Current Clinical Paradigm and Therapeutic Advancements in Thymic Malignancies: A Narrative Review
Simple Summary
Abstract
1. Introduction
2. Incidence and Epidemiology
3. Histological Classification
| Subtypes | ||||
|---|---|---|---|---|
| Micronodular thymoma with lymphoid stroma | Lymphoepithelial carcinoma | Adenosquamuos carcinoma | Carcinosarcoma | Combined small cell carcinoma |
| Metaplastic thymoma | Adenocarcinoma, NOS | NUT carcinoma | Carcinoma, undifferentiated, NOS | Large cell neuroendocrine carcinoma |
| Lipofibroadenoma | Low-grade papillary adenocarcinoma | Mucoepidermoid carcinoma | Carcinoid tumor, NOS/neuroendocrine tumor, NOS | |
| Squamous cell carcinoma, NOS | Thymic carcinoma with adenoid cystic carcinoma-like features | Clear cell carcinoma | Typical carcinoid/neuroendocrine tumor, grade 1/2 | |
| Basaloid carcinoma | Adenocarcinoma, enteric type | Sarcomatoid carcinoma | Small cell carcinoma | |
4. Staging
5. Genomic Landscape
6. Current Systemic Therapy
7. HITHOC
8. Radiotherapy
9. Targeted Therapy Developments
9.1. Anti-Angiogenic Agents
9.2. KIT Inhibitors
9.3. PI3K/mTOR Inhibitors
9.4. IGF1R Inhibitors
9.5. EGFR Inhibitors
9.6. Somatostatin Analogs
9.7. Cyclin-Dependent Kinases Inhibitors
| Reference | Drug | Mechanism of Action | Key Clinical Evidence |
|---|---|---|---|
| Sato et al. [83] | Lenvatinib | Multi-target TKI (VEGFR, FGFR, KIT, PDGFR) | REMORA trial: PR 38.1%, SD 57.1%, mPFS 9.3 mo. |
| Agrafiotis et al. [85] | Regorafenib | Multi-target TKI (VEGFR1-3, PDGFRB, etc.) | Small study: SD in 85.7% (6/7 pts). |
| Proto et al. [86] | Sunitinib | Multi-target TKI (VEGFR, PDGFR, KIT) | STYLE trial: CR 3.6%, PR 17.9%, SD 67.9%. |
| Pagano et al. [89] | Sorafenib | Multi-target TKI (VEGFR, RAF, KIT, PDGFR) | 5 pts: PR in 40%, SD in 40%. |
| Buti et al. [88] | Imatinib | KIT inhibition | Responses in KIT-mutated thymic carcinoma. |
| Arunachalam et al. [90] | Everolimus | mTOR inhibition | Phase II: Thymoma—DCR 93.8%, mPFS 16.6 mo; Carcinoma—DCR 61.1%, mPFS 5.6 mo. |
| Rajan et al. [91] | Cixutumumab | IGF-1R inhibition | Phase II: Thymoma—PR 14%, majority SD; Carcinoma—no PR, high toxicity. |
| Dapergola et al. [92] | Gefitinib/Erlotinib ± Bevacizumab | EGFR inhibition | Phase II: poor efficacy in TETs. |
| Roden et al. [93]; Loehrer et al. [94] | Octreotide | Somatostatin receptor (SSTR2) binding | Responses in thymomas only; 1-year OS 86.6%. |
| Roden et al. [93] | Milciclib | Pan-CDK inhibitor | ORR < 5%, but DCR 75–83%; mPFS ~7–10 mo. |
| Dapergola et al. [92] | Palbociclib | CDK4/6 inhibitor | 48 pts: PR 12.5%, mOS 26.4 mo. |
9.8. Emerging Targeted Therapies Currently Being Evaluated in Clinical Trials
10. Novel Immunotherapy Approaches
10.1. Pembrolizumab
10.2. Nivolumab
10.3. Avelumab
10.4. Atezolizumab
10.5. KN046
11. Future Directions
12. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kelly, R.J.; Petrini, I.; Rajan, A.; Wang, Y.; Giaccone, G. Thymic malignancies: From clinical management to targeted therapies. J. Clin. Oncol. 2011, 29, 4820–4827. [Google Scholar] [CrossRef]
- Marx, A.; Chan, J.K.C.; Chalabreysse, L.; Dacic, S.; Detterbeck, F.; French, C.A.; Hornick, J.L.; Inagaki, H.; Jain, D.; Lazar, A.J.; et al. The 2021 WHO Classification of Tumors of the Thymus and Mediastinum: What Is New in Thymic Epithelial, Germ Cell, and Mesenchymal Tumors? J. Thorac. Oncol. 2022, 17, 200–213. [Google Scholar] [CrossRef]
- Bernard, C.; Frih, H.; Pasquet, F.; Kerever, S.; Jamilloux, Y.; Tronc, F.; Guibert, B.; Isaac, S.; Devouassoux, M.; Chalabreysse, L.; et al. Thymoma associated with autoimmune diseases: 85 cases and literature review. Autoimmun. Rev. 2016, 15, 82–92. [Google Scholar] [CrossRef]
- Kumar, A.; Pulle, M.V.; Asaf, B.B.; Shivnani, G.; Maheshwari, A.; Puri, H.V.; Bishnoi, S. Surgical and Oncological Outcomes in Locally Advanced Thymoma. Indian J. Surg. Oncol. 2021, 12, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Masaoka, A.; Monden, Y.; Nakahara, K.; Tanioka, T. Follow-up study of thymomas with special reference to their clinical stages. Cancer 1981, 48, 2485–2492. [Google Scholar] [CrossRef] [PubMed]
- Ohue, Y.; Matsuoka, S.; Kumeda, H.; Agatsuma, H.; Hyougotani, A.; Toishi, M.; Shiina, T.; Yoshida, K.; Shingu, K.; Fukushima, T.; et al. Development of combined thymic carcinoma and thymoma in an extrathymic lesion during long follow-up for recurrent thymoma. Mol. Clin. Oncol. 2016, 4, 139–142. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, D.; Aramini, B.; Yang, F.; Chen, X.; Wang, X.; Wu, L.; Huang, W.; Fan, J. Thymoma and Thymic Carcinoma: Surgical Resection and Multidisciplinary Treatment. Cancers 2023, 15, 1953. [Google Scholar] [CrossRef]
- Falkson, C.B.; Vella, E.T.; Ellis, P.M.; Maziak, D.E.; Ung, Y.C.; Yu, E. Surgical, Radiation, and Systemic Treatments of Patients with Thymic Epithelial Tumors: A Systematic Review. J. Thorac. Oncol. 2023, 18, 299–312. [Google Scholar] [CrossRef]
- Muto, Y.; Okuma, Y. Therapeutic options in thymomas and thymic carcinomas. Expert Rev. Anticancer Ther. 2022, 22, 401–413. [Google Scholar] [CrossRef] [PubMed]
- Engels, E.A.; Pfeiffer, R.M. Malignant thymoma in the United States: Demographic patterns in incidence and associations with subsequent malignancies. Int. J. Cancer 2003, 105, 546–551. [Google Scholar] [CrossRef]
