Tumor Genomics, Metastatic Patterns, and Prognosis in Leiomyosarcoma: A Single-Center Retrospective Cohort Study
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Clinical and Histopathologic Data
2.3. Imaging Review
2.4. Genomic Testing
2.5. Statistical Analysis
2.6. Post Hoc Survival Analysis of ATRX Mutations
3. Results
3.1. Patient Characteristics
3.2. Molecular Aberrations
3.3. Location of Metastases
3.4. Associations Between LMS Types, Sites of Metastases, and Mutational Status
3.5. Association of Mutational Status with Survival Endpoints
3.6. Association of Metastases with Survival Endpoints
3.7. Predictive Survival Models
3.8. Post Hoc Survival Analysis of ATRX Mutations in LMS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| LMS | Leiomyosarcoma |
| uLMS | Uterine leiomyosarcoma |
| nuLMS | Non-uterine leiomyosarcoma |
| NGS | Next-generation sequencing |
| PFS | Progression-free survival |
| RFS | Recurrence-free survival |
| OS | Overall survival |
| HR | Hazard ratio |
| CI | Confidence interval |
| IRB | Institutional Review Board |
| HIPAA | Health Insurance Portability and Accountability Act |
| CT | Computed tomography |
| PET | Positron emission tomography |
| FDG | Fluorodeoxyglucose |
| MRI | Magnetic resonance imaging |
| RECIST | Response Evaluation Criteria in Solid Tumors |
| IQR | Interquartile range |
| FDA | Food and Drug Administration |
| CODEai | Comprehensive Oncology Data Explorer (Caris Life Sciences) |
| ER | Estrogen receptor |
| PR | Progesterone receptor |
| VEGF | Vascular endothelial growth factor |
References
- George, S.; Serrano, C.; Hensley, M.L.; Ray-Coquard, I. Soft Tissue and Uterine Leiomyosarcoma. J. Clin. Oncol. 2018, 36, 144–150. [Google Scholar] [CrossRef]
- Serrano, C.; George, S. Leiomyosarcoma. Hematol. Oncol. Clin. North Am. 2013, 27, 957–974. [Google Scholar] [CrossRef]
- D’Angelo, E.; Prat, J. Uterine sarcomas: A review. Gynecol. Oncol. 2010, 116, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Madueke-Laveaux, O.S.; Cun, H.; Wlodarczyk, M.; Garcia, N.; Carvalho, K.C.; Al-Hendy, A. Comprehensive Review of Uterine Leiomyosarcoma: Pathogenesis, Diagnosis, Prognosis, and Targeted Therapy. Cells 2024, 13, 1106. [Google Scholar] [CrossRef]
- Lamm, W.; Natter, C.; Schur, S.; Köstler, W.J.; Reinthaller, A.; Krainer, M.; Grimm, C.; Horvath, R.; Amann, G.; Funovics, P.; et al. Distinctive outcome in patients with non-uterine and uterine leiomyosarcoma. BMC Cancer 2014, 14, 981. [Google Scholar] [CrossRef]
- Denu, R.A.; Dann, A.M.; Keung, E.Z.; Nakazawa, M.S.; Nassif Haddad, E.F. The Future of Targeted Therapy for Leiomyosarcoma. Cancers 2024, 16, 938. [Google Scholar] [CrossRef]
- Chudasama, P.; Mughal, S.S.; Sanders, M.A.; Hübschmann, D.; Chung, I.; Deeg, K.I.; Wong, S.-H.; Rabe, S.; Hlevnjak, M.; Zapatka, M.; et al. Integrative genomic and transcriptomic analysis of leiomyosarcoma. Nat. Commun. 2018, 9, 144. [Google Scholar] [CrossRef]
