Testosterone and Androgen Receptor in Cancers with Significant Sex Dimorphism in Incidence Rates and Survival
Simple Summary
Abstract
1. Introduction
2. Overview of Androgens, Androgen Receptors, and Their Roles in Disease Development
2.1. Androgens and the Androgen Receptor
2.2. Androgens Exhibit Both Receptor-Dependent and -Independent Effects
2.3. Role of Androgen Receptor and Testosterone in Health and Development
2.4. Current Knowledge About Androgens and AR in Diseases
2.5. Overview of AR in Cancer
3. An Overview of Sex Disparities in Cancers in Non-Reproductive Organs
3.1. Esophageal Cancer
3.2. Bladder Cancer
3.3. Head and Neck Cancer
3.4. Liver Cancer
3.5. Kidney Cancer
3.6. Stomach Cancer
3.7. Lung Cancer
3.8. Melanoma
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Özdemir, B.C.; Dotto, G.P. Sex hormones and anticancer immunity. Clin. Cancer Res. 2019, 25, 4603–4610. [Google Scholar] [CrossRef]
- Chen, X.; Augello, M.A.; Liu, D.; Lin, K.; Hakansson, A.; Sjostrom, M.; Khani, F.; Deonarine, L.D.; Liu, Y.; Travascio-Green, J.; et al. Canonical androgen response element motifs are tumor suppressive regulatory elements in the prostate. Nat. Commun. 2024, 15, 10675. [Google Scholar] [CrossRef]
- Ainslie, R.J.; Simitsidellis, I.; Kirkwood, P.M.; Gibson, D.A. RISING STARS: Androgens and immune cell function. J. Endocrinol. 2024, 261, e230398. [Google Scholar] [CrossRef]
- Yang, C.; Jin, J.; Yang, Y.; Sun, H.; Wu, L.; Shen, M.; Hong, X.; Li, W.; Lu, L.; Cao, D.; et al. Androgen receptor-mediated CD8+ T cell stemness programs drive sex differences in antitumor immunity. Immunity 2022, 55, 1268–1283.e1269. [Google Scholar] [CrossRef]
- Vesper, H.W.; Wang, Y.; Vidal, M.; Botelho, J.C.; Caudill, S.P. Serum Total Testosterone Concentrations in the US Household Population from the NHANES 2011–2012 Study Population. Clin. Chem. 2015, 61, 1495–1504. [Google Scholar] [CrossRef] [PubMed]
- Augello, M.A.; Liu, D.; Deonarine, L.D.; Robinson, B.D.; Huang, D.; Stelloo, S.; Blattner, M.; Doane, A.S.; Wong, E.W.P.; Chen, Y.; et al. CHD1 Loss Alters AR Binding at Lineage-Specific Enhancers and Modulates Distinct Transcriptional Programs to Drive Prostate Tumorigenesis. Cancer Cell 2019, 35, 603–617.e8. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Sakamoto, S.; Yamada, Y.; Sato, K.; Tamura, T.; Shibata, H.; Sazuka, T.; Imamura, Y.; Ichikawa, T. The Role of Serum Testosterone in the Pathogenesis and Treatment of Prostate Cancer: A Review Based on the Clinical Evidence. Int. J. Urol. 2025, 32, 1102–1117. [Google Scholar] [CrossRef] [PubMed]
- Salonia, A.; Abdollah, F.; Capitanio, U.; Suardi, N.; Briganti, A.; Gallina, A.; Colombo, R.; Ferrari, M.; Castagna, G.; Rigatti, P.; et al. Serum sex steroids depict a nonlinear u-shaped association with high-risk prostate cancer at radical prostatectomy. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2012, 18, 3648–3657. [Google Scholar] [CrossRef]
- Alemany, M. The Roles of Androgens in Humans: Biology, Metabolic Regulation and Health. Int. J. Mol. Sci. 2022, 23, 11952. [Google Scholar] [CrossRef]
- Hammes, R.S.; Levin, R.E. Impact of estrogens in males and androgens in females. J. Clin. Investig. 2019, 129, 1818–1826. [Google Scholar] [CrossRef]
- Nutsch, L.V.; Will, G.R.; Tobiansky, J.D.; Reilly, P.M.; Gore, C.A.; Dominguez, M.J. Age-related changes in sexual function and steroid-hormone receptors in the medial preoptic area of male rats. Horm. Behav. 2017, 96, 4–12. [Google Scholar] [CrossRef]
- Selby, C. Sex hormone binding globulin: Origin, function and clinical significance. Ann. Clin. Biochem. 1990, 27 Pt 6, 532–541. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.J.; Goss, S.J.; Lubahn, D.B.; Joseph, D.R.; Wilson, E.M.; French, F.S.; Willard, H.F. Androgen receptor locus on the human X chromosome: Regional localization to Xq11-12 and description of a DNA polymorphism. Am. J. Human Genet. 1989, 44, 264–269. [Google Scholar]
- Tan, M.E.; Li, J.; Xu, H.E.; Melcher, K.; Yong, E.L. Androgen receptor: Structure, role in prostate cancer and drug discovery. Acta Pharmacol. Sin. 2015, 36, 3–23. [Google Scholar] [CrossRef] [PubMed]
- Mangelsdorf, D.J.; Thummel, C.; Beato, M.; Herrlich, P.; Schütz, G.; Umesono, K.; Blumberg, B.; Kastner, P.; Mark, M.; Chambon, P.; et al. The nuclear receptor superfamily: The second decade. Cell 1995, 83, 835–839. [Google Scholar] [CrossRef]
- Culig, Z.; Santer, F.R. Androgen receptor signaling in prostate cancer. Cancer Metastasis Rev. 2014, 33, 413–427. [Google Scholar] [CrossRef]
- Jaattela, M. Heat shock proteins as cellular lifeguards. Ann. Med. 1999, 31, 261–271. [Google Scholar] [CrossRef]
- Sullivan, W.P.; Vroman, B.T.; Bauer, V.J.; Puri, R.K.; Riehl, R.M.; Pearson, G.R.; Toft, D.O. Isolation of steroid receptor binding protein from chicken oviduct and production of monoclonal antibodies. Biochemistry 1985, 24, 4214–4222. [Google Scholar] [CrossRef]
- Srinivas-Shankar, U.; Wu, C.F. Drug Insight: Testosterone preparations. Nat. Clin. Pract. Urol. 2006, 3, 653–665. [Google Scholar] [CrossRef]
- Saranyutanon, S.; Srivastava, S.K.; Pai, S.; Singh, S.; Singh, A.P. Therapies Targeted to Androgen Receptor Signaling Axis in Prostate Cancer: Progress, Challenges, and Hope. Cancers 2019, 12, 51. [Google Scholar] [CrossRef]