- Gerber, T.S.; Strobl, S.; Marx, A.; Roth, W.; Porubsky, S. Epidemiology of thymomas and thymic carcinomas in the United States and Germany, 1999-2019. Front. Oncol. 2023, 13, 1308989. [Google Scholar] [CrossRef]
- Roden, A.C.; Ahmad, U.; Cardillo, G.; Girard, N.; Jain, D.; Marom, E.M.; Marx, A.; Moreira, A.L.; Nicholson, A.G.; Rajan, A.; et al. Thymic Carcinomas-A Concise Multidisciplinary Update on Recent Developments From the Thymic Carcinoma Working Group of the International Thymic Malignancy Interest Group. J. Thorac. Oncol. 2022, 17, 637–650. [Google Scholar] [CrossRef] [PubMed]
- Rosai, J.; Sobin, L.H. Histological Typing of Tumours of the Thymus; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Wychulis, A.R.; Payne, W.S.; Clagett, O.T.; Woolner, L.B. Surgical treatment of mediastinal tumors: A 40 year experience. J. Thorac. Cardiovasc. Surg. 1971, 62, 379–392. [Google Scholar] [CrossRef]
- Engels, E.A. Epidemiology of thymoma and associated malignancies. J. Thorac. Oncol. 2010, 5, S260–S265. [Google Scholar] [CrossRef] [PubMed]
- Gadalla, S.M.; Rajan, A.; Pfeiffer, R.; Kristinsson, S.Y.; Björkholm, M.; Landgren, O.; Giaccone, G. A population-based assessment of mortality and morbidity patterns among patients with thymoma. Int. J. Cancer 2011, 128, 2688–2694. [Google Scholar] [CrossRef] [PubMed]
- Blum, T.G.; Misch, D.; Kollmeier, J.; Thiel, S.; Bauer, T.T. Autoimmune disorders and paraneoplastic syndromes in thymoma. J. Thorac. Dis. 2020, 12, 7571–7590. [Google Scholar] [CrossRef]
- Masaoka, A. Staging system of thymoma. J. Thorac. Oncol. 2010, 5, S304–S312. [Google Scholar] [CrossRef]
- Bernatz, P.E.; Harrison, E.G.; Clagett, O.T. Thymoma: A clinicopathologic study. J. Thorac. Cardiovasc. Surg. 1961, 42, 424–444. [Google Scholar] [CrossRef]
- Levine, G.D.; Rosai, J. Thymic hyperplasia and neoplasia: A review of current concepts. Hum. Pathol. 1978, 9, 495–515. [Google Scholar] [CrossRef]
- Song, Z.; Jin, X.; Zhang, Y. Treatment and prognosis of type B2 thymoma. World J. Surg. Oncol. 2014, 12, 291. [Google Scholar] [CrossRef]
- Gao, L.; Wang, C.; Fang, W.; Zhang, J.; Lv, C.; Fu, S. Outcome of Multimodality Treatment for 188 Cases of Type B3 Thymoma. J. Thorac. Oncol. 2013, 8, 1329–1334. [Google Scholar] [CrossRef] [PubMed]
- Scorsetti, M.; Leo, F.; Trama, A.; D’Angelillo, R.; Serpico, D.; Macerelli, M.; Zucali, P.; Gatta, G.; Garassino, M.C. Thymoma and thymic carcinomas. Crit. Rev. Oncol. Hematol. 2016, 99, 332–350. [Google Scholar] [CrossRef]
- Moran, C.A.; Suster, S. Thymic carcinoma: Current concepts and histologic features. Hematol. Oncol. Clin. N. Am. 2008, 22, 393–407. [Google Scholar] [CrossRef] [PubMed]
- Marino, M.; Marx, A.; Anemona, L.; Lauriola, L.; Ströbel, P.; Müller-Hermelink, H.K. Juan Rosai as master of our comprehensive understanding of thymus and thymoma. Pathologica 2021, 113, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Tsao, M.-S.; Nicholson, A.G.; Maleszewski, J.J.; Marx, A.; Travis, W.D. Introduction to 2021 WHO Classification of Thoracic Tumors. J. Thorac. Oncol. 2022, 17, e1–e4. [Google Scholar] [CrossRef]
- Carter, B.W.; Benveniste, M.F.; Madan, R.; Godoy, M.C.; Groot, P.M.; Truong, M.T.; Rosado-de-Christenson, M.L.; Marom, E.M. IASLC/ITMIG Staging System and Lymph Node Map for Thymic Epithelial Neoplasms. Radiographics 2017, 37, 758–776. [Google Scholar] [CrossRef]
- Koga, K.; Matsuno, Y.; Noguchi, M.; Mukai, K.; Asamura, H.; Goya, T.; Shimosato, Y. A review of 79 thymomas: Modification of staging system and reappraisal of conventional division into invasive and non-invasive thymoma. Pathol. Int. 1994, 44, 359–367. [Google Scholar] [CrossRef]
- Detterbeck, F.C.; Stratton, K.; Giroux, D.; Asamura, H.; Crowley, J.; Falkson, C.; Filosso, P.L.; Frazier, A.A.; Giaccone, G.; Huang, J.; et al. The IASLC/ITMIG Thymic Epithelial Tumors Staging Project: Proposal for an evidence-based stage classification system for the forthcoming (8th) edition of the TNM classification of malignant tumors. J. Thorac. Oncol. 2014, 9, S65–S72. [Google Scholar] [CrossRef]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef]
- Wick, M.R. Prognostic Factors for Thymic Epithelial Neoplasms, with Emphasis on Tumor Staging. Hematol./Oncol. Clin. N. Am. 2008, 22, 527–542. [Google Scholar] [CrossRef] [PubMed]
- Sorin, V.; Kirshenboim, Z.; Klug, M.; Ahuja, J.; Marom, E.M. The Ninth Edition TNM Staging Classification for Thymic Epithelial Tumors. Semin. Ultrasound CT MRI 2024, 45, 420–429. [Google Scholar] [CrossRef]
- Radovich, M.; Pickering, C.R.; Felau, I.; Ha, G.; Zhang, H.; Jo, H.; Hoadley, K.A.; Anur, P.; Zhang, J.; McLellan, M.; et al. The Integrated Genomic Landscape of Thymic Epithelial Tumors. Cancer Cell 2018, 33, 244–258.e210. [Google Scholar] [CrossRef]
- Rajan, A.; Girard, N.; Marx, A. State of the art of genetic alterations in thymic epithelial tumors. J. Thorac. Oncol. 2014, 9, S131–S136. [Google Scholar] [CrossRef]
- Kim, I.K.; Rao, G.; Zhao, X.; Fan, R.; Avantaggiati, M.L.; Wang, Y.; Zhang, Y.W.; Giaccone, G. Mutant GTF2I induces cell transformation and metabolic alterations in thymic epithelial cells. Cell Death Differ. 2020, 27, 2263–2279. [Google Scholar] [CrossRef]
