Medroxyprogesterone Acetate Inhibits Tumorigenesis in Mouse Models of Oviductal High-Grade Serous Carcinoma
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Genetically Engineered Mice and Animal Care
2.2. In Vivo Induction of Oviductal Tumors and Implantation of Hormone Pellets
2.3. Measurement of Hormone Levels
2.4. Tissue Sampling, Histopathological and Immunohistochemical Analysis
2.5. Cell Line Establishment and Cell Culture
2.6. Allografts and MPA Treatment
2.7. Gene Expression
2.8. Statistical Analysis
3. Results
3.1. MPA Inhibits HGSC Tumorigenesis in BPRN-homo and BPRN-het Mice
3.2. Tumor Development in BPRN-homo and BPRN-het Mice Treated with P4 Alone Is Comparable to Placebo
3.3. Progesterone (P4) in Combination with Estradiol (E2) Accelerates BPRN Tumor Development
3.4. Some Commercially Available Slow-Release Pellets Have Suboptimal Performance
3.5. MPA Has No Effect on Tumorigenesis in a Colon Cancer GEMM
3.6. MPA Has No Effect on the Growth of Established HGSCs
3.7. Identification of Differentially Expressed Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| HGSC | High-grade serous carcinoma |
| OCs | Oral contraceptives |
| MPA | Medroxyprogesterone acetate |
| LD | Progesterone |
| P4 | 17β-estradiol |
| E2 | Genetically engineered mouse model |
| GEMM | Brca1, Trp53, Rb1, and Nf1 |
| BPRN | Tumor suppressor genes |
| TSGs | Serous tubal intraepithelial carcinomas |
| STICs | Early high-grade serous carcinoma |
| eHGSC | Carcinosarcoma |
| CaSa | Fallopian tube |
| FT | High-grade serous carcinoma |
References
- Hollis, R.L. Molecular characteristics and clinical behaviour of epithelial ovarian cancers. Cancer Lett. 2023, 555, 216057. [Google Scholar] [CrossRef] [PubMed]
- Collaborative Group on Epidemiological Studies of Ovarian Cancer; Beral, V.; Doll, R.; Hermon, C.; Peto, R.; Reeves, G. Ovarian cancer and oral contraceptives: Collaborative reanalysis of data from 45 epidemiological studies including 23,257 women with ovarian cancer and 87,303 controls. Lancet 2008, 371, 303–314. [Google Scholar] [CrossRef]
- Havrilesky, L.J.; Moorman, P.G.; Lowery, W.J.; Gierisch, J.M.; Coeytaux, R.R.; Urrutia, R.P.; Dinan, M.; McBroom, A.J.; Hasselblad, V.; Sanders, G.D.; et al. Oral contraceptive pills as primary prevention for ovarian cancer: A systematic review and meta-analysis. Obs. Gynecol. 2013, 122, 139–147. [Google Scholar] [CrossRef]
- Ness, R.B.; Grisso, J.A.; Klapper, J.; Schlesselman, J.J.; Silberzweig, S.; Vergona, R.; Morgan, M.; Wheeler, J.E. Risk of ovarian cancer in relation to estrogen and progestin dose and use characteristics of oral contraceptives. SHARE Study Group. Steroid Hormones and Reproductions. Am. J. Epidemiol. 2000, 152, 233–241. [Google Scholar] [CrossRef]
- Reid, B.M.; Permuth, J.B.; Sellers, T.A. Epidemiology of ovarian cancer: A review. Cancer Biol. Med. 2017, 14, 9–32. [Google Scholar] [CrossRef]
