Update on Systemic Therapies for Metastatic/Unresectable Pheochromocytomas and Paragangliomas and Future Directions
Simple Summary
Abstract
1. Introduction
2. Definition of Pheochromocytoma and Paraganglioma (PPGL)
3. Genetic Risk Factors
4. Local Therapeutic Approaches
4.1. Surgery
4.2. Liver-Directed Therapies
5. Current Systemic Therapies for PPGL
5.1. Somatostatin Analogs
5.2. Peptide Receptor Radionuclide Therapy PRRT
5.3. Radioligand Therapy (MIBG)
5.4. Tyrosine Kinase Inhibitors
| Drug | Dose | Target | Patient Population Studied | Efficacy | Side Effects |
|---|---|---|---|---|---|
| Sunitinib [61] | 37.5 mg qd (FIRSTMAPPP), 50 mg qd also used. | VEGFR1–3, PDGFRα/β, KIT, FLT3, RET | Progressive/metastatic PPGLs (sporadic and germline) | FIRSTMAPPP (phase II RCT): 12 months PFS 36% vs. 19% (sunitinib vs. placebo). SUTNET (phase II, non-randomized): median PFS 14.1 months. | HTN, fatigue/asthenia, diarrhea. Grade ≥3 in FIRSTMAPPP: asthenia 18%, HTN 13%. |
| Cabozantinib [65] | 60 mg qd. | VEGFR2, MET, AXL, RET (multi-target) | Unresectable, progressive metastatic PPGL | NATALIE (phase II, single-arm): ORR 25%; median PFS 16.6 months; median OS 24.9 months. | HTN, hand-foot syndrome, dysgeusia, fatigue. |
| Axitinib [64] | 5 mg bid. | VEGFR1–3 (selective) | Progressive PPGL | Phase II (prelim.): PR 3/9, SD 5/9 (DCR ~89%). | HTN, fatigue; mucositis; Diarrhea. |
5.5. Chemotherapy (See Table 4)
5.5.1. Cyclophosphamide–Vincristine–Dacarbazine (CVD) Regimen
| Drug/Regimen | Dose | Mechanism/Target | Study Group | ORR (in %), PFS (in Months), OS (in Months) | Side Effects |
|---|---|---|---|---|---|
| CVD (cyclophosphamide–vincristine–dacarbazine) | Cyclophosphamide 750 mg/m2 D1; vincristine 1.4 mg/m2 (max 2 mg) D1; dacarbazine 600 mg/m2 D1–2; q21–28 days (Averbuch protocol). | Cytotoxic combo: alkylator (cyclophosphamide), vinca (vincristine), alkylator (dacarbazine). | Metastatic/unresectable PPGL. | Small series show ORR 55–57%; meta-analysis (4 studies) CR 4%/PR 37%/SD 14%; 1 year PFS 45% in one cohort; OS inconsistently reported [68,69,70,71] | Mostly grade 1–2 myelosuppression, neuropathy, GI upset; rare hypertensive crises reported (optimize α/β-blockade). |
| Temozolomide (TMZ) | 150–200 mg/m2 PO daily D1–5 q28 days (monotherapy); in Kulke trial: TMZ 150 mg/m2 + thalidomide 100 mg daily. | Oral alkylating agent; activity linked to MGMT promoter hypermethylation (frequent in SDHB PPGL). | Metastatic PPGLs (retrospective series); mixed NET phase II included small PCC cohort. | Across PPGL series: PR 33–40%; median PFS 13.3 months–~26 months; 3 years OS 58% in one cohort. (NET phase II overall ORR 25%, median response 13.5 mo; PCC subset included) [72 73] | Generally well tolerated; lymphopenia/myelosuppression, fatigue, nausea. |
5.5.2. Temozolomide
5.6. Immunotherapy in Advanced PPGL
6. Novel Targeted Therapies: HIF-2α Inhibition and Other Strategies
7. Enhanced Treatment Sequencing and Future Directions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 131I | Iodine-131 |
| 177Lu | Lutetium-177 |
| AE(s) | Adverse event(s) |
| AXL | AXL receptor tyrosine kinase |
| bid | Twice daily |
| CVD | Cyclophosphamide–Vincristine–Dacarbazine |
| D1, D1–5 | Day 1; Days 1 through 5 |
| DOTATATE | DOTA-Tyr3-octreotate (Lu-177 DOTATATE) |
| FLR/FLT3 | Fms-like tyrosine kinase 3 (FLT3) |
| GI | Gastrointestinal |
| GEP-NET | Gastroenteropancreatic neuroendocrine tumor |
| HFS | Hand-foot syndrome |
| HIF-2α | Hypoxia-inducible factor 2 alpha |
| HR | Hazard ratio |
| HTN | Hypertension |
| IM | Intramuscular |
| IRB | Institutional Review Board |
| KIT | KIT proto-oncogene receptor tyrosine kinase (CD117) |
| LAR | Long-acting release (e.g., octreotide LAR) |
| mg/m2 | Milligrams per square meter |
| MGMT | O6-methylguanine-DNA methyltransferase |
| MIBG | Meta-iodobenzylguanidine |
| mo | Months |
| MET | MET proto-oncogene receptor tyrosine kinase |
| NET | Neuroendocrine tumor |
| NIH | National Institutes of Health |
| ORR | Objective response rate |
| OS | Overall survival |
| PDGFR | Platelet-derived growth factor receptor |
| PFS | Progression-free survival |
| PO | By mouth (per os) |
| PPGL | Pheochromocytoma and Paraganglioma |
| PR | Partial response |
| PRRT | Peptide receptor radionuclide therapy |
| qd | Once daily |
| q21–28d/q28d | Every 21–28 days/every 28 days |
| RET | RET proto-oncogene receptor tyrosine kinase |
| SC | Subcutaneous |