- Roy, A.L. Pathophysiology of TFII-I: Old Guard Wearing New Hats. Trends Mol. Med. 2017, 23, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Rajan, A.; Zhao, C. Deciphering the biology of thymic epithelial tumors. Mediastinum 2019, 3, 36. [Google Scholar] [CrossRef]
- Conforti, F.; Pala, L.; Giaccone, G.; De Pas, T. Thymic epithelial tumors: From biology to treatment. Cancer Treat. Rev. 2020, 86, 102014. [Google Scholar] [CrossRef]
- Ruano, I.; Izquierdo, M. Selective RNAi-mediated inhibition of mutated c-kit. J. RNAi Gene Silenc. 2009, 5, 339–344. [Google Scholar]
- Petrini, I.; Zucali, P.A.; Lee, H.S.; Pineda, M.A.; Meltzer, P.S.; Walter-Rodriguez, B.; Roncalli, M.; Santoro, A.; Wang, Y.; Giaccone, G. Expression and mutational status of c-kit in thymic epithelial tumors. J. Thorac. Oncol. 2010, 5, 1447–1453. [Google Scholar] [CrossRef] [PubMed]
- Henley, J.D.; Cummings, O.W.; Loehrer, S.P.J. Tyrosine kinase receptor expression in thymomas. J. Cancer Res. Clin. Oncol. 2004, 130, 222–224. [Google Scholar] [CrossRef] [PubMed]
- Gilhus, N.E.; Jones, M.; Turley, H.; Gatter, K.C.; Nagvekar, N.; Newsom-Davis, J.; Willcox, N. Oncogene proteins and proliferation antigens in thymomas: Increased expression of epidermal growth factor receptor and Ki67 antigen. J. Clin. Pathol. 1995, 48, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Girard, N.; Shen, R.; Guo, T.; Zakowski, M.F.; Heguy, A.; Riely, G.J.; Huang, J.; Lau, C.; Lash, A.E.; Ladanyi, M.; et al. Comprehensive genomic analysis reveals clinically relevant molecular distinctions between thymic carcinomas and thymomas. Clin. Cancer Res. 2009, 15, 6790–6799. [Google Scholar] [CrossRef]
- Meister, M.; Schirmacher, P.; Dienemann, H.; Mechtersheimer, G.; Schnabel, P.A.; Kern, M.A.; Herpel, E.; Xu, E.C.; Muley, T.; Thomas, M.; et al. Mutational status of the epidermal growth factor receptor (EGFR) gene in thymomas and thymic carcinomas. Cancer Lett. 2007, 248, 186–191. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Soda, H.; Kitazaki, T.; Tsukamoto, K.; Hayashi, T.; Kohno, S. Thymic carcinoma with epidermal growth factor receptor gene mutations. Lung Cancer 2006, 52, 261–262. [Google Scholar] [CrossRef]
- Aisner, S.C.; Dahlberg, S.; Hameed, M.R.; Ettinger, D.S.; Schiller, J.H.; Johnson, D.H.; Aisner, J.; Loehrer, P.J. Epidermal growth factor receptor, C-kit, and Her2/neu immunostaining in advanced or recurrent thymic epithelial neoplasms staged according to the 2004 World Health Organization in patients treated with octreotide and prednisone: An Eastern Cooperative Oncology Group study. J. Thorac. Oncol. 2010, 5, 885–892. [Google Scholar] [CrossRef]
- Weissferdt, A.; Lin, H.; Woods, D.; Tang, X.; Fujimoto, J.; Wistuba, I.I.; Moran, C.A. HER family receptor and ligand status in thymic carcinoma. Lung Cancer 2012, 77, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Bellissimo, T.; Ganci, F.; Gallo, E.; Sacconi, A.; Tito, C.; De Angelis, L.; Pulito, C.; Masciarelli, S.; Diso, D.; Anile, M.; et al. Thymic Epithelial Tumors phenotype relies on miR-145-5p epigenetic regulation. Mol. Cancer 2017, 16, 88. [Google Scholar] [CrossRef]
- Remon, J.; Abedallaa, N.; Taranchon-Clermont, E.; Bluthgen, V.; Lindsay, C.R.; Besse, B.; Thomas de Montpréville, V. CD52, CD22, CD26, EG5 and IGF-1R expression in thymic malignancies. Lung Cancer 2017, 108, 168–172. [Google Scholar] [CrossRef]
- Girard, N.; Teruya-Feldstein, J.; Payabyab, E.C.; Riely, G.J.; Rusch, V.W.; Kris, M.G.; Zakowski, M.F. Insulin-like growth factor-1 receptor expression in thymic malignancies. J. Thorac. Oncol. 2010, 5, 1439–1446. [Google Scholar] [CrossRef]
- Prays, J.; Ortiz-Villalón, C. Molecular landscape of thymic epithelial tumors. Semin. Diagn. Pathol. 2022, 39, 131–136. [Google Scholar] [CrossRef]
- Weissferdt, A.; Fujimoto, J.; Kalhor, N.; Rodriguez, J.; Bassett, R.; Wistuba, I.I.; Moran, C.A. Expression of PD-1 and PD-L1 in thymic epithelial neoplasms. Mod. Pathol. 2017, 30, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Barachini, S.; Pardini, E.; Burzi, I.S.; Sardo Infirri, G.; Montali, M.; Petrini, I. Molecular and Functional Key Features and Oncogenic Drivers in Thymic Carcinomas. Cancers 2023, 16, 166. [Google Scholar] [CrossRef] [PubMed]
- Stergiou, I.E.; Palamaris, K.; Levidou, G.; Tzimou, M.; Papadakos, S.P.; Mandrakis, G.; Masaoutis, C.; Rontogianni, D.; Theocharis, S. PD-L1 Expression in Neoplastic and Immune Cells of Thymic Epithelial Tumors: Correlations with Disease Characteristics and HDAC Expression. Biomedicines 2024, 12, 772. [Google Scholar] [CrossRef] [PubMed]
- Ballman, M.; Zhao, C.; McAdams, M.J.; Rajan, A. Immunotherapy for Management of Thymic Epithelial Tumors: A Double-Edged Sword. Cancers 2022, 14, 2060. [Google Scholar] [CrossRef]
- Chau, N.G.; Ma, C.; Danga, K.; Al-Sayegh, H.; Nardi, V.; Barrette, R.; Lathan, C.S.; DuBois, S.G.; Haddad, R.I.; Shapiro, G.I.; et al. An Anatomical Site and Genetic-Based Prognostic Model for Patients with Nuclear Protein in Testis (NUT) Midline Carcinoma: Analysis of 124 Patients. JNCI Cancer Spectr. 2020, 4, pkz094. [Google Scholar] [CrossRef]
- Kurokawa, K.; Shukuya, T.; Greenstein, R.A.; Kaplan, B.G.; Wakelee, H.; Ross, J.S.; Miura, K.; Furuta, K.; Kato, S.; Suh, J.; et al. Genomic characterization of thymic epithelial tumors in a real-world dataset. ESMO Open 2023, 8, 101627. [Google Scholar] [CrossRef]