- Wentzensen, N.; Poole, E.M.; Trabert, B.; White, E.; Arslan, A.A.; Patel, A.V.; Setiawan, V.W.; Visvanathan, K.; Weiderpass, E.; Adami, H.O.; et al. Ovarian Cancer Risk Factors by Histologic Subtype: An Analysis From the Ovarian Cancer Cohort Consortium. J. Clin. Oncol. 2016, 34, 2888–2898. [Google Scholar] [CrossRef]
- Pearce, C.L.; Chung, K.; Pike, M.C.; Wu, A.H. Increased ovarian cancer risk associated with menopausal estrogen therapy is reduced by adding a progestin. Cancer 2009, 115, 531–539. [Google Scholar] [CrossRef]
- Phung, M.T.; Lee, A.W.; Wu, A.H.; Berchuck, A.; Cho, K.R.; Cramer, D.W.; Doherty, J.A.; Goodman, M.T.; Hanley, G.E.; Harris, H.R.; et al. Depot-Medroxyprogesterone Acetate Use Is Associated with Decreased Risk of Ovarian Cancer: The Mounting Evidence of a Protective Role of Progestins. Cancer Epidemiol. Biomark. Prev. 2021, 30, 927–935. [Google Scholar] [CrossRef]
- Kim, O.; Park, E.Y.; Kwon, S.Y.; Shin, S.; Emerson, R.E.; Shin, Y.H.; DeMayo, F.J.; Lydon, J.P.; Coffey, D.M.; Hawkins, S.M.; et al. Targeting progesterone signaling prevents metastatic ovarian cancer. Proc. Natl. Acad. Sci. USA 2020, 117, 31993–32004. [Google Scholar] [CrossRef]
- Zhai, Y.; Wu, R.; Kuick, R.; Sessine, M.S.; Schulman, S.; Green, M.; Fearon, E.R.; Cho, K.R. High-grade serous carcinomas arise in the mouse oviduct via defects linked to the human disease. J. Pathol. 2017, 243, 16–25. [Google Scholar] [CrossRef]
- McCool, K.W.; Freeman, Z.T.; Zhai, Y.; Wu, R.; Hu, K.; Liu, C.J.; Tomlins, S.A.; Fearon, E.R.; Magnuson, B.; Kuick, R.; et al. Murine Oviductal High-Grade Serous Carcinomas Mirror the Genomic Alterations, Gene Expression Profiles, and Immune Microenvironment of Their Human Counterparts. Cancer Res. 2020, 80, 877–889. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Zhai, Y.; Hu, K.; Liu, C.J.; Udager, A.; Pearce, C.L.; Fearon, E.R.; Cho, K.R. Aging accelerates while multiparity delays tumorigenesis in mouse models of high-grade serous carcinoma. Gynecol. Oncol. 2022, 165, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhai, Y.; Wang, Y.; Fearon, E.R.; Nunez, G.; Inohara, N.; Cho, K.R. Altering the Microbiome Inhibits Tumorigenesis in a Mouse Model of Oviductal High-Grade Serous Carcinoma. Cancer Res. 2021, 81, 3309–3318. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Zhu, N.; Bedi, K.; Li, J.; Perera, C.; Green, M.; Assarzadegan, N.; Zhai, Y.; Liu, Q.; Baladandayuthapani, V.; et al. SOX9 suppresses colon cancer via inhibiting epithelial-mesenchymal transition and SOX2 induction. J. Clin. Invest. 2025, 135, e184115. [Google Scholar] [CrossRef]
- Shepherd, T.G.; Theriault, B.L.; Campbell, E.J.; Nachtigal, M.W. Primary culture of ovarian surface epithelial cells and ascites-derived ovarian cancer cells from patients. Nat. Protoc. 2006, 1, 2643–2649. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 23 September 2023).