| SD | Stable disease |
| SDHB | Succinate dehydrogenase complex iron sulfur subunit B |
| SI-NET | Small-intestinal neuroendocrine tumor |
| SSTR | Somatostatin receptor |
| SSA | Somatostatin analog |
| TKI | Tyrosine kinase inhibitor |
| TMZ | Temozolomide |
| TTP | Time to progression |
| VEGFR | Vascular endothelial growth factor receptor |
| α/β-blockade | Alpha/Beta-adrenergic blockade |
References
- Al Subhi, A.R.; Boyle, V.; Elston, M.S. Systematic Review: Incidence of Pheochromocytoma and Paraganglioma over 70 Years. J. Endocr. Soc. 2022, 6, bvac105. [Google Scholar] [CrossRef]
- Neumann, H.P.H.; Young, W.F.; Eng, C. Pheochromocytoma and Paraganglioma. N. Engl. J. Med. 2019, 381, 552–565. [Google Scholar] [CrossRef] [PubMed]
- Lenders, J.W.M.; Duh, Q.-Y.; Eisenhofer, G.; Gimenez-Roqueplo, A.-P.; Grebe, S.K.G.; Murad, M.H.; Naruse, M.; Pacak, K.; Young, W.F., Jr. Pheochromocytoma and Paraganglioma: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2014, 99, 1915–1942. [Google Scholar] [CrossRef] [PubMed]
- Casey, R.T.; Hendriks, E.; Deal, C.; Waguespack, S.G.; Wiegering, V.; Redlich, A.; Akker, S.; Prasad, R.; Fassnacht, M.; Clifton-Bligh, R.; et al. International consensus statement on the diagnosis and management of phaeochromocytoma and paraganglioma in children and adolescents. Nat. Rev. Endocrinol. 2024, 20, 729–748. [Google Scholar] [CrossRef] [PubMed]
- Horton, C.; LaDuca, H.; Deckman, A.; Durda, K.; Jackson, M.; Richardson, M.E.; Tian, Y.; Yussuf, A.; Jasperson, K.; Else, T. Universal Germline Panel Testing for Individuals With Pheochromocytoma and Paraganglioma Produces High Diagnostic Yield. J. Clin. Endocrinol. Metab. 2022, 107, e1917–e1923. [Google Scholar] [CrossRef]
- Sukrithan, V.; Perez, K.; Pandit-Taskar, N.; Jimenez, C. Management of metastatic pheochromocytomas and paragangliomas: When and what. Curr. Probl. Cancer 2024, 51, 101116. [Google Scholar] [CrossRef]
- Fishbein, L.; Del Rivero, J.; Else, T.; Howe, J.R.; Asa, S.L.; Cohen, D.L.; Dahia, P.L.M.; Fraker, D.L.; Goodman, K.A.; Hope, T.A.; et al. The North American Neuroendocrine Tumor Society Consensus Guidelines for Surveillance and Management of Metastatic and/or Unresectable Pheochromocytoma and Paraganglioma. Pancreas 2021, 50, 469–493. [Google Scholar] [CrossRef]
- Wang, K.; Crona, J.; Beuschlein, F.; Grossman, A.B.; Pacak, K.; Nölting, S. Targeted Therapies in Pheochromocytoma and Paraganglioma. J. Clin. Endocrinol. Metab. 2022, 107, 2963–2972. [Google Scholar] [CrossRef]
- Pacak, K.; Wimalawansa, S.J. Pheochromocytoma and paraganglioma. Endocr. Pract. 2015, 21, 406–412. [Google Scholar] [CrossRef]
- Mete, O.; Asa, S.L.; Gill, A.J.; Kimura, N.; de Krijger, R.R.; Tischler, A. Overview of the 2022 WHO Classification of Paragangliomas and Pheochromocytomas. Endocr. Pathol. 2022, 33, 90–114. [Google Scholar] [CrossRef]
- Juhlin, C.C. Challenges in Paragangliomas and Pheochromocytomas: From Histology to Molecular Immunohistochemistry. Endocr. Pathol. 2021, 32, 228–244. [Google Scholar] [CrossRef]
- Amar, L.; Pacak, K.; Steichen, O.; Akker, S.A.; Aylwin, S.J.B.; Baudin, E.; Buffet, A.; Burnichon, N.; Clifton-Bligh, R.J.; Dahia, P.L.M.; et al. International consensus on initial screening and follow-up of asymptomatic SDHx mutation carriers. Nat. Rev. Endocrinol. 2021, 17, 435–444. [Google Scholar] [CrossRef]
- Calsina, B.; Piñeiro-Yáñez, E.; Martínez-Montes, Á.M.; Caleiras, E.; Fernández-Sanromán, Á.; Monteagudo, M.; Torres-Pérez, R.; Fustero-Torre, C.; Pulgarín-Alfaro, M.; Gil, E.; et al. Genomic and immune landscape Of metastatic pheochromocytoma and paraganglioma. Nat. Commun. 2023, 14, 1122. [Google Scholar] [CrossRef] [PubMed]
- Fishbein, L.; Leshchiner, I.; Walter, V.; Danilova, L.; Robertson, A.G.; Johnson, A.R.; Lichtenberg, T.M.; Murray, B.A.; Ghayee, H.K.; Else, T.; et al. Comprehensive molecular characterization of pheochromocytoma and paraganglioma. Cancer Cell 2017, 31, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Calsina, B.; Currás-Freixes, M.; Buffet, A.; Pons, T.; Contreras, L.; Letón, R.; Comino-Méndez, I.; Remacha, L.; Calatayud, M.; Obispo, B.; et al. Role of MDH2 pathogenic variant in pheochromocytoma and paraganglioma patients. Genet. Med. 2018, 20, 1652–1662. [Google Scholar] [CrossRef]
- de Bresser, C.J.M.; de Krijger, R.R. The Molecular Classification of Pheochromocytomas and Paragangliomas: Discovering the Genomic and Immune Landscape of Metastatic Disease. Endocr. Pathol. 2024, 35, 279–292. [Google Scholar] [CrossRef]