- Liu, J.M.; Wang, L.S.; Huang, M.H.; Hsu, W.H.; Yen, S.H.; Shiau, C.Y.; Li, A.F.; Tiu, C.M.; Tseng, S.W.; Huang, B.S. Topoisomerase 2alpha plays a pivotal role in the tumor biology of stage IV thymic neoplasia. Cancer 2007, 109, 502–509. [Google Scholar] [CrossRef]
- Giaccone, G.; Ardizzoni, A.; Kirkpatrick, A.; Clerico, M.; Sahmoud, T.; van Zandwijk, N. Cisplatin and etoposide combination chemotherapy for locally advanced or metastatic thymoma. A phase II study of the European Organization for Research and Treatment of Cancer Lung Cancer Cooperative Group. J. Clin. Oncol. 1996, 14, 814–820. [Google Scholar] [CrossRef]
- Loehrer, P.J., Sr.; Kim, K.; Aisner, S.C.; Livingston, R.; Einhorn, L.H.; Johnson, D.; Blum, R. Cisplatin plus doxorubicin plus cyclophosphamide in metastatic or recurrent thymoma: Final results of an intergroup trial. The Eastern Cooperative Oncology Group, Southwest Oncology Group, and Southeastern Cancer Study Group. J. Clin. Oncol. 1994, 12, 1164–1168. [Google Scholar] [CrossRef]
- Fornasiero, A.; Daniele, O.; Ghiotto, C.; Piazza, M.; Fiore-Donati, L.; Calabró, F.; Rea, F.; Fiorentino, M.V. Chemotherapy for invasive thymoma. A 13-year experience. Cancer 1991, 68, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Lemma, G.L.; Lee, J.W.; Aisner, S.C.; Langer, C.J.; Tester, W.J.; Johnson, D.H.; Loehrer, P.J., Sr. Phase II study of carboplatin and paclitaxel in advanced thymoma and thymic carcinoma. J. Clin. Oncol. 2011, 29, 2060–2065. [Google Scholar] [CrossRef]
- Proto, C.; Ganzinelli, M.; Manglaviti, S.; Imbimbo, M.; Galli, G.; Marabese, M.; Zollo, F.; Alvisi, M.F.; Perrino, M.; Cordua, N.; et al. Efficacy and safety of ramucirumab plus carboplatin and paclitaxel in untreated metastatic thymic carcinoma: RELEVENT phase II trial (NCT03921671). Ann. Oncol. 2024, 35, 817–826. [Google Scholar] [CrossRef]
- Gbolahan, O.B.; Porter, R.F.; Salter, J.T.; Yiannoutsos, C.; Burns, M.; Chiorean, E.G.; Loehrer, P.J., Sr. A Phase II Study of Pemetrexed in Patients with Recurrent Thymoma and Thymic Carcinoma. J. Thorac. Oncol. 2018, 13, 1940–1948. [Google Scholar] [CrossRef]
- Highley, M.S.; Underhill, C.R.; Parnis, F.X.; Karapetis, C.; Rankin, E.; Dussek, J.; Bryant, B.; Rowland, C.; Hodson, N.; Hughes, J.; et al. Treatment of invasive thymoma with single-agent ifosfamide. J. Clin. Oncol. 1999, 17, 2737–2744. [Google Scholar] [CrossRef]
- Palmieri, G.; Buonerba, C.; Ottaviano, M.; Federico, P.; Calabrese, F.; Von Arx, C.; De Maio, A.P.; Marino, M.; Lalle, M.; Montella, L.; et al. Capecitabine plus gemcitabine in thymic epithelial tumors: Final analysis of a Phase II trial. Future Oncol. 2014, 10, 2141–2147. [Google Scholar] [CrossRef]
- Yu, F.; Gu, Z.; Zhang, X.; Xu, N.; Hao, X.; Wang, C.; Zhao, Y.; Mao, T.; Fang, W. A Re-Examination of Neoadjuvant Therapy for Thymic Tumors: A Long and Winding Road. Cancers 2024, 16, 1680. [Google Scholar] [CrossRef] [PubMed]
- Markowiak, T.; Larisch, C.; Hofmann, H.S.; Ried, M. Hyperthermic intrathoracic chemotherapy (HITHOC): Narrative review of the current literature, recommendations and future studies. Ann. Transl. Med. 2021, 9, 955. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.Y.; Zhao, S.S.; Ren, M.; Liu, Z.L.; Li, Z.; Yang, L. Effect of hyperthermic intrathoracic chemotherapy on the malignant pleural mesothelioma: A systematic review and meta-analysis. Oncotarget 2017, 8, 100640–100647. [Google Scholar] [CrossRef]
- Refaely, Y.; Simansky, D.A.; Paley, M.; Gottfried, M.; Yellin, A. Resection and perfusion thermochemotherapy: A new approach for the treatment of thymic malignancies with pleural spread. Ann. Thorac. Surg. 2001, 72, 366–370. [Google Scholar] [CrossRef] [PubMed]
- de Bree, E.; van Ruth, S.; Baas, P.; Rutgers, E.J.; van Zandwijk, N.; Witkamp, A.J.; Zoetmulder, F.A. Cytoreductive surgery and intraoperative hyperthermic intrathoracic chemotherapy in patients with malignant pleural mesothelioma or pleural metastases of thymoma. Chest 2002, 121, 480–487. [Google Scholar] [CrossRef]
- Ried, M.; Potzger, T.; Sziklavari, Z.; Diez, C.; Neu, R.; Schalke, B.; Hofmann, H.S. Extended surgical resections of advanced thymoma Masaoka stages III and IVa facilitate outcome. Thorac. Cardiovasc. Surg. 2014, 62, 161–168. [Google Scholar] [CrossRef]
- Aprile, V.; Bacchin, D.; Korasidis, S.; Nesti, A.; Marrama, E.; Ricciardi, R.; Petrini, I.; Ambrogi, M.C.; Paladini, P.; Lucchi, M. Surgical treatment of pleural recurrence of thymoma: Is hyperthermic intrathoracic chemotherapy worthwhile? Interact. Cardiovasc. Thorac. Surg. 2020, 30, 765–772. [Google Scholar] [CrossRef]
- Yang, X.; Wang, S.; Jiang, J.; Lin, M.; Gao, J.; Ding, J.; Tan, L. Cytoreductive surgery combined with hyperthermic intrathoracic chemotherapy for the treatment of thymic epithelial malignancies with pleural spread or recurrence (CHOICE): A study protocol for a prospective, open, single-arm study. J. Thorac. Dis. 2024, 16, 760–767. [Google Scholar] [CrossRef]
- Gomez, D.; Komaki, R. Technical advances of radiation therapy for thymic malignancies. J. Thorac. Oncol. 2010, 5, S336–S343. [Google Scholar] [CrossRef]