- Wingett, S.W.; Andrews, S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Research 2018, 7, 1338. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef]
- Ewels, P.; Magnusson, M.; Lundin, S.; Kaller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef]
- Johansson, A.; Schmitz, D.; Hoglund, J.; Hadizadeh, F.; Karlsson, T.; Ek, W.E. Investigating the Effect of Estradiol Levels on the Risk of Breast, Endometrial, and Ovarian Cancer. J. Endocr. Soc. 2022, 6, bvac100. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011, 474, 609–615. [Google Scholar] [CrossRef]
- Chlebowski, R.T.; Aragaki, A.K.; Pan, K.; Haque, R.; Rohan, T.E.; Song, M.; Wactawski-Wende, J.; Lane, D.S.; Harris, H.R.; Strickler, H.; et al. Menopausal Hormone Therapy and Ovarian and Endometrial Cancers: Long-Term Follow-Up of the Women’s Health Initiative Randomized Trials. J. Clin. Oncol. 2024, 42, 3537–3549. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.W.; Wu, A.H.; Wiensch, A.; Mukherjee, B.; Terry, K.L.; Harris, H.R.; Carney, M.E.; Jensen, A.; Cramer, D.W.; Berchuck, A.; et al. Estrogen Plus Progestin Hormone Therapy and Ovarian Cancer: A Complicated Relationship Explored. Epidemiology 2020, 31, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Sathe, A.; Patel, P.; Gerriets, V. Medroxyprogesterone. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Nelson, O.L.; Rosales, R.; Turbov, J.M.; Thaete, L.G.; Cline, J.M.; Rodriguez, G.C. Progestin Significantly Inhibits Carcinogenesis in the Mogp-TAg Transgenic Mouse Model of Fallopian Tube Cancer. Cancer Prev. Res. 2022, 15, 75–86. [Google Scholar] [CrossRef]
- Kato, S.; Liberona, M.F.; Cerda-Infante, J.; Sanchez, M.; Henriquez, J.; Bizama, C.; Bravo, M.L.; Gonzalez, P.; Gejman, R.; Branes, J.; et al. Simvastatin interferes with cancer ‘stem-cell’ plasticity reducing metastasis in ovarian cancer. Endocr. Relat. Cancer 2018, 25, 821–836. [Google Scholar] [CrossRef]
- Akinwunmi, B.; Vitonis, A.F.; Titus, L.; Terry, K.L.; Cramer, D.W. Statin Therapy and Association with Ovarian Cancer risk in the New England Case Control (NEC) Study. Int. J. Cancer 2018, 144, 991–1000. [Google Scholar] [CrossRef]
- Di Zazzo, E.; Galasso, G.; Giovannelli, P.; Di Donato, M.; Bilancio, A.; Perillo, B.; Sinisi, A.A.; Migliaccio, A.; Castoria, G. Estrogen Receptors in Epithelial-Mesenchymal Transition of Prostate Cancer. Cancers 2019, 11, 1418. [Google Scholar] [CrossRef]
- Planas-Silva, M.D.; Waltz, P.K. Estrogen promotes reversible epithelial-to-mesenchymal-like transition and collective motility in MCF-7 breast cancer cells. J. Steroid Biochem. Mol. Biol. 2007, 104, 11–21. [Google Scholar] [CrossRef]
- Jimenez-Salazar, J.E.; Rivera-Escobar, R.M.; Damian-Ferrara, R.; Maldonado-Cubas, J.; Rincon-Perez, C.; Tarrago-Castellanos, R.; Damian-Matsumura, P. Estradiol-Induced Epithelial to Mesenchymal Transition and Migration Are Inhibited by Blocking c-Src Kinase in Breast Cancer Cell Lines. J. Breast Cancer 2023, 26, 446–460. [Google Scholar] [CrossRef]
- Wang, C.; Bai, F.; Zhang, L.H.; Scott, A.; Li, E.; Pei, X.H. Estrogen promotes estrogen receptor negative BRCA1-deficient tumor initiation and progression. Breast Cancer Res. 2018, 20, 74. [Google Scholar] [CrossRef]