- Kumar, S.; Lila, A.R.; Memon, S.S.; Sarathi, V.; Patil, V.A.; Menon, S.; Mittal, N.; Prakash, G.; Malhotra, G.; Shah, N.S.; et al. Metastatic cluster 2-related pheochromocytoma/paraganglioma: A single-center experience and systematic review. Endocr. Connect. 2021, 10, 1463–1476. [Google Scholar] [CrossRef]
- Nölting, S.; Bechmann, N.; Taieb, D.; Beuschlein, F.; Fassnacht, M.; Kroiss, M.; Eisenhofer, G.; Grossman, A.; Pacak, K. Personalized Management of Pheochromocytoma and Paraganglioma. Endocr. Rev. 2022, 43, 199–239. [Google Scholar] [CrossRef]
- Aygun, N.; Uludag, M. Pheochromocytoma and Paraganglioma: From Treatment to Follow-up. Şişli Etfal Hastan. Tip Bülteni 2020, 54, 391–398. [Google Scholar] [CrossRef]
- Roman-Gonzalez, A.; Zhou, S.; Ayala-Ramirez, M.; Shen, C.; Waguespack, S.G.; Habra, M.A.; Karam, J.A.; Perrier, N.; Wood, C.G.; Jimenez, C. Impact of Surgical Resection of the Primary Tumor on Overall Survival in Patients With Metastatic Pheochromocytoma or Sympathetic Paraganglioma. Ann. Surg. 2018, 268, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Zawadzka, K.; Tylec, P.; Małczak, P.; Major, P.; Pędziwiatr, M.; Pisarska-Adamczyk, M. Total versus partial adrenalectomy in bilateral pheochromocytoma—A systematic review and meta-analysis. Front. Endocrinol 2023, 14, 1127676. [Google Scholar] [CrossRef]
- Pinto, D.; Parameswaran, R. Adrenal insufficiency post unilateral adrenalectomy in non-cortisol secreting tumours. Gland. Surg. 2023, 12, 1328–1331. [Google Scholar] [CrossRef] [PubMed]
- Kamath, A.S.; Singh, K. Perioperative Management of Pheochromocytoma. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK589634/ (accessed on 9 September 2025).
- Fagundes, G.F.C.; Almeida, M.Q. Perioperative Management of Pheochromocytomas and Sympathetic Paragangliomas. J. Endocr. Soc. 2022, 6, bvac004. [Google Scholar] [CrossRef]
- Taïeb, D.; Nölting, S.; Perrier, N.D.; Fassnacht, M.; Carrasquillo, J.A.; Grossman, A.B.; Clifton-Bligh, R.; Wanna, G.B.; Schwam, Z.G.; Amar, L.; et al. Management of phaeochromocytoma and paraganglioma in patients with germline SDHB pathogenic variants: An international expert Consensus statement. Nat. Rev. Endocrinol. 2024, 20, 168–184. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Yang, W.; Guo, C.; Dong, C.; Shi, F.; Liang, C.; Ye, W.; Yang, W.; Guo, C.; Dong, C.; et al. The effect of MWA protocols upon morphology and IVIM parameters of hepatic ablation zones—A preliminary in vivo animal study with an MRI-compatible microwave ablation device. Diagn. Interv. Radiol. 2022, 28, 115–123. [Google Scholar] [CrossRef]
- Ceppa, E.P.; Collings, A.T.; Abdalla, M.; Onkendi, E.; Nelson, D.W.; Ozair, A.; Miraflor, E.; Rahman, F.; Whiteside, J.; Shah, M.M.; et al. SAGES/AHPBA Guidelines for the Use of Microwave and Radiofrequency Liver Ablation for the Surgical Treatment of Hepatocellular Carcinoma or Colorectal Liver Metastases less than 5 cm. Surg. Endosc. 2023, 37, 8991–9000. [Google Scholar] [CrossRef]
- Lubner, M.G.; Brace, C.L.; Ziemlewicz, T.J.; Hinshaw, J.L.; Lee, F.T. Microwave Ablation of Hepatic Malignancy. Semin. Intervent Radiol. 2013, 30, 56–66. [Google Scholar] [CrossRef]
- Kohlenberg, J.; Welch, B.; Hamidi, O.; Callstrom, M.; Morris, J.; Sprung, J.; Bancos, I.; Young, W. Efficacy and Safety of Ablative Therapy in the Treatment of Patients with Metastatic Pheochromocytoma and Paraganglioma. Cancers 2019, 11, 195. [Google Scholar] [CrossRef]
- Kariyasu, T.; Machida, H.; Nishina, Y.; Tambo, M.; Miyagawa, S.; Rakue, T.; Sumitani, Y.; Yasuda, K.; Shibahara, J.; Yokoyama, K. Emergent transcatheter arterial embolization to control critical blood pressure fluctuation associated with hypercatecholaminemic crisis in a patient with an unruptured retroperitoneal paraganglioma. Radiol. Case Rep. 2021, 16, 2065–2071. [Google Scholar] [CrossRef]
- Ichikawa, T.; Oyabu, C.; Minamida, M.; Ichijo, Y.; Hashimoto, Y.; Asano, M.; Iwase, H.; Tanaka, T.; Fukui, M. Changes in the Size of a Ruptured Pheochromocytoma after Transcatheter Arterial Embolization. Case Rep. Med. 2021, 2021, 5568978. [Google Scholar] [CrossRef]
- Jimenez, C.; Baudrand, R.; Uslar, T.; Bulzico, D. Perspective review: Lessons from successful clinical trials and real-world studies of systemic therapy for metastatic pheochromocytomas and paragangliomas. Ther. Adv. Med. Oncol. 2024, 16, 17588359241301359. [Google Scholar] [CrossRef] [PubMed]