- Koochekpour, S. Androgen receptor signaling and mutations in prostate cancer. Asian J. Androl. 2010, 12, 639–657. [Google Scholar] [CrossRef]
- Leung, J.K.; Sadar, M.D. Non-Genomic Actions of the Androgen Receptor in Prostate Cancer. Front. Endocrinol. 2017, 8, 2. [Google Scholar] [CrossRef]
- Simons, S.S., Jr. What goes on behind closed doors: Physiological versus pharmacological steroid hormone actions. Bioessays 2008, 30, 744–756. [Google Scholar] [CrossRef] [PubMed]
- Davey, R.A.; Grossmann, M. Androgen Receptor Structure, Function and Biology: From Bench to Bedside. Clin. Biochem. Rev. 2016, 37, 3–15. [Google Scholar] [PubMed]
- Matsumoto, T.; Sakari, M.; Okada, M.; Yokoyama, A.; Takahashi, S.; Kouzmenko, A.; Kato, S. The androgen receptor in health and disease. Annu. Rev. Physiol. 2013, 75, 201–224. [Google Scholar] [CrossRef] [PubMed]
- Schuppe, E.R.; Miles, M.C.; Fuxjager, M.J. Evolution of the androgen receptor: Perspectives from human health to dancing birds. Mol. Cell. Endocrinol. 2020, 499, 110577. [Google Scholar] [CrossRef]
- McPhaul, M.J.; Marcelli, M.; Zoppi, S.; Griffin, J.E.; Wilson, J.D. Genetic basis of endocrine disease. 4. The spectrum of mutations in the androgen receptor gene that causes androgen resistance. J. Clin. Endocrinol. Metab. 1993, 76, 17–23. [Google Scholar] [CrossRef]
- Gottlieb, B.; Beitel, L.K.; Nadarajah, A.; Paliouras, M.; Trifiro, M. The androgen receptor gene mutations database: 2012 update. Hum. Mutat. 2012, 33, 887–894. [Google Scholar] [CrossRef]
- Brinkmann, A.O.; Jenster, G.; Ris-Stalpers, C.; van der Korput, J.A.; Bruggenwirth, H.T.; Boehmer, A.L.; Trapman, J. Androgen receptor mutations. J. Steroid Biochem. Mol. Biol. 1995, 53, 443–448. [Google Scholar] [CrossRef]
- Shukla, G.C.; Plaga, A.R.; Shankar, E.; Gupta, S. Androgen receptor-related diseases: What do we know? Andrology 2016, 4, 366–381. [Google Scholar] [CrossRef]
- Consortium, G.T. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 2013, 45, 580–585. [Google Scholar] [CrossRef]
- Nordenstedt, H.; Younes, M.; El-Serag, H.B. Expression of androgen receptors in Barrett esophagus. J. Clin. Gastroenterol. 2012, 46, 251–252. [Google Scholar] [CrossRef]
- Bartha, A.; Gyorffy, B. TNMplot.com: A Web Tool for the Comparison of Gene Expression in Normal, Tumor and Metastatic Tissues. Int. J. Mol. Sci. 2021, 22, 2622. [Google Scholar] [CrossRef]
- Pundir, C.; Deswal, R.; Narwal, V.; Dang, A. The Prevalence of Polycystic Ovary Syndrome: A Brief Systematic Review. J. Human Reprod. Sci. 2020, 13, 261. [Google Scholar] [CrossRef]
- Dohle, G.R.; Smit, M.; Weber, R.F. Androgens and male fertility. World J. Urol. 2003, 21, 341–345. [Google Scholar] [CrossRef]
- Zhou, Y.; Bolton, E.C.; Jones, J.O. Androgens and androgen receptor signaling in prostate tumorigenesis. J. Mol. Endocrinol. 2015, 54, R15–R29. [Google Scholar] [CrossRef]
- Anestis, A.; Zoi, I.; Papavassiliou, A.G.; Karamouzis, M.V. Androgen Receptor in Breast Cancer-Clinical and Preclinical Research Insights. Molecules 2020, 25, 358. [Google Scholar] [CrossRef]
- Xiong, X.; Qiu, S.; Yi, X.; Xu, H.; Lei, H.; Liao, D.; Bai, S.; Peng, G.; Wei, Q.; Ai, J.; et al. Efficacy and safety of bipolar androgen therapy in mCRPC after progression on abiraterone or enzalutamide: A systematic review. Urol. Oncol. Semin. Orig. Investig. 2022, 40, 4.e19–4.e28. [Google Scholar] [CrossRef]
- Hartgens, F.; Kuipers, H. Effects of Androgenic-Anabolic Steroids in Athletes. Sports Med. 2004, 34, 513–554. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Khatib, J.; Chiu, C.-Y.; Lin, J.; Patel, S.T.; Liu-Smith, F. Tumor Androgen Receptor Protein Level Is Positively Associated with a Better Overall Survival in Melanoma Patients. Genes 2023, 14, 345. [Google Scholar] [CrossRef] [PubMed]
- Vellano, C.P.; White, M.G.; Andrews, M.C.; Chelvanambi, M.; Witt, R.G.; Daniele, J.R.; Titus, M.; McQuade, J.L.; Conforti, F.; Burton, E.M.; et al. Androgen receptor blockade promotes response to BRAF/MEK-targeted therapy. Nature 2022, 606, 797–803. [Google Scholar] [CrossRef]
- Zalcman, N.; Canello, T.; Ovadia, H.; Charbit, H.; Zelikovitch, B.; Mordechai, A.; Fellig, Y.; Rabani, S.; Shahar, T.; Lossos, A.; et al. Androgen receptor: A potential therapeutic target for glioblastoma. Oncotarget 2018, 9, 19980–19993. [Google Scholar] [CrossRef]
- Dotto, G.P.; Buckinx, A.; Ozdemir, B.C.; Simon, C. Androgen receptor signalling in non-prostatic malignancies: Challenges and opportunities. Nat. Rev. Cancer 2025, 25, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Hickey, T.E.; Selth, L.A.; Chia, K.M.; Laven-Law, G.; Milioli, H.H.; Roden, D.; Jindal, S.; Hui, M.; Finlay-Schultz, J.; Ebrahimie, E.; et al. The androgen receptor is a tumor suppressor in estrogen receptor-positive breast cancer. Nat. Med. 2021, 27, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Ligr, M.; Li, Y.; Zou, X.; Daniels, G.; Melamed, J.; Peng, Y.; Wang, W.; Wang, J.; Ostrer, H.; Pagano, M.; et al. Tumor suppressor function of androgen receptor coactivator ARA70alpha in prostate cancer. Am. J. Pathol. 2010, 176, 1891–1900. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.W.; Hsu, I.; Xu, D.; Miyamoto, H.; Liang, L.; Wu, X.R.; Shyr, C.R.; Chang, C. Decreased tumorigenesis and mortality from bladder cancer in mice lacking urothelial androgen receptor. Am. J. Pathol. 2013, 182, 1811–1820. [Google Scholar] [CrossRef]