- Kerrison, W.G.J.; Thway, K.; Jones, R.L.; Huang, P.H. The biology and treatment of leiomyosarcomas. Crit. Rev. Oncol. Hematol. 2023, 184, 103955. [Google Scholar] [CrossRef]
- Copeland, T.; Groisberg, R.; Dizon, D.S.; Elliott, A.; Lagos, G.; Seeber, A.; von Mehren, M.; Cardona, K.; Demeure, M.J.; Riedel, R.F.; et al. Multiomic analysis to reveal distinct molecular profiles of uterine and non-uterine leiomyosarcoma. J. Clin. Oncol. 2021, 39, 11555. [Google Scholar] [CrossRef]
- Alessandrino, F.; Goncalves, N.; Metalonis, S.W.; Luna, C.; Mason, M.M.; Lyu, J.; Huang, M. Uterine serous carcinoma: Assessing association between genomics and patterns of metastasis. Front. Oncol. 2023, 13, 1066427. [Google Scholar] [CrossRef] [PubMed]
- Luna, C.; Goncalves, N.; Metalonis, S.W.; Mason, M.M.; Lyu, J.; Huang, M.; Alessandrino, F. Endometrial carcinoma: Association between mutational status, sites of metastasis, recurrence, and correlation with overall survival. Abdom. Radiol. 2023, 48, 2684–2694. [Google Scholar] [CrossRef]
- Yang, D.Y.; Wang, X.; Yuan, W.J.; Chen, Z.H. Metastatic pattern and prognosis of gastrointestinal stromal tumor (GIST): A SEER-based analysis. Clin. Transl. Oncol. 2019, 21, 1654–1662. [Google Scholar] [CrossRef] [PubMed]
- Stork, T.; Hegedüs, B.; Guder, W.; Hamacher, R.; Hardes, J.; Kaths, M.; Plönes, T.; Pöttgen, C.; Schildhaus, H.-U.; Streitbürger, A.; et al. Prognostic Factors for Leiomyosarcoma with Isolated Metastases to the Lungs: Impact of Metastasectomy. Ann. Surg. Oncol. 2022, 29, 4429–4436. [Google Scholar] [CrossRef]
- Maccaroni, E.; Lunerti, V.; Agostinelli, V.; Giampieri, R.; Zepponi, L.; Pagliacci, A.; Berardi, R. New Insights into Hormonal Therapies in Uterine Sarcomas. Cancers 2022, 14, 921. [Google Scholar] [CrossRef] [PubMed]
- Dermawan, J.K.; Chiang, S.; Singer, S.; Jadeja, B.; Hensley, M.L.; Tap, W.D.; Movva, S.; Maki, R.G.; Antonescu, C.R. Developing Novel Genomic Risk Stratification Models in Soft Tissue and Uterine Leiomyosarcoma. Clin. Cancer Res. 2024, 30, 2260–2271. [Google Scholar] [CrossRef]
- Pearce, H.; Yu-Cherng, C.; Rose, B.E.; Jonczak, E.E.; Grossman, J.; D’Amato, G.Z.; Huang, M.; Trent, J.C.; Alessandrino, F. Association of mutational status with metastatic pattern, race, ethnicity, and overall survival (OS) in leiomyosarcoma (LMS). J. Clin. Oncol. 2024, 42 (Suppl. S16), e23553. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple hypothesis testing. J. R. Stat. Soc. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Aguilera, P.; López-Contreras, A.J. ATRX, a guardian of chromatin. Trends Genet. 2023, 39, 505–519. [Google Scholar] [CrossRef]
- Nacev, B.A.; Sanchez-Vega, F.; Smith, S.A.; Antonescu, C.R.; Rosenbaum, E.; Shi, H.; Tang, C.; Socci, N.D.; Rana, S.; Gularte-Mérida, R.; et al. Clinical sequencing of soft tissue and bone sarcomas delineates diverse genomic landscapes and potential therapeutic targets. Nat. Commun. 2022, 13, 3405. [Google Scholar] [CrossRef]