- Jackson, M.W.; Palma, D.A.; Camidge, D.R.; Jones, B.L.; Robin, T.P.; Sher, D.J.; Koshy, M.; Kavanagh, B.D.; Gaspar, L.E.; Rusthoven, C.G. The Impact of Postoperative Radiotherapy for Thymoma and Thymic Carcinoma. J. Thorac. Oncol. 2017, 12, 734–744. [Google Scholar] [CrossRef]
- Lopez, H.; Botticella, A.; Belkhir, F.; Besse, B.; Fadel, E.; Mercier, O.; Levy, A.; Le Péchoux, C. Postoperative radiotherapy results in 192 epithelial thymic tumours patients with 10 years of follow-up. Radiother. Oncol. 2024, 195, 110272. [Google Scholar] [CrossRef]
- Rimner, A.; Ahmad, U.; Lobaugh, S.M.; Zhang, Z.; Shepherd, A.F.; Huang, J.; Antonicelli, A.; Girard, N.; Moser, B.; Filosso, P.; et al. Postoperative Radiation Therapy for Thymic Carcinoma: An Analysis of the International Thymic Malignancy Interest Group/European Society of Thoracic Surgeons Database. J. Thorac. Oncol. 2024, 19, 626–635. [Google Scholar] [CrossRef] [PubMed]
- Omasa, M.; Date, H.; Sozu, T.; Sato, T.; Nagai, K.; Yokoi, K.; Okamoto, T.; Ikeda, N.; Tanaka, F.; Maniwa, Y.; et al. Postoperative radiotherapy is effective for thymic carcinoma but not for thymoma in stage II and III thymic epithelial tumors: The Japanese Association for Research on the Thymus Database Study. Cancer 2015, 121, 1008–1016. [Google Scholar] [CrossRef] [PubMed]
- Gomez, D.; Komaki, R.; Yu, J.; Ikushima, H.; Bezjak, A. Radiation Therapy Definitions and Reporting Guidelines for Thymic Malignancies. J. Thorac. Oncol. 2011, 6, S1743–S1748. [Google Scholar] [CrossRef] [PubMed]
- Loap, P.; Vitolo, V.; Barcellini, A.; De Marzi, L.; Mirandola, A.; Fiore, M.R.; Vischioni, B.; Jereczek-Fossa, B.A.; Girard, N.; Kirova, Y.; et al. Hadrontherapy for Thymic Epithelial Tumors: Implementation in Clinical Practice. Front. Oncol. 2021, 11, 738320. [Google Scholar] [CrossRef]
- Rimner, A.; Huang, J.; Pagano, A.; Ginsberg, M.S.; Chang, J.C.; Riely, G.J.; Simone, C.B.; Gomez, D.R.; Shepherd, A. Phase II study of hemithoracic intensity-modulated pleural radiation therapy (IMPRINT) for patients with pleural metastases from thymic malignancies. J. Clin. Oncol. 2023, 41, TPS8616. [Google Scholar] [CrossRef]
- Sakane, T.; Haneda, H.; Okuda, K. Insights into molecular aspects and targeted therapy of thymic carcinoma: A narrative review. Mediastinum 2024, 8, 36. [Google Scholar] [CrossRef]
- Motzer, R.J.; Taylor, M.H.; Evans, T.R.J.; Okusaka, T.; Glen, H.; Lubiniecki, G.M.; Dutcus, C.; Smith, A.D.; Okpara, C.E.; Hussein, Z.; et al. Lenvatinib dose, efficacy, and safety in the treatment of multiple malignancies. Expert Rev. Anticancer Ther. 2022, 22, 383–400. [Google Scholar] [CrossRef] [PubMed]
- Sato, J.; Satouchi, M.; Itoh, S.; Okuma, Y.; Niho, S.; Mizugaki, H.; Murakami, H.; Fujisaka, Y.; Kozuki, T.; Nakamura, K.; et al. Lenvatinib in patients with advanced or metastatic thymic carcinoma (REMORA): A multicentre, phase 2 trial. Lancet Oncol. 2020, 21, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Remon Masip, J.; Bironzo, P.; Girard, N.; Bigay-Game, L.; Juan Vidal, O.J.; de Castro Carpeño, J.; Reguart Aransay, N.; Greillier, L.; Cousin, S.; Dansin, E.; et al. LBA83 PECATI: A phase II trial to evaluate the efficacy and safety of lenvatinib in combination with pembrolizumab in pretreated advanced B3-thymoma and thymic carcinoma. Ann. Oncol. 2024, 35, S1270. [Google Scholar] [CrossRef]
- Agrafiotis, A.C.; Brandão, M.; Berghmans, T.; Durieux, V.; Jungels, C. Immunotherapy and Targeted Therapies Efficacy in Thymic Epithelial Tumors: A Systematic Review. Biomedicines 2023, 11, 2722. [Google Scholar] [CrossRef]
- Proto, C.; Manglaviti, S.; Lo Russo, G.; Musca, M.; Galli, G.; Imbimbo, M.; Perrino, M.; Cordua, N.; Rulli, E.; Ballatore, Z.; et al. STYLE (NCT03449173): A Phase 2 Trial of Sunitinib in Patients with Type B3 Thymoma or Thymic Carcinoma in Second and Further Lines. J. Thorac. Oncol. 2023, 18, 1070–1081. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, Y.; Fan, Y.; Li, H. Evolving treatment landscape in thymic epithelial tumors: From mechanism to therapy. Biochim. Biophys. Acta (BBA)-Rev. Cancer 2024, 1879, 189145. [Google Scholar] [CrossRef]
- Buti, S.; Donini, M.; Sergio, P.; Garagnani, L.; Schirosi, L.; Passalacqua, R.; Rossi, G. Impressive response with imatinib in a heavily pretreated patient with metastatic c-KIT mutated thymic carcinoma. J. Clin. Oncol. 2011, 29, e803–e805. [Google Scholar] [CrossRef]
- Pagano, M.; Sierra, N.M.; Panebianco, M.; Rossi, G.; Gnoni, R.; Bisagni, G.; Boni, C. Sorafenib efficacy in thymic carcinomas seems not to require c-KIT or PDGFR-alpha mutations. Anticancer Res. 2014, 34, 5105–5110. [Google Scholar]
- Arunachalam, A.; Zhang, I.; Zhao, B.; Frederickson, A.M.; Catherine Pietanza, M. Efficacy and safety of treatments for advanced thymic carcinoma after failure of first-line platinum-based chemotherapy: A systematic literature review and meta-analysis. Lung Cancer 2023, 176, 132–139. [Google Scholar] [CrossRef]
- Rajan, A.; Carter, C.A.; Berman, A.; Cao, L.; Kelly, R.J.; Thomas, A.; Khozin, S.; Chavez, A.L.; Bergagnini, I.; Scepura, B.; et al. Cixutumumab for patients with recurrent or refractory advanced thymic epithelial tumours: A multicentre, open-label, phase 2 trial. Lancet Oncol. 2014, 15, 191–200. [Google Scholar] [CrossRef]