- Matye, D.; Leak, J.; Woolbright, B.L.; Taylor, J.A., 3rd. Preclinical models of bladder cancer: BBN and beyond. Nat. Rev. Urol. 2024, 21, 723–734. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, H.; Sun, Q.; Liu, X.; Wu, Z.; Wang, X.; Fang, W.; Ma, Z. miR-224-5p-enriched exosomes promote tumorigenesis by directly targeting androgen receptor in non-small cell lung cancer. Mol. Ther. Nucleic Acids 2021, 23, 1217–1228. [Google Scholar] [CrossRef]
- Michmerhuizen, A.R.; Spratt, D.E.; Pierce, L.J.; Speers, C.W. Are we there yet? Understanding androgen receptor signaling in breast cancer. NPJ Breast Cancer 2020, 6, 47. [Google Scholar] [CrossRef]
- Liu, X.; Qing, S.; Che, K.; Li, L.; Liao, X. Androgen receptor promotes oral squamous cell carcinoma cell migration by increasing EGFR phosphorylation. OncoTargets Ther. 2019, 12, 4245–4252. [Google Scholar] [CrossRef]
- Heemers, H.V.; Tindall, D.J. Androgen receptor (AR) coregulators: A diversity of functions converging on and regulating the AR transcriptional complex. Endocr. Rev. 2007, 28, 778–808. [Google Scholar] [CrossRef]
- Polkinghorn, W.R.; Parker, J.S.; Lee, M.X.; Kass, E.M.; Spratt, D.E.; Iaquinta, P.J.; Arora, V.K.; Yen, W.F.; Cai, L.; Zheng, D.; et al. Androgen receptor signaling regulates DNA repair in prostate cancers. Cancer Discov. 2013, 3, 1245–1253. [Google Scholar] [CrossRef]
- Ma, M.; Ghosh, S.; Tavernari, D.; Katarkar, A.; Clocchiatti, A.; Mazzeo, L.; Samarkina, A.; Epiney, J.; Yu, Y.R.; Ho, P.C.; et al. Sustained androgen receptor signaling is a determinant of melanoma cell growth potential and tumorigenesis. J. Exp. Med. 2021, 218, e20201137. [Google Scholar] [CrossRef]
- Huang, Q.; Sun, Y.; Ma, X.; Gao, Y.; Li, X.; Niu, Y.; Zhang, X.; Chang, C. Androgen receptor increases hematogenous metastasis yet decreases lymphatic metastasis of renal cell carcinoma. Nat. Commun. 2017, 8, 918. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Zhang, X.; Li, Y.; Cao, D.; Luo, C.; Zhang, Q.; Zhang, S.; Jiao, Y. Age-related testosterone decline: Mechanisms and intervention strategies. Reprod. Biol. Endocrinol. 2024, 22, 144. [Google Scholar] [CrossRef] [PubMed]
- Muraleedharan, V.; Jones, T.H. Testosterone and the metabolic syndrome. Ther. Adv. Endocrinol. Metab. 2010, 1, 207–223. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.S.; Marshall, H.; Smith, I.L.; Greenfield, D.M.; Swain, J.; Best, E.; Ashton, J.; Brown, J.M.; Huddart, R.; Coleman, R.E.; et al. Testosterone replacement in young male cancer survivors: A 6-month double-blind randomised placebo-controlled trial. PLoS Med. 2019, 16, e1002960. [Google Scholar] [CrossRef]
- Burney, B.O.; Garcia, J.M. Hypogonadism in male cancer patients. J. Cachexia Sarcopenia Muscle 2012, 3, 149–155. [Google Scholar] [CrossRef]
- Del Fabbro, E.; Hui, D.; Nooruddin, Z.I.; Dalal, S.; Dev, R.; Freer, G.; Roberts, L.; Palmer, J.L.; Bruera, E. Associations among hypogonadism, C-reactive protein, symptom burden, and survival in male cancer patients with cachexia: A preliminary report. J. Pain Symptom Manag. 2010, 39, 1016–1024. [Google Scholar] [CrossRef]
- Li, C.; Cheng, D.; Li, P. Androgen receptor dynamics in prostate cancer: From disease progression to treatment resistance. Front. Oncol. 2025, 15, 1542811. [Google Scholar] [CrossRef]
- AR Blockers Augment Other Cancer Treatments. Cancer Discov. 2022, 12, OF2. [CrossRef]
- Di Donato, M.; Cristiani, C.M.; Capone, M.; Garofalo, C.; Madonna, G.; Passacatini, L.C.; Ottaviano, M.; Ascierto, P.A.; Auricchio, F.; Carbone, E.; et al. Role of the androgen receptor in melanoma aggressiveness. Cell Death Dis. 2025, 16, 34. [Google Scholar] [CrossRef]
- Morgan, E.; Soerjomataram, I.; Rumgay, H.; Coleman, G.H.; Thrift, P.A.; Vignat, J.; Laversanne, M.; Ferlay, J.; Arnold, M. The Global Landscape of Esophageal Squamous Cell Carcinoma and Esophageal Adenocarcinoma Incidence and Mortality in 2020 and Projections to 2040: New Estimates from GLOBOCAN 2020. Gastroenterology 2022, 163, 649–658.e642. [Google Scholar] [CrossRef] [PubMed]
- Stabellini, N.; Chandar, A.K.; Chak, A.; Barda, A.J.; Dmukauskas, M.; Waite, K.; Barnholtz-Sloan, J.S. Sex differences in esophageal cancer overall and by histological subtype. Sci. Rep. 2022, 12, 5248. [Google Scholar] [CrossRef] [PubMed]
- Abbas, G.; Krasna, M. Overview of esophageal cancer. Ann. Cardiothorac. Surg. 2017, 6, 131–136. [Google Scholar] [CrossRef]
- Siegel, R.L.; Kratzer, T.B.; Giaquinto, A.N.; Sung, H.; Jemal, A. Cancer statistics, 2025. CA A Cancer J. Clin. 2025, 75, 10–45. [Google Scholar] [CrossRef]
- Sukocheva, O.A.; Li, B.; Due, S.L.; Hussey, D.J.; Watson, D.I. Androgens and esophageal cancer: What do we know? World J. Gastroenterol. 2015, 21, 6146–6156. [Google Scholar] [CrossRef]
- Rutegard, M.; Lagergren, P.; Nordenstedt, H.; Lagergren, J. Oesophageal adenocarcinoma: The new epidemic in men? Maturitas 2011, 69, 244–248. [Google Scholar] [CrossRef]