- Darmusey, L.; Pérot, G.; Thébault, N.; Le Guellec, S.; Desplat, N.; Gaston, L.; Delespaul, L.; Lesluyes, T.; Darbo, E.; Gomez-Brouchet, A.; et al. ATRX Alteration Contributes to Tumor Growth and Immune Escape in Pleomorphic Sarcomas. Cancers 2021, 13, 2151. [Google Scholar] [CrossRef]
- Denu, R.A.; Segura, R.L.; Farooqi, A.S.; Ingram, D.; Wani, K.M.; Cai, Y.; E Torres, K.; Keung, E.Z.-Y.; Roland, C.L.; Somaiah, N.; et al. Impact of ATRX Loss on Survival and Immune Microenvironment in Multiple Sarcoma Subtypes. J. Clin. Oncol. 2024, 42, 11511. [Google Scholar] [CrossRef]
- DeWitt, S.B.; Plumlee, S.H.; Brighton, H.E.; Sivaraj, D.; Martz, E.; Zand, M.; Kumar, V.; Sheth, M.U.; Floyd, W.; Spruance, J.V.; et al. Loss of ATRX promotes aggressive features of osteosarcoma with increased NF-κB signaling and integrin binding. JCI Insight 2022, 7, e151583. [Google Scholar] [CrossRef]
- Cullen, M.M.; Floyd, W.; Dow, B.; Schleupner, B.; Brigman, B.E.; Visgauss, J.D.; Cardona, D.M.; Somarelli, J.A.; Eward, W.C. ATRX and Its Prognostic Significance in Soft Tissue Sarcoma. Sarcoma 2024, 2024, 4001796. [Google Scholar] [CrossRef] [PubMed]
- Harold, J.; Bellone, S.; Manavella, D.D.; Mutlu, L.; McNamara, B.; Hartwich, T.M.P.; Zipponi, M.; Yang-Hartwich, Y.; Demirkiran, C.; Verzosa, M.S.; et al. Elimusertib (BAY1895344), a novel ATR inhibitor, demonstrates in vivo activity in ATRX mutated models of uterine leiomyosarcoma. Gynecol. Oncol. 2023, 168, 157–165. [Google Scholar] [CrossRef]
- National Cancer Institute. Elimusertib for the Treatment of Relapsed or Refractory Solid Tumors: NCT05071209; National Cancer Institute: Bethesda, MD, USA, 2025. Available online: https://clinicaltrials.gov/study/NCT05071209 (accessed on 10 August 2025).
- Haase, S.; Garcia-Fabiani, M.B.; Carney, S.; Altshuler, D.; Núñez, F.J.; Méndez, F.M.; Núñez, F.; Lowenstein, P.R.; Castro, M.G. Mutant ATRX: Uncovering a new therapeutic target for glioma. Expert Opin. Ther. Targets 2018, 22, 599–613. [Google Scholar] [CrossRef]
- Varachev, V.; Susova, O.; Mitrofanov, A.; Naskhletashvili, D.; Krasnov, G.; Ikonnikova, A.; Bezhanova, S.; Semenova, V.; Sevyan, N.; Prozorenko, E.; et al. Genomic Profiling in Glioma Patients to Explore Clinically Relevant Markers. Int. J. Mol. Sci. 2024, 25, 13004. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.D.; Bui, K.; Chiappori, A.; Bepler, G.; Bui, M.M. RRM1, ERCC1 and TS1 Immunofluorescence Expression in Leiomyosarcoma: A Tissue Microarray Study with Clinical Outcome Correlation Analysis. Pathol. Oncol. Res. 2016, 22, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Schuetze, S.M.; Wathen, J.K.; Lucas, D.R.; Choy, E.; Samuels, B.L.; Staddon, A.P.; Ganjoo, K.N.; von Mehren, M.; Chow, W.A.; Loeb, D.M.; et al. SARC009, Phase 2 study of dasatinib in patients with previously treated, high-grade, advanced sarcoma. Cancer 2016, 122, 868–874. [Google Scholar] [CrossRef]