- Fischer, A.; Kloos, S.; Maccio, U.; Friemel, J.; Remde, H.; Fassnacht, M.; Pamporaki, C.; Eisenhofer, G.; Timmers, H.J.L.M.; Robledo, M.; et al. Metastatic Pheochromocytoma and Paraganglioma: Somatostatin Receptor 2 Expression, Genetics, and Therapeutic Responses. J. Clin. Endocrinol. Metab. 2023, 108, 2676–2685. [Google Scholar] [CrossRef] [PubMed]
- Leijon, H.; Remes, S.; Hagström, J.; Louhimo, J.; Mäenpää, H.; Schalin-Jäntti, C.; Miettinen, M.; Haglund, C.; Arola, J. Variable somatostatin receptor subtype expression in 151 primary pheochromocytomas and paragangliomas. Hum. Pathol. 2019, 86, 66–75. [Google Scholar] [CrossRef]
- Gomes-Porras, M.; Cárdenas-Salas, J.; Álvarez-Escolá, C. Somatostatin Analogs in Clinical Practice: A Review. Int. J. Mol. Sci. 2020, 21, 1682. [Google Scholar] [CrossRef]
- Massironi, S.; Albertelli, M.; Hasballa, I.; Paravani, P.; Ferone, D.; Faggiano, A.; Danese, S. “Cold” Somatostatin Analogs in Neuroendocrine Neoplasms: Decoding Mechanisms, Overcoming Resistance, and Shaping the Future of Therapy. Cells 2025, 14, 245. [Google Scholar] [CrossRef]
- Rinke, A.; Müller, H.-H.; Schade-Brittinger, C.; Klose, K.-J.; Barth, P.; Wied, M.; Mayer, C.; Aminossadati, B.; Pape, U.-F.; Bläker, M.; et al. Placebo-Controlled, Double-Blind, Prospective, Randomized Study on the Effect of Octreotide LAR in the Control of Tumor Growth in Patients With Metastatic Neuroendocrine Midgut Tumors: A Report From the PROMID Study Group. JCO 2009, 27, 4656–4663. [Google Scholar] [CrossRef]
- Caplin, M.E.; Pavel, M.; Ćwikła, J.B.; Phan, A.T.; Raderer, M.; Sedláčková, E.; Cadiot, G.; Wolin, E.M.; Capdevila, J.; Wall, L.; et al. Lanreotide in Metastatic Enteropancreatic Neuroendocrine Tumors. N. Engl. J. Med. 2014, 371, 224–233. [Google Scholar] [CrossRef]
- Fojo, A. Exploratory Phase II Study of LAnreotide in Metastatic Pheochromocytoma/PARAganglioma (LAMPARA). clinicaltrials.gov, Clinical Trial Registration NCT03946527. February 2025. Available online: https://clinicaltrials.gov/study/NCT03946527 (accessed on 9 September 2025).
- Wolin, E.M.; Jarzab, B.; Eriksson, B.; Walter, T.; Toumpanakis, C.; Morse, M.A.; Tomassetti, P.; Weber, M.M.; Fogelman, D.R.; Ramage, J.; et al. Phase III study of pasireotide long-acting release in patients with metastatic neuroendocrine tumors and carcinoid symptoms refractory to available somatostatin analogues. Drug Des. Dev. Ther. 2015, 9, 5075–5086. [Google Scholar] [CrossRef]
- Bolanowski, M.; Kałużny, M.; Witek, P.; Jawiarczyk-Przybyłowska, A. Pasireotide—A novel somatostatin receptor ligand after 20 years of use. Rev. Endocr. Metab. Disord. 2022, 23, 601–620. [Google Scholar] [CrossRef] [PubMed]
- Vyakaranam, A.R.; Crona, J.; Norlén, O.; Granberg, D.; Garske-Román, U.; Sandström, M.; Fröss-Baron, K.; Thiis-Evensen, E.; Hellman, P.; Sundin, A. Favorable Outcome in Patients with Pheochromocytoma and Paraganglioma Treated with 177Lu-DOTATATE. Cancers 2019, 11, 909. [Google Scholar] [CrossRef]
- Severi, S.; Bongiovanni, A.; Ferrara, M.; Nicolini, S.; Di Mauro, F.; Sansovini, M.; Lolli, I.; Tardelli, E.; Cittanti, C.; Di Iorio, V.; et al. Peptide receptor radionuclide therapy in patients with metastatic progressive pheochromocytoma and paraganglioma: Long-term toxicity, efficacy and prognostic biomarker data of phase II clinical trials. ESMO Open 2021, 6, 100171. [Google Scholar] [CrossRef] [PubMed]
- Kornerup, L.S.; Andreassen, M.; Knigge, U.; Arveschoug, A.K.; Poulsen, P.L.; Kjær, A.; Oturai, P.S.; Grønbæk, H.; Dam, G. Effects of Peptide Receptor Radiotherapy in Patients with Advanced Paraganglioma and Pheochromocytoma: A Nation-Wide Cohort Study. Cancers 2024, 16, 1349. [Google Scholar] [CrossRef]
- Gubbi, S.; Al-Jundi, M.; Auh, S.; Jha, A.; Zou, J.; Shamis, I.; Meuter, L.; Knue, M.; Turkbey, B.; Lindenberg, L.; et al. Early short-term effects on catecholamine levels and pituitary function in patients with pheochromocytoma or paraganglioma treated with [177Lu]Lu-DOTA-TATE therapy. Front. Endocrinol. 2023, 14, 1275813. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Ferri, V.; Moradi, F.; Nguyen, J.; Franc, B.L.; Iagaru, A.; Aparici, M. Peptide Receptor Radionuclide Therapy (PRRT) in Advanced Pheochromocytoma and Paraganglioma From a Single Institution Experience. 2021. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7927907/ (accessed on 17 November 2025).