- Petrick, J.L.; Hyland, P.L.; Caron, P.; Falk, R.T.; Pfeiffer, R.M.; Dawsey, S.M.; Abnet, C.C.; Taylor, P.R.; Weinstein, S.J.; Albanes, D.; et al. Associations Between Prediagnostic Concentrations of Circulating Sex Steroid Hormones and Esophageal/Gastric Cardia Adenocarcinoma Among Men. J. Natl. Cancer Inst. 2019, 111, 34–41. [Google Scholar] [CrossRef]
- Xie, S.H.; Ness-Jensen, E.; Rabbani, S.; Langseth, H.; Gislefoss, R.E.; Mattsson, F.; Lagergren, J. Circulating Sex Hormone Levels and Risk of Esophageal Adenocarcinoma in a Prospective Study in Men. Am. J. Gastroenterol. 2020, 115, 216–223. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y.; Lagergren, J.; Li, S.; Li, J.; Zhou, Z.; Hu, Z.; Xie, S.H. Circulating Sex Hormone Levels and Risk of Gastrointestinal Cancer: Systematic Review and Meta-Analysis of Prospective Studies. Cancer Epidemiol. Biomark. Prev. 2023, 32, 936–946. [Google Scholar] [CrossRef]
- Dong, H.; Xu, J.; Li, W.; Gan, J.; Lin, W.; Ke, J.; Jiang, J.; Du, L.; Chen, Y.; Zhong, X.; et al. Reciprocal androgen receptor/interleukin-6 crosstalk drives oesophageal carcinoma progression and contributes to patient prognosis. J. Pathol. 2017, 241, 448–462. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, T.; Zhong, X.; Cheng, C. Androgen receptor promotes esophageal cancer cell migration and proliferation via matrix metalloproteinase 2. Tumour Biol. 2015, 36, 5859–5864. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Chen, H.; Zhu, X.; Gong, T.; Li, X.; Hankey, W.; Wang, H.; Chen, Z.; Wang, Q.; Liu, Z. The oncogenomic function of androgen receptor in esophageal squamous cell carcinoma is directed by GATA3. Cell Res. 2021, 31, 362–365. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Huang, F.; Gao, W.; Gong, T.; Chen, H.; Liu, Z. Androgen Receptor/AP-1 Activates UGT2B15 Transcription to Promote Esophageal Squamous Cell Carcinoma Invasion. Cancers 2023, 15, 5719. [Google Scholar] [CrossRef]
- Chen, J.; Huang, C.-P.; Quan, C.; Zu, X.; Ou, Z.; Tsai, Y.-C.; Messing, E.; Yeh, S.; Chang, C. The androgen receptor in bladder cancer. Nat. Rev. Urol. 2023, 20, 560–574. [Google Scholar] [CrossRef]
- Li, P.; Chen, J.; Miyamoto, H. Androgen Receptor Signaling in Bladder Cancer. Cancers 2017, 9, 20. [Google Scholar] [CrossRef]
- Bertram, J.S.; Craig, A.W. Specific induction of bladder cancer in mice by butyl-(4-hydroxybutyl)-nitrosamine and the effects of hormonal modifications on the sex difference in response. Eur. J. Cancer (1965) 1972, 8, 587–594. [Google Scholar] [CrossRef]
- Overdevest, J.B.; Knubel, K.H.; Duex, J.E.; Thomas, S.; Nitz, M.D.; Harding, M.A.; Smith, S.C.; Frierson, H.F.; Conaway, M.; Theodorescu, D. CD24 expression is important in male urothelial tumorigenesis and metastasis in mice and is androgen regulated. Proc. Natl. Acad. Sci. USA 2012, 109, E3588–E3596. [Google Scholar] [CrossRef]
- Makela, V.J.; Kotsar, A.; Tammela, T.L.J.; Murtola, T.J. Bladder Cancer Survival of Men Receiving 5alpha-Reductase Inhibitors. J. Urol. 2018, 200, 743–748. [Google Scholar] [CrossRef]
- Miyamoto, H.; Yang, Z.; Chen, Y.T.; Ishiguro, H.; Uemura, H.; Kubota, Y.; Nagashima, Y.; Chang, Y.J.; Hu, Y.C.; Tsai, M.Y.; et al. Promotion of bladder cancer development and progression by androgen receptor signals. J. Natl. Cancer Inst. 2007, 99, 558–568. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.M.; O’Connell, M.J.; Miyamoto, H.; Huang, J.; Yao, J.L.; Messing, E.M.; Reeder, J.E. Androgenic dependence of exophytic tumor growth in a transgenic mouse model of bladder cancer: A role for thrombospondin-1. BMC Urol. 2008, 8, 7. [Google Scholar] [CrossRef] [PubMed]
- Shiota, M.; Takeuchi, A.; Yokomizo, A.; Kashiwagi, E.; Tatsugami, K.; Kuroiwa, K.; Naito, S. Androgen receptor signaling regulates cell growth and vulnerability to doxorubicin in bladder cancer. J. Urol. 2012, 188, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Kettunen, K.; Mathlin, J.; Lamminen, T.; Laiho, A.; Hakkinen, M.R.; Auriola, S.; Elo, L.L.; Bostrom, P.J.; Poutanen, M.; Taimen, P. Profiling steroid hormone landscape of bladder cancer reveals depletion of intratumoural androgens to castration levels: A cross-sectional study. EBioMedicine 2024, 108, 105359. [Google Scholar] [CrossRef]
- McBeth, L.; Grabnar, M.; Selman, S.; Hinds, T.D., Jr. Involvement of the Androgen and Glucocorticoid Receptors in Bladder Cancer. Int. J. Endocrinol. 2015, 2015, 384860. [Google Scholar] [CrossRef]
- Sanguedolce, F.; Cormio, L.; Carrieri, G.; Calo, B.; Russo, D.; Menin, A.; Pastore, A.L.; Greco, F.; Bozzini, G.; Galfano, A.; et al. Role of androgen receptor expression in non-muscle-invasive bladder cancer: A systematic review and meta-analysis. Histol. Histopathol. 2020, 35, 423–432. [Google Scholar] [CrossRef]
- Chen, J.; Cui, Y.; Li, P.; Liu, L.; Li, C.; Zu, X. Expression and clinical significance of androgen receptor in bladder cancer: A meta-analysis. Mol. Clin. Oncol. 2017, 7, 919–927. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, Y.; Izumi, K.; Ishiguro, H.; Ye, B.; Li, F.; Miyamoto, H. Androgen activates β-catenin signaling in bladder cancer cells. Endocr. -Relat. Cancer 2013, 20, 293–304. [Google Scholar] [CrossRef]
- Lin, C.; Yin, Y.; Stemler, K.; Humphrey, P.; Kibel, S.A.; Mysorekar, U.I.; Ma, L. Constitutive β-Catenin Activation Induces Male-Specific Tumorigenesis in the Bladder Urothelium. Cancer Res. 2013, 73, 5914–5925. [Google Scholar] [CrossRef]