- Dapergola, A.; Gomatou, G.; Trontzas, I.; Panagiotou, E.; Dimakakos, E.; Syrigos, N.; Kotteas, E. Emerging therapies in thymic epithelial tumors (Review). Oncol. Lett. 2023, 25, 84. [Google Scholar] [CrossRef]
- Roden, A.C.; Rakshit, S.; Johnson, G.B.; Jenkins, S.M.; Mansfield, A.S. Correlation of Somatostatin Receptor 2 Expression, 68Ga-DOTATATE PET Scan and Octreotide Treatment in Thymic Epithelial Tumors. Front. Oncol. 2022, 12, 823667. [Google Scholar] [CrossRef] [PubMed]
- Loehrer, P.J., Sr.; Wang, W.; Johnson, D.H.; Aisner, S.C.; Ettinger, D.S. Octreotide alone or with prednisone in patients with advanced thymoma and thymic carcinoma: An Eastern Cooperative Oncology Group Phase II Trial. J. Clin. Oncol. 2004, 22, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Chen, Y.; Berman, A.; Schrump, D.S.; Giaccone, G.; Pastan, I.; Venzon, D.J.; Liewehr, D.J.; Steinberg, S.M.; Miettinen, M.; et al. Expression of mesothelin in thymic carcinoma and its potential therapeutic significance. Lung Cancer 2016, 101, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Chen, V.; Umemura, S.; Han, Y.; Raman, R.; Tucker, R.; Chahine, J.; Kim, I.K.; Schatz, C.; Zitzmann-Kolbe, S.; Sommer, A.; et al. Exploiting mesothelin in thymic carcinoma as a drug delivery target for anetumab ravtansine. Br. J. Cancer 2022, 126, 754–763. [Google Scholar] [CrossRef]
- Hassan, R.; Blumenschein, G.R., Jr.; Moore, K.N.; Santin, A.D.; Kindler, H.L.; Nemunaitis, J.J.; Seward, S.M.; Thomas, A.; Kim, S.K.; Rajagopalan, P.; et al. First-in-Human, Multicenter, Phase I Dose-Escalation and Expansion Study of Anti-Mesothelin Antibody-Drug Conjugate Anetumab Ravtansine in Advanced or Metastatic Solid Tumors. J. Clin. Oncol. 2020, 38, 1824–1835. [Google Scholar] [CrossRef]
- Marks, J.A.; Ahn, J.; Reuss, J.E.; Barbie, D.; Altan, M.; Gutierrez, M.E.; Garassino, M.C.; Riely, G.J.; Wakelee, H.; Liu, S.V.; et al. Phase II Parallel Arm Study of Sacituzumab Govitecan-Hziy in Patients with Advanced Thymoma or Thymic Carcinoma. Clin. Lung Cancer 2024, 26, 165–167. [Google Scholar] [CrossRef] [PubMed]
- McAdams, M.; Swift, S.; Donahue, R.N.; Celades, C.; Tsai, Y.-T.; Bingham, M.; Szabo, E.; Zhao, C.; Sansone, S.; Choradia, N.; et al. Preliminary efficacy, safety, and immunomodulatory effects of PT-112 from a phase 2 proof of concept study in patients (pts) with thymic epithelial tumors (TETs). J. Clin. Oncol. 2023, 41, e20647. [Google Scholar] [CrossRef]
- Chung, V.; Wang, L.; Fletcher, M.S.; Massarelli, E.; Cristea, M.C.; Kamaraju, S.; Alistar, A.T.; Feng, C.; Li, Y.; Whiting, R.L.; et al. First-Time In-Human Study of VMD-928, an Oral Allosteric TrkA Selective Inhibitor Targeting TrkA Protein Overexpression, in Patients with Solid Tumors or Lymphoma. Available online: https://ascopubs.org/doi/abs/10.1200/jco.2021.39.15_suppl.3081 (accessed on 1 June 2025).
- Study of Nanrilkefusp Alfa Alone and with Pembrolizumab in Adult Patients with Advanced/Metastatic Solid Tumors. Available online: https://clinicaltrials.gov/study/NCT04234113 (accessed on 1 June 2025).
- A Study of Safety and Efficacy of KFA115 Alone and in Combo with Pembrolizumab in Patients with Select Advanced Cancers. Available online: https://clinicaltrials.gov/study/NCT05544929 (accessed on 1 June 2025).
- Beckermann, K.E.; Bestvina, C.M.; El Osta, B.; Sanborn, R.E.; Borghaei, H.; Lammers, P.E.; Selvaggi, G.; Whisenant, J.G.; Heimann-Nichols, E.; Berry, L.; et al. A Phase 1/2 Study to Evaluate the Safety and Activity of Nivolumab in Combination with Vorolanib, a Vascular Endothelial Growth Factor Tyrosine Kinase Inhibitor, in Patients with Refractory Thoracic Tumors. JTO Clin. Res. Rep. 2024, 5, 100619. [Google Scholar] [CrossRef]
- Bintrafusp Alfa (M7824) in Subjects with Thymoma and Thymic Carcinoma. Available online: https://www.clinicaltrials.gov/study/NCT04417660?term=AREA%5BBasicSearch%5D(M7824)&rank=3 (accessed on 1 June 2025).
- Jakopovic, M.; Bitar, L.; Seiwerth, F.; Marusic, A.; Krpina, K.; Samarzija, M. Immunotherapy for thymoma. J. Thorac. Dis. 2020, 12, 7635–7641. [Google Scholar] [CrossRef]
- Rajan, A.; Sivapiromrat, A.K.; McAdams, M.J. Immunotherapy for Thymomas and Thymic Carcinomas: Current Status and Future Directions. Cancers 2024, 16, 1369. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Kim, H.S.; Ku, B.M.; Choi, Y.L.; Cristescu, R.; Han, J.; Sun, J.M.; Lee, S.H.; Ahn, J.S.; Park, K.; et al. Pembrolizumab for Patients with Refractory or Relapsed Thymic Epithelial Tumor: An Open-Label Phase II Trial. J. Clin. Oncol. 2019, 37, 2162–2170. [Google Scholar] [CrossRef]
- Ohm, B.; Jungraithmayr, W. Balancing the Risk of Adverse Events against the Efficacy of Immunotherapy in Advanced Thymic Epithelial Tumors. Cancers 2022, 15, 289. [Google Scholar] [CrossRef] [PubMed]
- Giaccone, G.; Kim, C.; Thompson, J.; McGuire, C.; Kallakury, B.; Chahine, J.J.; Manning, M.; Mogg, R.; Blumenschein, W.M.; Tan, M.T.; et al. Pembrolizumab in patients with thymic carcinoma: A single-arm, single-centre, phase 2 study. Lancet Oncol. 2018, 19, 347–355. [Google Scholar] [CrossRef]
- Katsuya, Y.; Horinouchi, H.; Seto, T.; Umemura, S.; Hosomi, Y.; Satouchi, M.; Nishio, M.; Kozuki, T.; Hida, T.; Sukigara, T.; et al. Single-arm, multicentre, phase II trial of nivolumab for unresectable or recurrent thymic carcinoma: PRIMER study. Eur. J. Cancer 2019, 113, 78–86. [Google Scholar] [CrossRef]