- Lin, F.I.; del Rivero, J.; Carrasquillo, J.A.; Jha, A.; Zou, J.; Shamis, I.; Talvacchio, S.; Turkbey, B.; Huang, E.P.; Shih, J.; et al. Phase II Study of 177Lu-DOTATATE for Progressive Metastatic Pheochromocytomas and Paragangliomas: Interim Analysis of Efficacy, Safety, and Biomarkers. J. Clin. Oncol. 2025, 43, 3102–3112. [Google Scholar] [CrossRef]
- Tsang, E.S.; Funk, G.; Leung, J.; Kalish, G.; Kennecke, H.F. Supportive Management of Patients with Advanced Pheochromocytomas and Paragangliomas Receiving PRRT. Curr. Oncol. 2021, 28, 2823–2829. [Google Scholar] [CrossRef]
- Dillon, J.S.; Bushnell, D.; Laux, D.E. High-specific-activity 131iodine-metaiodobenzylguanidine for therapy of unresectable pheochromocytoma and paraganglioma. Future Oncol. 2021, 17, 1131–1141. [Google Scholar] [CrossRef]
- Pryma, D.A.; Chin, B.B.; Noto, R.B.; Dillon, J.S.; Perkins, S.; Solnes, L.; Kostakoglu, L.; Serafini, A.N.; Pampaloni, M.H.; Jensen, J.; et al. Efficacy and Safety of High-Specific-Activity 131I-MIBG Therapy in Patients with Advanced Pheochromocytoma or Paraganglioma. J. Nucl. Med. 2019, 60, 623–630. [Google Scholar] [CrossRef]
- Jimenez, C.; Chin, B.B.; Noto, R.B.; Dillon, J.S.; Solnes, L.; Stambler, N.; DiPippo, V.A.; Pryma, D.A. Biomarker response to high-specific-activity I-131 meta-iodobenzylguanidine in pheochromocytoma/paraganglioma. Endocr. Relat. Cancer 2022, 30, e220236. [Google Scholar] [CrossRef]
- Center for Drug Evaluation and Research. FDA Approves Iobenguane I 131 for Rare Adrenal Gland Tumors. FDA, August 2024. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-iobenguane-i-131-rare-adrenal-gland-tumors (accessed on 9 September 2025).
- Carrasquillo, J.A.; Pandit-Taskar, N.; Chen, C.C. I-131 Metaiodobenzylguanidine Therapy of Pheochromocytoma and Paraganglioma. Semin. Nucl. Med. 2016, 46, 203–214. [Google Scholar] [CrossRef]
- Jha, A.; Taïeb, D.; Carrasquillo, J.A.; Pryma, D.A.; Patel, M.; Millo, C.; de Herder, W.W.; Del Rivero, J.; Crona, J.; Shulkin, B.L.; et al. High-Specific-Activity-131I-MIBG versus 177Lu-DOTATATE Targeted Radionuclide Therapy for Metastatic Pheochromocytoma and Paraganglioma. Clin. Cancer Res. 2021, 27, 2989–2995. [Google Scholar] [CrossRef]
- Prado-Wohlwend, S.; del Olmo-García, M.I.; Bello-Arques, P.; Merino-Torres, J.F. [177Lu]Lu-DOTA-TATE and [131I]MIBG Phenotypic Imaging-Based Therapy in Metastatic/Inoperable Pheochromocytomas and Paragangliomas: Comparative Results in a Single Center. Front. Endocrinol. 2022, 13, 778322. [Google Scholar] [CrossRef]
- Zandee, W.T.; Feelders, R.A.; Smit Duijzentkunst, D.A.; Hofland, J.; Metselaar, R.M.; Oldenburg, R.A.; van Linge, A.; Kam, B.L.R.; Teunissen, J.J.M.; Korpershoek, E.; et al. Treatment of inoperable or metastatic paragangliomas and pheochromocytomas with peptide receptor radionuclide therapy using 177Lu-DOTATATE. Eur. J. Endocrinol. 2019, 181, 45–53. [Google Scholar] [CrossRef]
- Carrasquillo, J.A.; Chen, C.C.; Jha, A.; Pacak, K.; Pryma, D.A.; Lin, F.I. Systemic Radiopharmaceutical Therapy of Pheochromocytoma and Paraganglioma. J. Nucl. Med. 2021, 62, 1192–1199. [Google Scholar] [CrossRef]
- Ilanchezhian, M.; Jha, A.; Pacak, K.; Del Rivero, J. Emerging Treatments for Advanced/Metastatic Pheochromocytoma and Paraganglioma. Curr. Treat. Options Oncol. 2020, 21, 85. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Cui, Y.; Zhang, D.; Tong, A. Efficacy and Safety of Tyrosine Kinase Inhibitors in Patients with Metastatic Pheochromocytomas/Paragangliomas. J. Clin. Endocrinol. Metab. 2023, 108, 755–766. [Google Scholar] [CrossRef] [PubMed]
- Raymond, E.; Dahan, L.; Raoul, J.-L.; Bang, Y.-J.; Borbath, I.; Lombard-Bohas, C.; Valle, J.; Metrakos, P.; Smith, D.; Vinik, A.; et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N. Engl. J. Med. 2011, 364, 501–513. [Google Scholar] [CrossRef] [PubMed]
- Baudin, E.; Goichot, B.; Berruti, A.; Hadoux, J.; Moalla, S.; Laboureau, S.; Nölting, S.; de la Fouchardière, C.; Kienitz, T.; Deutschbein, T.; et al. Sunitinib for metastatic progressive phaeochromocytomas and paragangliomas: Results from FIRSTMAPPP, an academic, multicentre, international, randomised, placebo-controlled, double-blind, phase 2 trial. Lancet 2024, 403, 1061–1070. [Google Scholar] [CrossRef]
- Ayala-Ramirez, M.; Chougnet, C.N.; Habra, M.A.; Palmer, J.L.; Leboulleux, S.; Cabanillas, M.E.; Caramella, C.; Anderson, P.; Al Ghuzlan, A.; Waguespack, S.G.; et al. Treatment with sunitinib for patients with progressive metastatic pheochromocytomas and sympathetic paragangliomas. J. Clin. Endocrinol. Metab. 2012, 97, 4040–4050. [Google Scholar] [CrossRef]