- Izumi, K.; Zheng, Y.; Hsu, J.W.; Chang, C.; Miyamoto, H. Androgen receptor signals regulate UDP-glucuronosyltransferases in the urinary bladder: A potential mechanism of androgen-induced bladder carcinogenesis. Mol. Carcinog. 2013, 52, 94–102. [Google Scholar] [CrossRef]
- Chen, J.; Sun, Y.; Ou, Z.; Yeh, S.; Huang, C.P.; You, B.; Tsai, Y.C.; Sheu, T.J.; Zu, X.; Chang, C. Androgen receptor-regulated circFNTA activates KRAS signaling to promote bladder cancer invasion. EMBO Rep. 2020, 21, e48467. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, C.; Monteiro, F.L.; Direito, I.; Amado, F.; Afreixo, V.; Santos, L.L.; Helguero, L.A. Association Between Estrogen Receptors and GATA3 in Bladder Cancer: A Systematic Review and Meta-Analysis of Their Clinicopathological Significance. Front. Endocrinol. 2021, 12, 684140. [Google Scholar] [CrossRef] [PubMed]
- Qiang, Z.; Jubber, I.; Lloyd, K.; Cumberbatch, M.; Griffin, J. Gene of the month: GATA3. J. Clin. Pathol. 2023, 76, 793–797. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ishiguro, H.; Kawahara, T.; Miyamoto, Y.; Izumi, K.; Miyamoto, H. GATA3 in the urinary bladder: Suppression of neoplastic transformation and down-regulation by androgens. Am. J. Cancer Res. 2014, 4, 461–473. [Google Scholar]
- Qin, C.; Lu, Y.; Zhang, H.; Zhang, Z.; Xu, W.; Wen, S.; Gao, W.; Wu, Y. Biological roles and clinical significance of estrogen and androgen receptors in head and neck cancers. J. Cancer 2022, 13, 2189–2199. [Google Scholar] [CrossRef]
- Dalin, M.G.; Watson, P.A.; Ho, A.L.; Morris, L.G. Androgen Receptor Signaling in Salivary Gland Cancer. Cancers 2017, 9, 17. [Google Scholar] [CrossRef]
- Tomasovic-Loncaric, C.; Fucic, A.; Andabak, A.; Andabak, M.; Ceppi, M.; Bruzzone, M.; Vrdoljak, D.; Vucicevic-Boras, V. Androgen Receptor as a Biomarker of Oral Squamous Cell Carcinoma Progression Risk. Anticancer Res. 2019, 39, 4285–4289. [Google Scholar] [CrossRef]
- Batelja-Vuletic, L.; Tomasovic-Loncaric, C.; Ceppi, M.; Bruzzone, M.; Fucic, A.; Krstanac, K.; Boras Vucicevic, V. Comparison of Androgen Receptor, VEGF, HIF-1, Ki67 and MMP9 Expression between Non-Metastatic and Metastatic Stages in Stromal and Tumor Cells of Oral Squamous Cell Carcinoma. Life 2021, 11, 336. [Google Scholar] [CrossRef]
- Wang, X.; Yan, G.; Li, H.; Wang, C.; Kang, Y.; Wang, S.; Liu, W.; Lin, L.; Zou, R.; Zeng, K.; et al. RBAP48 facilitates the oral squamous cell carcinoma process in an androgen receptor-dependent and independent manners. Commun. Biol. 2025, 8, 829. [Google Scholar] [CrossRef]
- Sygut, D.; Bien, S.; Ziolkowska, M.; Sporny, S. Immunohistochemical expression of androgen receptor in salivary gland cancers. Pol. J. Pathol. Off. J. Pol. Soc. Pathol. 2008, 59, 205–210. [Google Scholar]
- Mehanna, H.; Paleri, V.; West, C.M.; Nutting, C. Head and neck cancer—Part 1: Epidemiology, presentation, and prevention. BMJ 2010, 341, c4684. [Google Scholar] [CrossRef] [PubMed]
- Barsouk, A.; Aluru, S.J.; Rawla, P.; Saginala, K.; Barsouk, A. Epidemiology, Risk Factors, and Prevention of Head and Neck Squamous Cell Carcinoma. Med. Sci. 2023, 11, 42. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Cioffi, G.; Wang, J.; Waite, K.A.; Ostrom, Q.T.; Kruchko, C.; Lathia, J.D.; Rubin, J.B.; Berens, M.E.; Connor, J.; et al. Sex Differences in Cancer Incidence and Survival: A Pan-Cancer Analysis. Cancer Epidemiol. Biomark. Prev. 2020, 29, 1389–1397. [Google Scholar] [CrossRef] [PubMed]
- Keir, A.J.; Whiteside, J.O.; Winter, C.S.; Maitra, S.; Corbridge, C.R.; Cox, J.G. Outcomes in Squamous Cell Carcinoma with Advanced Neck Disease. Ann. R. Coll. Surg. Engl. 2007, 89, 703–708. [Google Scholar] [CrossRef]
- Mody, M.D.; Rocco, J.W.; Yom, S.S.; Haddad, R.I.; Saba, N.F. Head and neck cancer. Lancet 2021, 398, 2289–2299. [Google Scholar] [CrossRef]
- Kanda, T.; Yokosuka, O. The androgen receptor as an emerging target in hepatocellular carcinoma. J. Hepatocell. Carcinoma 2015, 2, 91–99. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Nagasue, N.; Yu, L.; Yukaya, H.; Kohno, H.; Nakamura, T. Androgen and oestrogen receptors in hepatocellular carcinoma and surrounding liver parenchyma: Impact on intrahepatic recurrence after hepatic resection. Br. J. Surg. 1995, 82, 542–547. [Google Scholar] [CrossRef]
- Ma, W.L.; Hsu, C.L.; Wu, M.H.; Wu, C.T.; Wu, C.C.; Lai, J.J.; Jou, Y.S.; Chen, C.W.; Yeh, S.; Chang, C. Androgen Receptor Is a New Potential Therapeutic Target for the Treatment of Hepatocellular Carcinoma. Gastroenterology 2008, 135, 947–955.e945. [Google Scholar] [CrossRef]
- Ma, W.-L.; Lai, H.-C.; Yeh, S.; Cai, X.; Chang, C. Androgen receptor roles in hepatocellular carcinoma, fatty liver, cirrhosis and hepatitis. Endocr. -Relat. Cancer 2014, 21, R165–R182. [Google Scholar] [CrossRef]
- Watts, E.L.; Perez-Cornago, A.; Knuppel, A.; Tsilidis, K.K.; Key, T.J.; Travis, R.C. Prospective analyses of testosterone and sex hormone-binding globulin with the risk of 19 types of cancer in men and postmenopausal women in UK Biobank. Int. J. Cancer 2021, 149, 573–584. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Li, L.; Zhu, G.; Liang, L.; Guan, Z.; Chang, L.; Chen, Y.; Yeh, S.; Chang, C. ASC-J9 suppresses renal cell carcinoma progression by targeting an androgen receptor-dependent HIF2alpha/VEGF signaling pathway. Cancer Res. 2014, 74, 4420–4430. [Google Scholar] [CrossRef] [PubMed]