- Girard, N.; Ponce Aix, S.; Cedres, S.; Berghmans, T.; Burgers, S.; Toffart, A.C.; Popat, S.; Janssens, A.; Gervais, R.; Hochstenbag, M.; et al. Efficacy and safety of nivolumab for patients with pre-treated type B3 thymoma and thymic carcinoma: Results from the EORTC-ETOP NIVOTHYM phase II trial. ESMO Open 2023, 8, 101576. [Google Scholar] [CrossRef]
- Rajan, A.; Heery, C.R.; Thomas, A.; Mammen, A.L.; Perry, S.; O’Sullivan Coyne, G.; Guha, U.; Berman, A.; Szabo, E.; Madan, R.A.; et al. Efficacy and tolerability of anti-programmed death-ligand 1 (PD-L1) antibody (Avelumab) treatment in advanced thymoma. J. Immunother. Cancer 2019, 7, 269. [Google Scholar] [CrossRef]
- Tabernero, J.; Andre, F.; Blay, J.Y.; Bustillos, A.; Fear, S.; Ganta, S.; Jaeger, D.; Maio, M.; Mileshkin, L.; Melero, I. Phase II multicohort study of atezolizumab monotherapy in multiple advanced solid cancers. ESMO Open 2022, 7, 100419. [Google Scholar] [CrossRef]
- Shukuya, T.; Asao, T.; Goto, Y.; Mimori, T.; Takayama, K.; Kaira, K.; Tanaka, H.; Ko, R.; Amano, Y.; Tachihara, M.; et al. Activity and safety of atezolizumab plus carboplatin and paclitaxel in patients with advanced or recurrent thymic carcinoma (MARBLE): A multicentre, single-arm, phase 2 trial. Lancet Oncol. 2025, 26, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Conforti, F.; Zucali, P.A.; Pala, L.; Catania, C.; Bagnardi, V.; Sala, I.; Della Vigna, P.; Perrino, M.; Zagami, P.; Corti, C.; et al. Avelumab plus axitinib in unresectable or metastatic type B3 thymomas and thymic carcinomas (CAVEATT): A single-arm, multicentre, phase 2 trial. Lancet Oncol. 2022, 23, 1287–1296. [Google Scholar] [CrossRef]
- Fang, W.; Wang, C.; Li, J.; Chen, M.; Ji, Y.; Fan, H.; Wu, K.; Zhuang, W.; Liu, B.; Luo, F.; et al. 2186P KN046 in patients with thymic carcinoma: A prospective, single-arm, multi-centre, phase II study. Ann. Oncol. 2023, 34, S1132. [Google Scholar] [CrossRef]
- Giaccone, G.; Kim, C. Durable Response in Patients with Thymic Carcinoma Treated with Pembrolizumab After Prolonged Follow-Up. J. Thorac. Oncol. 2021, 16, 483–485. [Google Scholar] [CrossRef]
- Girard, N.; Besse, B.; Duruisseaux, M.; Greillier, L.; Berghmans, T.; Pardo, N.; Popat, S.; Gervais, R.; Aix, S.P.; Janssens, A.; et al. Efficacy and safety of nivolumab plus ipilimumab for patients with pre-treated type B3 thymoma and thymic carcinoma: Results from the EORTC-ETOP NIVOTHYM phase II trial. J. Clin. Oncol. 2025, 43, 8016. [Google Scholar] [CrossRef]
- Mammen, A.L.; Rajan, A.; Pak, K.; Lehky, T.; Casciola-Rosen, L.; Donahue, R.N.; Lepone, L.M.; Zekeridou, A.; Pittock, S.J.; Hassan, R.; et al. Pre-existing antiacetylcholine receptor autoantibodies and B cell lymphopaenia are associated with the development of myositis in patients with thymoma treated with avelumab, an immune checkpoint inhibitor targeting programmed death-ligand 1. Ann. Rheum. Dis. 2019, 78, 150–152. [Google Scholar] [CrossRef]
- A Study of KN046 in Patients with Thymic Carcinoma Who Failed Immune Checkpoint Inhibitors. Available online: https://www.clinicaltrials.gov/study/NCT04925947 (accessed on 1 June 2025).
- ClinicalTrials.gov. Adjuvant Treatment for Incomplete Resection Thymoma or Thymic Carcinoma (NCT02633514). Available online: https://clinicaltrials.gov/ct2/show/NCT02633514 (accessed on 1 June 2025).
- Imbimbo, M.; Vitali, M.; Fabbri, A.; Ottaviano, M.; Pasello, G.; Petrini, I.; Palmieri, G.; Berardi, R.; Zucali, P.; Ganzinelli, M.; et al. RELEVENT Trial: Phase II Trial of Ramucirumab, Carboplatin, and Paclitaxel in Previously Untreated Thymic Carcinoma/B3 Thymoma with Area of Carcinoma. Clin. Lung Cancer 2018, 19, e811–e814. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. Postoperative Adjuvant Chemotherapy for Thymic Cancer (FUSCC-Thymic 3) (NCT06402708). Available online: https://clinicaltrials.gov/ct2/show/NCT06402708 (accessed on 1 June 2025).
- Tsao, A.S.; Hsieh, M.H.; Koczywas, M.; Tu, J.; Riess, J.; Tanvetyanon, T.; Ma, B.T.; Zhao, Y.Q.; Redman, M.W.; Edelman, M.J.; et al. S1701, A Randomized Phase 2 Trial of Carboplatin-Paclitaxel with and Without Ramucirumab in Patients with Locally Advanced, Recurrent, or Metastatic Thymic Carcinoma. JTO Clin. Res. Rep. 2024, 5, 100738. [Google Scholar] [CrossRef] [PubMed]
- Okuma, Y.; Nomura, S.; Sakakibara-Konishi, J.; Tsukita, Y.; Murakami, S.; Hosomi, Y.; Tambo, Y.; Kogure, Y.; Yoshioka, H.; Tamiya, M.; et al. Artemis: A Multicenter, Open-Label, Single-Arm, Phase II Study to Evaluate the Efficacy and Safety of First-Line Carboplatin/Paclitaxel/Lenvatinib/Pembrolizumab Combination for Previously Untreated Advanced or Recurrent Thymic Carcinomas. Clin. Lung Cancer 2024, 25, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Pembrolizumab and Sunitinib Malate in Treating Participants with Refractory Metastatic or Unresectable Thymic Cancer. Available online: https://clinicaltrials.gov/study/NCT03463460 (accessed on 1 June 2025).
- Pembrolizumab in Treating Participants with Unresectable Thymoma or Thymic Cancer. Available online: https://www.clinicaltrials.gov/study/NCT03295227 (accessed on 1 June 2025).