- Deschler-Baier, B.; Konda, B.; Massarelli, E.; Hu, M.I.; Wirth, L.J.; Xu, X.; Wright, J.; Clifton-Bligh, R.J. Clinical Activity of Selpercatinib in RET-mutant Pheochromocytoma. J. Clin. Endocrinol. Metab. 2024, 110, e600–e606. [Google Scholar] [CrossRef]
- Burotto Pichun, M.E.; Edgerly, M.; Velarde, M.; Bates, S.E.; Daerr, R.; Adams, K.; Pacak, K.; Fojo, T. Phase II clinical trial of axitinib in metastatic pheochromocytomas and paraganlgiomas (P/PG): Preliminary results. J. Clin. Oncol. 2015, 33, 457. [Google Scholar] [CrossRef]
- Jimenez, C.; Habra, M.A.; Campbell, M.T.; Tamsen, G.; Cruz-Goldberg, D.; Long, J.; Bassett, R.; Dantzer, R.; Balderrama-Brondani, V.; Varghese, J.; et al. Cabozantinib in patients with unresectable and progressive metastatic phaeochromocytoma or paraganglioma (the Natalie Trial): A single-arm, phase 2 trial. Lancet Oncol. 2024, 25, 658–667. [Google Scholar] [CrossRef]
- Tian, R.; Yao, X.; Song, J.; Wang, J.; Fu, J.; Shi, L.; Yu, F.; Zhang, P.; Zhang, C.; Ni, Y.; et al. Anlotinib for Metastatic Progressed Pheochromocytoma and Paraganglioma: A Retrospective Study of Real-World Data. J. Endocr. Soc. 2024, 8, bvae061. [Google Scholar] [CrossRef]
- Keiser, H.R.; Goldstein, D.S.; Wade, J.L.; Douglas, F.L.; Averbuch, S.D. Treatment of malignant pheochromocytoma with combination chemotherapy. Hypertension 1985, 7, I18–I24. [Google Scholar] [CrossRef]
- Averbuch, S.D.; Steakley, C.S.; Young, R.C.; Gelmann, E.P.; Goldstein, D.S.; Stull, R.; Keiser, H.R. Malignant pheochromocytoma: Effective treatment with a combination of cyclophosphamide, vincristine, and dacarbazine. Ann. Intern. Med. 1988, 109, 267–273. [Google Scholar] [CrossRef]
- Huang, H.; Abraham, J.; Hung, E.; Averbuch, S.; Merino, M.; Steinberg, S.M.; Pacak, K.; Fojo, T. Treatment of malignant pheochromocytoma/paraganglioma with cyclophosphamide, vincristine, and dacarbazine: Recommendation from a 22-year follow-up of 18 patients. Cancer 2008, 113, 2020–2028. [Google Scholar] [CrossRef] [PubMed]
- Niemeijer, N.D.; Alblas, G.; van Hulsteijn, L.T.; Dekkers, O.M.; Corssmit, E.P.M. Chemotherapy with cyclophosphamide, vincristine and dacarbazine for malignant paraganglioma and pheochromocytoma: Systematic review and meta-analysis. Clin. Endocrinol. 2014, 81, 642–651. [Google Scholar] [CrossRef]
- Asai, S.; Katabami, T.; Tsuiki, M.; Tanaka, Y.; Naruse, M. Controlling tumor progression with cyclophosphamide, vincristine, and dacarbazine treatment improves survival in patients with metastatic and unresectable malignant pheochromocytomas/paragangliomas. Horm. Cancer 2017, 8, 108–118. [Google Scholar] [CrossRef]
- Kulke, M.H.; Stuart, K.; Enzinger, P.C.; Ryan, D.P.; Clark, J.W.; Muzikansky, A.; Vincitore, M.; Michelini, A.; Fuchs, C.S. Phase II study of temozolomide and thalidomide in patients with metastatic neuroendocrine tumors. J. Clin. Oncol. 2006, 24, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Hadoux, J.; Favier, J.; Scoazec, J.-Y.; Leboulleux, S.; Al Ghuzlan, A.; Caramella, C.; Déandreis, D.; Borget, I.; Loriot, C.; Chougnet, C.; et al. SDHB mutations are associated with response to temozolomide in patients with metastatic pheochromocytoma or paraganglioma. Int. J. Cancer 2014, 135, 2711–2720. [Google Scholar] [CrossRef] [PubMed]
- Perez, K.; Jacene, H.; Hornick, J.L.; Ma, C.; Vaz, N.; Brais, L.K.; Alexander, H.; Baddoo, W.; Astone, K.; Esplin, E.D.; et al. SDHx mutations and temozolomide in malignant pheochromocytoma and paraganglioma. Endocr.-Relat. Cancer 2022, 29, 533–544. [Google Scholar] [CrossRef]
- Urquhart, C.; Fleming, B.; Harper, I.; Aloj, L.; Armstrong, R.; Hook, L.; Long, A.-M.; Jackson, C.; Gallagher, F.A.; McLean, M.A.; et al. The use of temozolomide in paediatric metastatic phaeochromocytoma/paraganglioma: A case report and literature review. Front. Endocrinol. 2022, 13, 1066208. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, C.; Subbiah, V.; Stephen, B.; Ma, J.; Milton, D.; Xu, M.; Zarifa, A.; Akhmedzhanov, F.O.; Tsimberidou, A.; Habra, M.A.; et al. Phase II Clinical Trial of Pembrolizumab in Patients with Progressive Metastatic Pheochromocytomas and Paragangliomas. Cancers 2020, 12, 2307. [Google Scholar] [CrossRef]
- National Cancer Institute (NCI). DART: Dual Anti-CTLA-4 and Anti-PD-1 Blockade in Rare Tumors. clinicaltrials.gov, Clinical trial registration NCT02834013, September 2025. Available online: https://clinicaltrials.gov/study/NCT02834013 (accessed on 9 September 2025).
