shiferaw MS, Maurya D, Li Y, Pounraj S, Kovacevic Z. The Effects of Vitamin D on the Breast Cancer Tumor Microenvironment. Cancers. 2025; 17(23):3751. https://doi.org/10.3390/cancers17233751
Chicago/Turabian StyleKanwal, Balquees, Syeda Saba Shah, Farzana Shaheen, Mekonnen Sisay Shiferaw, Deepanshu Maurya, Yujie Li, Saranya Pounraj, and Zaklina Kovacevic. 2025. "The Effects of Vitamin D on the Breast Cancer Tumor Microenvironment" Cancers 17, no. 23: 3751. https://doi.org/10.3390/cancers17233751
APA StyleKanwal, B., Shah, S. S., Shaheen, F., Shiferaw, M. S., Maurya, D., Li, Y., Pounraj, S., & Kovacevic, Z. (2025). The Effects of Vitamin D on the Breast Cancer Tumor Microenvironment. Cancers, 17(23), 3751. https://doi.org/10.3390/cancers17233751