| (1) | |||||
| T | N | M | |||
| T1 | T1a: ≤5 cm | N0 | No regional nodal metastasis | M0 | No pleural/pericardial/distant metastasis |
| T1b: >5 cm | |||||
| T2 | Direct invasion of pericardium and/or lung or phrenic nerve | N1 | Anterior nodes | M1 | M1a: Separate pleural or pericardial nodules (“implants”) |
| M1b: Intraparenchymal lung nodule(s) or distant metastasis | |||||
| T3 | Invasion of brachiocephalic vein, SVC, chest wall, or extrapericardial pulmonary arteries/veins | N2 | Deep intrathoracic or cervical nodes | ||
| T4 | Invasion of aorta or arch vessels, intrapericardial pulmonary arteries/veins, myocardium, trachea, or esophagus | ||||
| (2) | |||||
| Stage | TNM | ||||
| I | T1a–b N0 M0 | ||||
| II | T2 N0 M0 | ||||
| IIIA | T3 N0 M0 | ||||
| IIIB | T4 N0 M0 | ||||
| IVA | Any T N1 M0/Any T N0–N1 M1a | ||||
| IVB | Any T N2 M0–M1a/Any T Any N M1b | ||||
| Trial | NCT | Drug | Status |
|---|---|---|---|
| Phase II Trial of Sacituzumab Govitecan in Patients with Advanced Thymic Epithelial Tumors [100] | 06248515 | Sacituzumab Govitecan | Recruiting |
| PT-112 in Subjects with Thymoma and Thymic Carcinoma [101] | 05104736 | PT-112, a first-in-class metallo-pyrophosphate conjugate | Recruiting |
| Selective TrkA Inhibitor VMD-928 to Treat TrkA Overexpression Driven Solid Tumors or Lymphoma [102] | 03556228 | Selective TrkA Inhibitor VMD-928 | Recruiting |
| Study of Nanrilkefusp Alfa Alone and with Pembrolizumab in Adult Patients with Advanced/Metastatic Solid Tumors [103] | 04234113 | Nanrilkefusp | Active, not recruiting |
| A Study of Safety and Efficacy of KFA115 Alone and in Combo with Pembrolizumab in Patients with Select Advanced Cancers [104] | 05544929 | KFA115 | Recruiting |
| Phase I/II Eval Safety & Prelim Activity Nivolumab Comb W/Vorolanib Pts W/Refractory Thoracic Tumors [105] | 03583086 | Vorolanib | Active, not recruiting |
| Bintrafusp Alfa (M7824) in Subjects with Thymoma and Thymic Carcinoma [106] | 04417660 | Bintrafusp Alfa (M7824) | Recruiting |
| Combination of Pembrolizumab and Lenvatinib, in Pre-treated Thymic Carcinoma patients (PECATI) [86] | 04710628 | Lenvatinib + Pembrolizumab | Active, not recruiting |
| Trial | Drug | Number of Patients | TET Histology | ORR (%) | Median PFS (Months) | Median OS (Months) |
|---|---|---|---|---|---|---|
| Giaccone, G et al. 2018 [111] | Pembrolizumab | 40 | Thymic carcinoma | 22.5 | 4.2 | 24.9 |
| Cho J, et al. 2019 [109] | Pembrolizumab | 33 | Thymoma Thymic carcinoma | 28.6 19.2 | 6.1 6.1 | NR 14.1 |
| Katsuya Y et al. 2019 [112] | Nivolumab | 15 | Thymic carcinoma | 0 | 3.8 | 14.1 |
| Girard, N et al. 2023 [113] | Nivolumab | 49 | B3 Thymoma Thymic carcinoma | 12 | 6 | 21.3 |
| Rajan, A 2019 [114] | Avelumab | 22 | Thymoma Thymic carcinoma | 12 10 | 6.4 14.7 | NR NR |
| Tabernero, J 2022 [115] | Atezolizumab | 13 | Thymoma | 38.5 | 11.7 | NE |
| Shukuya, T 2025 [116] | Atezolizumab + carboplatin + paclitaxel | 48 | Thymic carcinoma | 56 | NE | NE |
| Conforti, F 2022 [117] | Avelumab + axitinib | 27 3 2 | Thymic carcinoma Thymoma Mixed | 34.4 | 7.5 | 26 |
| Fang, W 2023 [118] | KN046 | 46 | Thymic carcinoma | 16.3 | 5.6 | NE |
| Trial | NCT | Chemotherapy | Status |
|---|---|---|---|
| Adjuvant Treatment for Incomplete Resection Thymoma or Thymic Carcinoma [123] | 02633514 | Cisplatin and Etoposide | Recruiting |
| Ramucirumab and Carbo-Paclitaxel for Untreated Thymic Carcinoma/B3 Thymoma with Carcinoma [124] | 03921671 | Ramucirumab and Carbo-Paclitaxel | Active, not recruiting |
| Postoperative Adjuvant Chemotherapy for Thymic Cancer (FUSCC-Thymic 3) [125] | 06402708 | Medium dose of docetaxel, cisplatin, 5-FU | Recruiting |
| Carboplatin and Paclitaxel with or Without Ramucirumab in Treating Patients with Locally Advanced, Recurrent, or Metastatic Thymic Cancer That Cannot Be Removed by Surgery [126] | 03694002 | Carboplatin-paclitaxel with or without ramucirumab | Active, not recruiting |
| Chemotherapy Plus Cetuximab Followed by Surgical Resection in Patients with Locally Advanced or Recurrent Thymoma or Thymic Carcinoma [126] | 01025089 | Cetuximab, Cisplatin, Doxorubicin, Cyclophosphamide | Active, not recruiting |
| First-line CBDCA/PTX/LEN/Pembrolizumab Combination for Previously Untreated Advanced or Recurrent Thymic Carcinomas (Artemis) [127] | 05832827 | Carboplatin/ Paclitaxel/ Lenvatinib/ Pembrolizumab combination | Recruiting |
| Pembrolizumab and Sunitinib Malate in Treating Participants with Refractory Metastatic or Unresectable Thymic Cancer [128] | 03463460 | Pembrolizumab and Sunitinib | Recruiting |
| Pembrolizumab in Treating Participants with Unresectable Thymoma or Thymic Cancer [129] | 03295227 | Pembrolizumab | Recruiting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias e Silva, D.; Miyamura, B.V.; Mambetsariev, I.; Fricke, J.; Arias-Romero, J.; Kulkarni, A.A.; Khan, A.; Bruno, D.S.; Malhotra, J.; Fong, A.; et al. Current Clinical Paradigm and Therapeutic Advancements in Thymic Malignancies: A Narrative Review. Cancers 2025, 17, 3622. https://doi.org/10.3390/cancers17223622
Dias e Silva D, Miyamura BV, Mambetsariev I, Fricke J, Arias-Romero J, Kulkarni AA, Khan A, Bruno DS, Malhotra J, Fong A, et al. Current Clinical Paradigm and Therapeutic Advancements in Thymic Malignancies: A Narrative Review. Cancers. 2025; 17(22):3622. https://doi.org/10.3390/cancers17223622
Chicago/Turabian StyleDias e Silva, Douglas, Beatriz Viesser Miyamura, Isa Mambetsariev, Jeremy Fricke, Javier Arias-Romero, Amit A. Kulkarni, Ajaz Khan, Debora S. Bruno, Jyoti Malhotra, Abigail Fong, and et al. 2025. "Current Clinical Paradigm and Therapeutic Advancements in Thymic Malignancies: A Narrative Review" Cancers 17, no. 22: 3622. https://doi.org/10.3390/cancers17223622
APA StyleDias e Silva, D., Miyamura, B. V., Mambetsariev, I., Fricke, J., Arias-Romero, J., Kulkarni, A. A., Khan, A., Bruno, D. S., Malhotra, J., Fong, A., Kim, J., Ladbury, C., Amini, A., Schvartsman, G., & Salgia, R. (2025). Current Clinical Paradigm and Therapeutic Advancements in Thymic Malignancies: A Narrative Review. Cancers, 17(22), 3622. https://doi.org/10.3390/cancers17223622