- Economides, M.P.; Shah, A.Y.; Jimenez, C.; Habra, M.A.; Desai, M.; Campbell, M.T. A Durable Response With the Combination of Nivolumab and Cabozantinib in a Patient With Metastatic Paraganglioma: A Case Report and Review of the Current Literature. Front. Endocrinol. 2020, 11, 594264. [Google Scholar] [CrossRef]
- Hadrava Vanova, K.; Uher, O.; Meuter, L.; Ghosal, S.; Talvacchio, S.; Patel, M.; Neuzil, J.; Pacak, K. PD-L1 expression and association with genetic background in pheochromocytoma and paraganglioma. Front. Oncol. 2022, 12, 1045517. [Google Scholar] [CrossRef]
- Yu, A.; Xu, X.; Pang, Y.; Li, M.; Luo, J.; Wang, J.; Liu, L. PD-L1 Expression is Linked to Tumor-Infiltrating T-Cell Exhaustion and Adverse Pathological Behavior in Pheochromocytoma/Paraganglioma. Lab. Investig. 2023, 103, 100210. [Google Scholar] [CrossRef]
- Celada, L.; Cubiella, T.; San-Juan-Guardado, J.; Gutiérrez, G.; Beiguela, B.; Rodriguez, R.; Poch, M.; Astudillo, A.; Grijalba, A.; Sánchez-Sobrino, P.; et al. Pseudohypoxia in paraganglioma and pheochromocytoma is associated with an immunosuppressive phenotype. J. Pathol. 2023, 259, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Center for Drug Evaluation and Research. FDA Approves Belzutifan for Pheochromocytoma or Paraganglioma. FDA, May 2025. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-belzutifan-pheochromocytoma-or-paraganglioma (accessed on 9 September 2025).
- Jimenez, C.; Andreassen, M.; Durand, A.; Moog, S.; Hendifar, A.; Welin, S.; Spada, F.; Sharma, R.; Wolin, E.; Ruether, J.; et al. Belzutifan for Advanced Pheochromocytoma or Paraganglioma. N. Engl. J. Med. 2025, NEJMoa2504964. Available online: https://www.nejm.org/doi/abs/10.1056/NEJMoa2504964 (accessed on 17 November 2025). [CrossRef] [PubMed]
- FDA Grants Priority Review to Merck’s Application for WELIREG® (Belzutifan) for the Treatment of Patients with Advanced Pheochromocytoma and Paraganglioma (PPGL), Merck.com. Available online: https://www.merck.com/news/fda-grants-priority-review-to-mercks-application-for-welireg-belzutifan-for-the-treatment-of-patients-with-advanced-pheochromocytoma-and-paraganglioma-ppgl/ (accessed on 10 September 2025).
- Moog, S.; Salgues, B.; Braik-Djellas, Y.; Viel, T.; Balvay, D.; Autret, G.; Robidel, E.; Gimenez-Roqueplo, A.-P.; Tavitian, B.; Lussey-Lepoutre, C.; et al. Preclinical evaluation of targeted therapies in Sdhb-mutated tumors. Endocr.-Relat. Cancer 2022, 29, 375–388. [Google Scholar] [CrossRef]
- Hadrava Vanova, K.; Yang, C.; Meuter, L.; Neuzil, J.; Pacak, K. Reactive Oxygen Species: A Promising Therapeutic Target for SDHx-Mutated Pheochromocytoma and Paraganglioma. Cancers 2021, 13, 3769. [Google Scholar] [CrossRef]
- Enterome. A Phase 1/2 Trial of a Novel Therapeutic Vaccine (EO2401) in Combination with Immune Check Point Blockade, for Treatment of Patients with Locally Advanced or Metastatic Adrenocortical Carcinoma, or Malignant Pheochromocytoma/Paraganglioma. clinicaltrials.gov, Clinical Trial Registration NCT04187404, November 2024. Available online: https://clinicaltrials.gov/study/NCT04187404 (accessed on 10 September 2025).
- Baudin, E.; Grisanti, S.; Fassnacht, M.; C.W. der Houven van Oordt, M.-V.; Haak, H.; de la Fouchardiere, C.; Subbiah, V.; Jimenez, C.; Castillon, J.C.; Granberg, D.; et al. 2MO EO2401 (EO) therapeutic vaccine for patients (pts) with adrenocortical carcinoma (ACC) and malignant pheochromocytoma/paraganglioma (MPP): Phase I/II SPENCER study. Ann. Oncol. 2022, 33, S545–S546. [Google Scholar] [CrossRef]
- University College, London. A Phase I Trial of Vandetanib Combined with 131I-mIBG Radiotherapy in Patients with Neuroendocrine Tumours, Advanced Phaeochromocytoma and Paraganglioma. clinicaltrials.gov, Clinical TRIAL REGIStration NCT01941849, December 2015. Available online: https://clinicaltrials.gov/study/NCT01941849 (accessed on 10 September 2025).
- National Cancer Institute (NCI). A Prospective, Multi-Institutional Phase II Trial Evaluating Temozolomide vs. Temozolomide and Olaparib for Advanced Pheochromocytoma and Paraganglioma. clinicaltrials.gov, Clinical Trial Registration NCT04394858, June 2025. Available online: https://clinicaltrials.gov/study/NCT04394858 (accessed on 10 September 2025).
- Ambrosini, V.; Kunikowska, J.; Baudin, E.; Bodei, L.; Bouvier, C.; Capdevila, J.; Cremonesi, M.; de Herder, W.W.; Dromain, C.; Falconi, M.; et al. Consensus on Molecular Imaging and Theranostics in Neuroendocrine Neoplasms. Eur. J. Cancer 2021, 146, 56–73. [Google Scholar] [CrossRef]
- Nguyen, C.B.; Oh, E.; Bahar, P.; Vaishampayan, U.N.; Else, T.; Alva, A.S. Novel Approaches with HIF-2α Targeted Therapies in Metastatic Renal Cell Carcinoma. Cancers 2024, 16, 601. [Google Scholar] [CrossRef] [PubMed]
- Lantheus to Discontinue Production of Azedra. Available online: https://snmmi.org/Web/Web/News/Articles/Lantheus-to-Discontinue-Production-of-Azedra.aspx?utm_source=chatgpt.com (accessed on 2 November 2025).