- Davidson, B.; Kjæreng, M.L.; Førsund, M.; Danielsen, H.E.; Kristensen, G.B.; Abeler, V.M. Progesterone Receptor Expression Is an Independent Prognosticator in FIGO Stage I Uterine Leiomyosarcoma. Am. J. Clin. Pathol. 2016, 145, 449–458. [Google Scholar] [CrossRef]
- Leitao, M.M.; Hensley, M.L.; Barakat, R.R.; Aghajanian, C.; Gardner, G.J.; Jewell, E.L.; O’Cearbhaill, R.; Soslow, R.A. Immunohistochemical expression of estrogen and progesterone receptors and outcomes in patients with newly diagnosed uterine leiomyosarcoma. Gynecol. Oncol. 2012, 124, 558–562. [Google Scholar] [CrossRef]
- Seligson, N.D.; Kautto, E.A.; Passen, E.N.; Stets, C.; Toland, A.E.; Millis, S.Z.; Meyer, C.F.; Hays, J.L.; Chen, J.L. BRCA1/2 Functional Loss Defines a Targetable Subset in Leiomyosarcoma. Oncologist 2019, 24, 973–979. [Google Scholar] [CrossRef]
- Shammas, N.; Yang, T.; Abidi, A.; Amneus, M.; Hodeib, M. Clinical use of PARP inhibitor in recurrent uterine leiomyosarcoma with presence of a somatic BRCA2 mutation. Gynecol. Oncol. Rep. 2022, 42, 101044. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Ganjoo, K.; Karam, A. Rapid Response of a BRCA2/TP53/PTEN-Deleted Metastatic Uterine Leiomyosarcoma to Olaparib: A Case Report. Perm. J. 2021, 25, 20.251. [Google Scholar] [CrossRef]
- Tirumani, S.H.; Deaver, P.; Shinagare, A.B.; Tirumani, H.; Hornick, J.L.; George, S.; Ramaiya, N.H. Metastatic pattern of uterine leiomyosarcoma: Retrospective analysis of the predictors and outcome in 113 patients. J. Gynecol. Oncol. 2014, 25, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Gadducci, A.; Landoni, F.; Sartori, E.; Zola, P.; Maggino, T.; Lissoni, A.; Bazzurini, L.; Arisio, R.; Romagnolo, C.; Cristofani, R. Uterine leiomyosarcoma: Analysis of treatment failures and survival. Gynecol. Oncol. 1996, 62, 25–32. [Google Scholar] [CrossRef]
- Gonnelli, F.; Hassan, W.; Bonifazi, M.; Pinelli, V.; O Bedawi, E.; Porcel, J.M.; Rahman, N.M.; Mei, F. Malignant pleural effusion: Current understanding and therapeutic approach. Respir Res. 2024, 25, 47. [Google Scholar] [CrossRef]
- LiBrizzi, C.L.; Vankara, A.; Meyer, C.F.; Levin, A.S.; Morris, C.D. Bone Metastases in Patients with Leiomyosarcoma: A Retrospective Analysis of Survival and Surgical Management. Sarcoma 2022, 2022, 6806932. [Google Scholar] [CrossRef] [PubMed]
- Contartese, D.; Bandiera, S.; Giavaresi, G.; Borsari, V.; Griffoni, C.; Gasbarrini, A.; Fini, M.; Salamanna, F. Postoperative Survival and Clinical Outcomes for Uterine Leiomyosarcoma Spinal Bone Metastasis: A Case Series and Systematic Literature Review. Diagnostics 2022, 13, 15. [Google Scholar] [CrossRef]





| Characteristic | Number Total (110 Subjects) | Uterine LMS (N = 50) | Non-Uterine LMS (N = 60) |
|---|---|---|---|
| Age at diagnosis (mean, standard deviation in years) | 57.65 ± 12.10 | 54.08 ± 8.33 | 60.62 ± 13.90 |
| Sex | |||
| Female | 81 (73.6%) | 50 (100%) | 31 (51.7%) |
| Male | 29 (26.4%) | 0 | 29 (48.3%) |
| Stage at diagnosis | |||
| Localized | 51 (46%) | 33 (66%) * | 18 (30%) |