- Gorodeski, G.I. Estrogen decrease in tight junctional resistance involves matrix-metalloproteinase-7-mediated remodeling of occludin. Endocrinology 2007, 148, 218–231. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, U.W.; Garvin, S.; Dabrosin, C. MMP-2 and MMP-9 activity is regulated by estradiol and tamoxifen in cultured human breast cancer cells. Breast Cancer Res. Treat. 2007, 102, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Khalili-Tanha, G.; Radisky, E.S.; Radisky, D.C.; Shoari, A. Matrix metalloproteinase-driven epithelial-mesenchymal transition: Implications in health and disease. J. Transl. Med. 2025, 23, 436. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Kwon, H.J.; Jung, J. Estrogen exposure causes the progressive growth of SK-Hep1-derived tumor in ovariectomized mice. Toxicol. Res. 2022, 38, 1–7. [Google Scholar] [CrossRef]
- Laviolette, L.A.; Garson, K.; Macdonald, E.A.; Senterman, M.K.; Courville, K.; Crane, C.A.; Vanderhyden, B.C. 17beta-estradiol accelerates tumor onset and decreases survival in a transgenic mouse model of ovarian cancer. Endocrinology 2010, 151, 929–938. [Google Scholar] [CrossRef]
- Stanczyk, F.Z. All progestins are not created equal. Steroids 2003, 68, 879–890. [Google Scholar] [CrossRef]
- Stanczyk, F.Z.; Hapgood, J.P.; Winer, S.; Mishell, D.R., Jr. Progestogens used in postmenopausal hormone therapy: Differences in their pharmacological properties, intracellular actions, and clinical effects. Endocr. Rev. 2013, 34, 171–208. [Google Scholar] [CrossRef]






| Case/Total (%) | |||||
|---|---|---|---|---|---|
| Cohorts | No Lesion | STIC | eHGSC/eCaSa | HGSC/CaSa | p Value |
| Placebo | 4/43 (9.3) | 4/43 (9.3) | 15/43 (34.88) | 20/43 (46.51) | |
| P4 | 0/42 (0.0) | 3/42 (7.14) | 23/42 (54.8) | 16/42 (38.1) | =0.48 |
| MPA | 10/48 (20.8) | 10/48 (20.8) | 19/48 (39.58) | 9/48 (18.75) | =0.004 * |
| E2 + P4 | 0/54 (0.0) | 0/54 (0.0) | 7/54 (12.96 | 47/54 (87.04) | <0.001 *** |
| Case/Total (%) | |||||
|---|---|---|---|---|---|
| Cohorts | No Lesion | STIC | eHGSC/eCaSa | HGSC/CaSa | p Value |
| Placebo | 14/56 (25.0) | 18/56 (32.14) | 15/56 (26.79) | 9/56 (16.07) | |
| P4 | 14/48 (29.17) | 15/48 (31.30) | 13/48 (27.1) | 6/48 (12.5) | =0.58 |
| MPA | 39/50 (78.0) | 7/50 (14.0) | 4/50 (8.00) | 0/50 (0.00) | <0.001 *** |
| E2 + P4 | 3/53 (5.7) | 5/53 (9.43) | 13/53 (24.52) | 32/53 (60.38) | <0.001 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, Y.; Bedi, K.; Wu, R.; Feng, Y.; Green, M.E.; Pearce, C.L.; Pike, M.C.; Fearon, E.R.; Cho, K.R. Medroxyprogesterone Acetate Inhibits Tumorigenesis in Mouse Models of Oviductal High-Grade Serous Carcinoma. Cancers 2025, 17, 3456. https://doi.org/10.3390/cancers17213456
Zhai Y, Bedi K, Wu R, Feng Y, Green ME, Pearce CL, Pike MC, Fearon ER, Cho KR. Medroxyprogesterone Acetate Inhibits Tumorigenesis in Mouse Models of Oviductal High-Grade Serous Carcinoma. Cancers. 2025; 17(21):3456. https://doi.org/10.3390/cancers17213456
Chicago/Turabian StyleZhai, Yali, Karan Bedi, Rong Wu, Ying Feng, Maranne E. Green, Celeste Leigh Pearce, Malcolm C. Pike, Eric R. Fearon, and Kathleen R. Cho. 2025. "Medroxyprogesterone Acetate Inhibits Tumorigenesis in Mouse Models of Oviductal High-Grade Serous Carcinoma" Cancers 17, no. 21: 3456. https://doi.org/10.3390/cancers17213456
APA StyleZhai, Y., Bedi, K., Wu, R., Feng, Y., Green, M. E., Pearce, C. L., Pike, M. C., Fearon, E. R., & Cho, K. R. (2025). Medroxyprogesterone Acetate Inhibits Tumorigenesis in Mouse Models of Oviductal High-Grade Serous Carcinoma. Cancers, 17(21), 3456. https://doi.org/10.3390/cancers17213456