| Cluster # | Cluster Characteristic | Common Gene Mutations |
|---|---|---|
| Cluster I | Pseudohypoxia | HIF-pathway: VHL, EPAS1 (HIF2A), EGLN1 (PHD1), EGLN2 (PHD2) TCA-cycle/SDH complex: SDHA, SDHB, SDHC, SDHD, SDHAF2, FH, MDH2, SLC25A11, DLST |
| Cluster II | Kinase Signaling | RET, NF1, TMEM127, MAX, HRAS |
| Cluster III | Wnt-Signaling | UBTF–MAML3 fusions (MAML3), CSDE1 |
| Drug | Usual Dose and Route | Primary SSTR Target(s) | Population/Key Results | PPGL-Specific Notes | Common AEs | Key Trial(s) and n |
|---|---|---|---|---|---|---|
| Octreotide LAR | 20–30 mg IM q28 days | SSTR2 > SSTR5 | Metastatic midgut NETs (PROMID): TTP 14.3 vs. 6.0 months vs. placebo; HR 0.34; SD at 6 months 66.7% vs. 37.2%. | “Cold” SSA use in mPPGL mainly for biochemical control/stabilization; antiproliferative data insufficient, guidelines cannot recommend for/against [7]. | Diarrhea, biliary sludge/cholelithiasis, hyperglycemia, bradycardia. | * PROMID (JCO 2009) n = 85; [37] |
| Lanreotide (Autogel/Depot) | 120 mg SC q28 days | SSTR2 | Nonfunctioning G1–2 GEP-NETs (CLARINET): median PFS not reached vs. 18 months; HR 0.47; 24 months PFS 65% vs. 33%. | Not FDA-approved for PPGL. Reasonable for symptom control/stabilization when SSTR-avid [7]. | Diarrhea, abdominal pain, cholelithiasis; injection-site reactions. | * CLARINET (NEJM 2014) n = 204; [38] |
| Pasireotide LAR | 40–60 mg IM q28 days (trial used 60 mg) | SSTR5 > SSTR1/3; also SSTR2 | Refractory carcinoid syndrome (NETs): symptom control similar to high-dose octreotide LAR; exploratory PFS 11.8 vs. 6.8 months, HR 0.46 (post hoc). | Not approved for NET/PPGLs (approved for acromegaly/Cushing’s). PPGL data limited to preclinical/very small series. Investigational use [7]. | Hyperglycemia (notably higher than octreotide), GI upset, cholelithiasis. | * Wolin et al. Phase III (2015) n = 110; [40] |
| Lanreotide–LAMPARA (Phase II) | 120 mg SC q28 days | SSTR2 | Advanced SSTR-positive PPGL; single-arm (~40 planned). Primary endpoint: change in tumor growth rate on-treatment vs. pre-enrollment; secondary: PFS, OS, ORR. Results pending. | First prospective PPGL trial of a cold SSA; aims to clarify antiproliferative signal in PPGLs [39]. | As per lanreotide label (above). | NCT03946527. |
| Cluster/Gene(s) | Functional Imaging: Expected Uptake and First-Line Tracer | Therapies with Strongest Signal |
|---|---|---|
| Pseudohypoxia (1A) SDHB/SDHx | Phenotype: highly FDG-avid, SSTR-positive; MIBG variable/low First-line: SSTR PET/CT | Cyclophosphamide–Vincristine–Dacarbazine (CVD);Temozolomide (SDHB/MGMT-linked sensitivity); PRRT when SSTR-avid disease; PARP + TMZ (investigational) |
| Pseudohypoxia (1B) VHL/EPAS1 | Phenotype: SSTR-positive; FDOPA avid (esp. adrenal PHEO); MIBG variable First-line: FDOPA PET/CT or SSTR PET/CT | Belzutifan (HIF-2α inhibitor); PRRT if SSTR-avid disease |
| Kinase signaling (2) RET, NF1, TMEM127, MAX, HRAS | Phenotype: SSTR-positive; FDOPA avid; MIBG variable. First-line: FDOPA PET/CT or SSTR PET/CT | TKIs (sunitinib, cabozantinib, axitinib); PRRT if SSTR-avid disease |
| Wnt/other (e.g., MAML3) | Phenotype: Variable First-line:SSTR PET/CT as pragmatic default. | Consider ICI in trials (PD-L1 subset); PRRT if SSTR-avid disease |
| MIBG avid disease (any genotype) | Phenotype: MIBG-avid First-line: 123I-MIBG SPECT/CT to document 131I-MIBG eligibility | 131I-MIBG (availability/logistics noted in text) |
| SSTR avid disease (any genotype) | Phenotype: SSTR-positive; MIBG variable/negative. First-line: SSTR PET/CT | PRRT represents a core indication for SSTR-avid disease, demonstrating genotype-agnostic utility. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghosh, I.; Benson, O.; Hernandez-Felix, J.H.; Lin, F.I.; Pacak, K.; del Rivero, J. Update on Systemic Therapies for Metastatic/Unresectable Pheochromocytomas and Paragangliomas and Future Directions. Cancers 2025, 17, 3702. https://doi.org/10.3390/cancers17223702
Ghosh I, Benson O, Hernandez-Felix JH, Lin FI, Pacak K, del Rivero J. Update on Systemic Therapies for Metastatic/Unresectable Pheochromocytomas and Paragangliomas and Future Directions. Cancers. 2025; 17(22):3702. https://doi.org/10.3390/cancers17223702
Chicago/Turabian StyleGhosh, Imani, Olivia Benson, Jorge H. Hernandez-Felix, Frank I. Lin, Karel Pacak, and Jaydira del Rivero. 2025. "Update on Systemic Therapies for Metastatic/Unresectable Pheochromocytomas and Paragangliomas and Future Directions" Cancers 17, no. 22: 3702. https://doi.org/10.3390/cancers17223702
APA StyleGhosh, I., Benson, O., Hernandez-Felix, J. H., Lin, F. I., Pacak, K., & del Rivero, J. (2025). Update on Systemic Therapies for Metastatic/Unresectable Pheochromocytomas and Paragangliomas and Future Directions. Cancers, 17(22), 3702. https://doi.org/10.3390/cancers17223702