- Reckelhoff, J.F.; Roman, R.J. Androgens and hypertension: Role in both males and females? Hypertension 2011, 57, 681–682. [Google Scholar] [CrossRef]
- Moch, H.; Gasser, T.; Amin, M.B.; Torhorst, J.; Sauter, G.; Mihatsch, M.J. Prognostic utility of the recently recommended histologic classification and revised TNM staging system of renal cell carcinoma: A swiss experience with 588 tumors. Cancer 2000, 89, 604–614. [Google Scholar] [CrossRef]
- You, B.; Sun, Y.; Luo, J.; Wang, K.; Liu, Q.; Fang, R.; Liu, B.; Chou, F.; Wang, R.; Meng, J.; et al. Androgen receptor promotes renal cell carcinoma (RCC) vasculogenic mimicry (VM) via altering TWIST1 nonsense-mediated decay through lncRNA-TANAR. Oncogene 2021, 40, 1674–1689. [Google Scholar] [CrossRef]
- Wang, K.; Sun, Y.; Tao, W.; Fei, X.; Chang, C. Androgen receptor (AR) promotes clear cell renal cell carcinoma (ccRCC) migration and invasion via altering the circHIAT1/miR-195-5p/29a-3p/29c-3p/CDC42 signals. Cancer Lett. 2017, 394, 1–12. [Google Scholar] [CrossRef]
- Langner, C.; Ratschek, M.; Rehak, P.; Schips, L.; Zigeuner, R. Steroid hormone receptor expression in renal cell carcinoma: An immunohistochemical analysis of 182 tumors. J. Urol. 2004, 171, 611–614. [Google Scholar] [CrossRef]
- Zhu, G.; Liang, L.; Li, L.; Dang, Q.; Song, W.; Yeh, S.; He, D.; Chang, C. The expression and evaluation of androgen receptor in human renal cell carcinoma. Urology 2014, 83, 510.e19–510.e24. [Google Scholar] [CrossRef]
- Yuan, P.; Ge, Y.; Liu, X.; Wang, S.; Ye, Z.; Xu, H.; Chen, Z. The Association of Androgen Receptor Expression with Renal Cell Carcinoma Risk: A Systematic Review and Meta-Analysis. Pathol. Oncol. Res. 2020, 26, 605–614. [Google Scholar] [CrossRef]
- Wang, R.; Xu, X.Y.; Zhu, H.; Liang, X.; Li, X.; Jia, M.X.; Wang, Q.H.; Wang, H.Y.; Li, X.X.; Zhao, G.J. Androgen Receptor Promotes Gastric Carcinogenesis via Upregulating Cell Cycle-Related Kinase Expression. J. Cancer 2019, 10, 4178–4188. [Google Scholar] [CrossRef]
- Soleymani Fard, S.; Yazdanbod, M.; Sotoudeh, M.; Bashash, D.; Mahmoodzadeh, H.; Saliminejad, K.; Mousavi, S.A.; Ghaffari, S.H.; Alimoghaddam, K. Prognostic and Therapeutic Significance of Androgen Receptor in Patients with Gastric Cancer. OncoTargets Ther. 2020, 13, 9821–9837. [Google Scholar] [CrossRef]
- Ilic, M.; Ilic, I. Epidemiology of stomach cancer. World J. Gastroenterol. 2022, 28, 1187–1203. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, M.; Hua, M.; Wang, Z.; Ying, Y.; Zhang, Z.; Zeng, S.; Wang, H.; Xu, C. Association between testosterone and cancers risk in women: A two-sample Mendelian randomization study. Discov. Oncol. 2023, 14, 198. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Wan, H.; Lin, Y.; Xie, X.; Li, Z.; Tan, G. Androgen receptor may be responsible for gender disparity in gastric cancer. Med. Hypotheses 2013, 80, 672–674. [Google Scholar] [CrossRef]
- Xia, N.; Cui, J.; Zhu, M.; Xing, R.; Lu, Y. Androgen receptor variant 12 promotes migration and invasion by regulating MYLK in gastric cancer. J. Pathol. 2019, 248, 304–315. [Google Scholar] [CrossRef]
- Saginala, K.; Barsouk, A.; Aluru, S.J.; Rawla, P.; Barsouk, A. Epidemiology of Melanoma. Med. Sci. 2021, 9, 63. [Google Scholar] [CrossRef]
- Liu, F.; Bessonova, L.; Taylor, H.T.; Ziogas, A.; Meyskens, L.F.; Anton-Culver, H. A unique gender difference in early onset melanoma implies that in addition to ultraviolet light exposure other causative factors are important. Pigment Cell Melanoma Res. 2013, 26, 128–135. [Google Scholar] [CrossRef]
- Nosrati, A.; Wei, M.L. Sex disparities in melanoma outcomes: The role of biology. Arch. Biochem. Biophys. 2014, 563, 42–50. [Google Scholar] [CrossRef]
- Rampen, F.H.; Mulder, J.H. Malignant melanoma: An androgen-dependent tumour? Lancet 1980, 1, 562–564. [Google Scholar] [CrossRef]
- Parikh, R.; Sorek, E.; Parikh, S.; Michael, K.; Bikovski, L.; Tshori, S.; Shefer, G.; Mingelgreen, S.; Zornitzki, T.; Knobler, H.; et al. Skin exposure to UVB light induces a skin-brain-gonad axis and sexual behavior. Cell Rep. 2021, 36, 109579. [Google Scholar] [CrossRef]
- Zornitzki, T.; Tshori, S.; Shefer, G.; Mingelgrin, S.; Levy, C.; Knobler, H. Seasonal Variation of Testosterone Levels in a Large Cohort of Men. Int. J. Endocrinol. 2022, 2022, 6093092. [Google Scholar] [CrossRef]
- Grant, L.; Banerji, S.; Murphy, L.; Dawe, D.E.; Harlos, C.; Myal, Y.; Nugent, Z.; Blanchard, A.; Penner, C.R.; Qing, G.; et al. Androgen Receptor and Ki67 Expression and Survival Outcomes in Non-small Cell Lung Cancer. Horm. Cancer 2018, 9, 288–294. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, J.W.; Yu, W.W. Androgen Receptor Promotes Lung Cancer Metastasis by Modifying the miR23a-3p/EPHB2 Pathway. Curr. Med. Sci. 2024, 44, 954–963. [Google Scholar] [CrossRef]
- Ragavan, M.V.; Patel, M.I. Understanding sex disparities in lung cancer incidence: Are women more at risk? Lung Cancer Manag. 2020, 9, LMT34. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Mo, Q.; Shen, H.; Wang, S.; Liu, B. Reproductive and hormonal factors and bladder cancer risk: A prospective study and meta-analysis. Aging 2020, 12, 14691–14698. [Google Scholar] [CrossRef] [PubMed]