| Locally advanced | 34 (31%) | 8 (16%) ** | 26 (43%) |
| Metastatic | 25 (23%) | 9 (18%) | 16 (27%) |
| Race | |||
| Black | 27 (24.8%) | 15 (30%) | 12 (20%) |
| White | 79 (72.5%) | 34 (68%) | 45 (75%) |
| Asian | 2 (1.8%) | 1 (2%) | 1 (1.7%) |
| American Indian/Alaska Native | 1 (0.92%) | 0 | 1 (1.7%) |
| Ethnicity | |||
| Hispanic | 27 (24.5%) | 15 (30%) | 12 (20%) |
| Non-Hispanic | 83 (75.5%) | 35 (70%) | 48 (80%) |
| Mutational status | |||
| TP53 | 74 (67.3%) | 28 (56%) | 46 (76.7%) |
| RB1 | 24 (21.8%) | 7 (14%) | 17 (28.3%) |
| ATRX | 17 (15.5%) | 11 (22%) | 6 (10%) |
| PTEN | 15 (13.6%) | 9 (18%) | 6 (10%) |
| ATM | 14 (12.7%) | 7 (14%) | 7 (11.7%) |
| BRCA1/2 | 6 (5.5%) | 1 (2%) | 5 (8.3%) |
| APC | 4 (3.6%) | 1 (2%) | 3 (5%) |
| RRM1 | 4 (3.6%) | 3 (6%) | 1 (1.7%) |
| KIT | 2 (1.8%) | 0 | 2 (3.3%) |
| NF1 | 2 (1.8%) | 1 (2%) | 1 (1.7%) |
| POT1 | 1 (0.9%) | 1 (2%) | 0 |
| ER/PR-positive | 25 (23%) | 25 (50%) | 0 |
| Metastatic sites | |||
| Lungs | 79 (79.8%) | 36 (72%) | 43 (71.2%) |
| Peritoneum | 37 (37.4%) | 10 (20%) | 27 (38.3%) |
| Liver | 37 (37.4%) | 24 (48%) | 13 (21.7%) |
| Pelvis | 29 (29.3%) | 23 (46%) | 6 (10%) |
| Retroperitoneum | 27 (27.3%) | 12 (24%) | 15 (25%) |
| Bones | 25 (25.3%) | 8 (16%) | 17 (28.3%) |
| Muscle | 24 (24.2%) | 8 (16%) | 16 (26.7%) |
| Lymph nodes | 17 (17.2%) | 9 (18%) | 8 (13.3%) |
| Pleura | 11 (11.1%) | 9 (18%) | 2 (3.3%) |
| Brain | 5 (5.1%) | 3 (6%) | 2 (3.3%) |
| Vaginal cuff | 5 (5.1%) | 5 (10%) | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pearce, H.; Chang, Y.-C.; Metalonis, S.W.; Rose, B.E.; Jonczak, E.E.; Subhawong, T.; D’Amato, G.; Grossman, J.; Castillo, P.; Huang, M.; et al. Tumor Genomics, Metastatic Patterns, and Prognosis in Leiomyosarcoma: A Single-Center Retrospective Cohort Study. Cancers 2025, 17, 3544. https://doi.org/10.3390/cancers17213544
Pearce H, Chang Y-C, Metalonis SW, Rose BE, Jonczak EE, Subhawong T, D’Amato G, Grossman J, Castillo P, Huang M, et al. Tumor Genomics, Metastatic Patterns, and Prognosis in Leiomyosarcoma: A Single-Center Retrospective Cohort Study. Cancers. 2025; 17(21):3544. https://doi.org/10.3390/cancers17213544
Chicago/Turabian StylePearce, Hayes, Yu-Cherng Chang, Sarah Wishnek Metalonis, Brandon Edward Rose, Emily E. Jonczak, Ty Subhawong, Gina D’Amato, Julie Grossman, Patricia Castillo, Marilyn Huang, and et al. 2025. "Tumor Genomics, Metastatic Patterns, and Prognosis in Leiomyosarcoma: A Single-Center Retrospective Cohort Study" Cancers 17, no. 21: 3544. https://doi.org/10.3390/cancers17213544
APA StylePearce, H., Chang, Y.-C., Metalonis, S. W., Rose, B. E., Jonczak, E. E., Subhawong, T., D’Amato, G., Grossman, J., Castillo, P., Huang, M., Magistri, M., Hornicek, F., Rosenberg, A. E., Trent, J. C., & Alessandrino, F. (2025). Tumor Genomics, Metastatic Patterns, and Prognosis in Leiomyosarcoma: A Single-Center Retrospective Cohort Study. Cancers, 17(21), 3544. https://doi.org/10.3390/cancers17213544