- Davis-Dao, C.A.; Henderson, K.D.; Sullivan-Halley, J.; Ma, H.; West, D.; Xiang, Y.B.; Gago-Dominguez, M.; Stern, M.C.; Castelao, J.E.; Conti, D.V.; et al. Lower risk in parous women suggests that hormonal factors are important in bladder cancer etiology. Cancer Epidemiol. Biomark. Prev. 2011, 20, 1156–1170. [Google Scholar] [CrossRef]
- Scosyrev, E.; Noyes, K.; Feng, C.; Messing, E. Sex and racial differences in bladder cancer presentation and mortality in the US. Cancer 2009, 115, 68–74. [Google Scholar] [CrossRef]
- Zhu, S.; Zhao, H. Sexual dimorphism in bladder cancer: A review of etiology, biology, diagnosis, and outcomes. Front. Pharmacol. 2023, 14, 1326627. [Google Scholar] [CrossRef]
- May, M.; Bastian, P.J.; Brookman-May, S.; Fritsche, H.M.; Tilki, D.; Otto, W.; Bolenz, C.; Gilfrich, C.; Trojan, L.; Herrmann, E.; et al. Gender-specific differences in cancer-specific survival after radical cystectomy for patients with urothelial carcinoma of the urinary bladder in pathologic tumor stage T4a. Urol. Oncol. 2013, 31, 1141–1147. [Google Scholar] [CrossRef]
- Tilki, D.; Svatek, R.S.; Karakiewicz, P.I.; Isbarn, H.; Reich, O.; Kassouf, W.; Fradet, Y.; Novara, G.; Fritsche, H.M.; Bastian, P.J.; et al. Characteristics and outcomes of patients with pT4 urothelial carcinoma at radical cystectomy: A retrospective international study of 583 patients. J. Urol. 2010, 183, 87–93. [Google Scholar] [CrossRef]
- Toren, P.; Wilkins, A.; Patel, K.; Burley, A.; Gris, T.; Kockelbergh, R.; Lodhi, T.; Choudhury, A.; Bryan, R.T. The sex gap in bladder cancer—A missing link in bladder cancer care? Nat. Rev. Urol. 2024, 21, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Harshman, L.C. Mind the gap: What is driving the survival disparity between the sexes in bladder cancer? Cancer 2016, 122, 1966–1970. [Google Scholar] [CrossRef] [PubMed]
- Saginala, K.; Barsouk, A.; Aluru, J.S.; Rawla, P.; Padala, S.A.; Barsouk, A. Epidemiology of Bladder Cancer. Med. Sci. 2020, 8, 15. [Google Scholar] [CrossRef]
- Krabbe, L.M.; Svatek, R.S.; Shariat, S.F.; Messing, E.; Lotan, Y. Bladder cancer risk: Use of the PLCO and NLST to identify a suitable screening cohort. Urol. Oncol. 2015, 33, 65.e19–65.e25. [Google Scholar] [CrossRef]
- Tan, W.; Gao, L.; Yuan, Y.; Huang, H.; Li, Y.; Gou, Y.; Hu, Z. Relationship between testosterone and male bladder cancer. Sci. Rep. 2023, 13, 12881. [Google Scholar] [CrossRef]
- Ren, W.; Zhu, Y. Causal Associations Between the Presence of Prostate Cancer or Testosterone Levels and Bladder Cancer Risk: A Mendelian Randomization Study. Clin. Genitourin. Cancer 2025, 23, 102334. [Google Scholar] [CrossRef]
- Chen, S.; Yang, X.; Feng, J.F. A novel inflammation-based prognostic score for patients with esophageal squamous cell carcinoma: The c-reactive protein/prognostic nutritional index ratio. Oncotarget 2016, 7, 62123–62132. [Google Scholar] [CrossRef]
- Zahra, M.; Saady, M.; Azzazy, H.M.E. Molecular mechanisms of sex hormones in Hepatocellular Carcinoma: A systematic review. Mol. Biol. Rep. 2025, 52, 975. [Google Scholar] [CrossRef]
- Kim, J.H.; Bae, G.H.; Jung, J.; Noh, T.I. Secondary Cancer after Androgen Deprivation Therapy in Prostate Cancer: A Nationwide Study. World J. Mens. Health 2025, 43, 123–133. [Google Scholar] [CrossRef]
- Harlos, C.; Musto, G.; Lambert, P.; Ahmed, R.; Pitz, M.W. Androgen pathway manipulation and survival in patients with lung cancer. Horm. Cancer 2015, 6, 120–127. [Google Scholar] [CrossRef]
- Berardi, R.; Morgese, F.; Santinelli, A.; Onofri, A.; Biscotti, T.; Brunelli, A.; Caramanti, M.; Savini, A.; De Lisa, M.; Ballatore, Z.; et al. Hormonal receptors in lung adenocarcinoma: Expression and difference in outcome by sex. Oncotarget 2016, 7, 82648–82657. [Google Scholar] [CrossRef]
- Chang, J.; Wu, Y.; Zhou, S.; Tian, Y.; Wang, Y.; Tian, J.; Song, W.; Dong, Y.; Li, J.; Zhao, Z.; et al. Genetically predicted testosterone and cancers risk in men: A two-sample Mendelian randomization study. J. Transl. Med. 2022, 20, 573. [Google Scholar] [CrossRef]
- Hashim, D.; Sartori, S.; La Vecchia, C.; Serraino, D.; Maso, L.D.; Negri, E.; Smith, E.; Levi, F.; Boccia, S.; Cadoni, G.; et al. Hormone factors play a favorable role in female head and neck cancer risk. Cancer Med. 2017, 6, 1998–2007. [Google Scholar] [CrossRef]
- Mohamed, H.; Aro, K.; Jouhi, L.; Makitie, A.; Remes, S.; Haglund, C.; Atula, T.; Hagstrom, J. Expression of hormone receptors in oropharyngeal squamous cell carcinoma. Eur. Arch. Oto-Rhino-Laryngol. Off. J. Eur. Fed. Oto-Rhino-Laryngol. Soc. 2018, 275, 1289–1300. [Google Scholar] [CrossRef]
- CP, D.E.O.N.; Brito, H.O.; RMG, D.A.C.; Brito, L.M.O. Is There a Role for Sex Hormone Receptors in Head-and-neck Cancer? Links with HPV Infection and Prognosis. Anticancer Res. 2021, 41, 3707–3716. [Google Scholar] [CrossRef]
- Conkas, J.; Sabol, M.; Ozretic, P. ‘Toxic Masculinity’: What Is Known about the Role of Androgen Receptors in Head and Neck Squamous Cell Carcinoma. Int. J. Mol. Sci. 2023, 24, 3766. [Google Scholar] [CrossRef]
- Shiota, M.; Ushijima, M.; Imada, K.; Kashiwagi, E.; Takeuchi, A.; Inokuchi, J.; Tatsugami, K.; Kajioka, S.; Eto, M. Cigarette smoking augments androgen receptor activity and promotes resistance to antiandrogen therapy. Prostate 2019, 79, 1147–1155. [Google Scholar] [CrossRef] [PubMed]
- Wagner, R.G.; Ngugi, A.K.; Twine, R.; Bottomley, C.; Kamuyu, G.; Gomez-Olive, F.X.; Connor, M.D.; Collinson, M.A.; Kahn, K.; Tollman, S.; et al. Prevalence and risk factors for active convulsive epilepsy in rural northeast South Africa. Epilepsy Res. 2014, 108, 782–791. [Google Scholar] [CrossRef] [PubMed]
- Manca, S.; Frisbie, C.P.; LaGrange, C.A.; Casey, C.A.; Riethoven, J.M.; Petrosyan, A. The Role of Alcohol-Induced Golgi Fragmentation for Androgen Receptor Signaling in Prostate Cancer. Mol. Cancer Res. 2019, 17, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, A.; Bando, M.; Takashi, T.; Sugiuchi, M.; Hyodo, M.; Mishima, Y.; Kuroda, M.; Mori, H.; Kuroda, A.; Yumoto, H.; et al. Umami taste sensitivity is associated with food intake and oral environment in subjects with diabetes. J. Med. Investig. JMI 2023, 70, 241–250. [Google Scholar] [CrossRef]
- Fei, M.; Zhang, J.; Zhou, J.; Xu, Y.; Wang, J. Sex-related hormone receptor in laryngeal squamous cell carcinoma: Correlation with androgen estrogen-a and prolactin receptor expression and influence of prognosis. Acta Otolaryngol. 2018, 138, 66–72. [Google Scholar] [CrossRef]
- Cruz, A.; Magalhães, H.; Pereira, F.F.; Dinis, J.; Vieira, C. A 10-year review of primary major salivary gland cancers. Ecancermedicalscience 2020, 14, 1055. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, R.M.; Sharma, A.; Schmitt, C.N.; Johnson, T.J.; Ferris, L.R.; Duvvuri, U.; Kim, S. A 20-Year Review of 75 Cases of Salivary Duct Carcinoma. JAMA Otolaryngol. -Head Neck Surg. 2016, 142, 489. [Google Scholar] [CrossRef] [PubMed]
- Steuer, E.C.; Hanna, J.G.; Viswanathan, K.; Bates, E.J.; Kaka, S.A.; Schmitt, C.N.; Ho, L.A.; Saba, F.N. The evolving landscape of salivary gland tumors. CA A Cancer J. Clin. 2023, 73, 597–619. [Google Scholar] [CrossRef] [PubMed]
- Dalin, G.M.; Desrichard, A.; Katabi, N.; Makarov, V.; Walsh, A.L.; Lee, K.-W.; Wang, Q.; Armenia, J.; West, L.; Dogan, S.; et al. Comprehensive Molecular Characterization of Salivary Duct Carcinoma Reveals Actionable Targets and Similarity to Apocrine Breast Cancer. Clin. Cancer Res. 2016, 22, 4623–4633. [Google Scholar] [CrossRef]
- Dong, S.; Li, M.; Zhang, Z.; Feng, B.; Ding, W.; Chang, J.; Liu, F. Clinical diagnosis, treatment, and survival analysis of 61 cases of salivary duct carcinoma: A retrospective study. PeerJ 2025, 13, e19626. [Google Scholar] [CrossRef]
- Locati, L.D.; Quattrone, P.; Bossi, P.; Marchiano, A.V.; Cantu, G.; Licitra, L. A complete remission with androgen-deprivation therapy in a recurrent androgen receptor-expressing adenocarcinoma of the parotid gland. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2003, 14, 1327–1328. [Google Scholar] [CrossRef]
- Jaspers, H.C.; Verbist, B.M.; Schoffelen, R.; Mattijssen, V.; Slootweg, P.J.; van der Graaf, W.T.; van Herpen, C.M. Androgen receptor-positive salivary duct carcinoma: A disease entity with promising new treatment options. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2011, 29, e473–e476. [Google Scholar] [CrossRef]
- Ho, A.L.; Foster, N.R.; Zoroufy, A.J.; Campbell, J.D.; Worden, F.; Price, K.; Adkins, D.; Bowles, D.W.; Kang, H.; Burtness, B.; et al. Phase II Study of Enzalutamide for Patients With Androgen Receptor-Positive Salivary Gland Cancers (Alliance A091404). J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2022, 40, 4240–4249. [Google Scholar] [CrossRef]
- Locati, L.D.; Perrone, F.; Cortelazzi, B.; Lo Vullo, S.; Bossi, P.; Dagrada, G.; Quattrone, P.; Bergamini, C.; Potepan, P.; Civelli, E.; et al. Clinical activity of androgen deprivation therapy in patients with metastatic/relapsed androgen receptor-positive salivary gland cancers. Head Neck 2016, 38, 724–731. [Google Scholar] [CrossRef] [PubMed]
- Augello, A.M.; Hickey, E.T.; Knudsen, E.K. FOXA1: Master of steroid receptor function in cancer. EMBO J. 2011, 30, 3885–3894. [Google Scholar] [CrossRef] [PubMed]
- Petrick, J.L.; Florio, A.A.; Znaor, A.; Ruggieri, D.; Laversanne, M.; Alvarez, C.S.; Ferlay, J.; Valery, P.C.; Bray, F.; McGlynn, K.A. International trends in hepatocellular carcinoma incidence, 1978–2012. Int. J. Cancer 2020, 147, 317–330. [Google Scholar] [CrossRef]
- Rumgay, H.; Arnold, M.; Ferlay, J.; Lesi, O.; Cabasag, J.C.; Vignat, J.; Laversanne, M.; Mcglynn, A.K.; Soerjomataram, I. Global burden of primary liver cancer in 2020 and predictions to 2040. J. Hepatol. 2022, 77, 1598–1606. [Google Scholar] [CrossRef]
- Ajayi, F.; Jan, J.; Singal, A.G.; Rich, N.E. Racial and Sex Disparities in Hepatocellular Carcinoma in the USA. Curr. Hepatol. Rep. 2020, 19, 462–469. [Google Scholar] [CrossRef]
- Orsted, D.D.; Nordestgaard, B.G.; Bojesen, S.E. Plasma testosterone in the general population, cancer prognosis and cancer risk: A prospective cohort study. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2014, 25, 712–718. [Google Scholar] [CrossRef]
- Nakatani, T.; Roy, G.; Fujimoto, N.; Asahara, T.; Ito, A. Sex hormone dependency of diethylnitrosamine-induced liver tumors in mice and chemoprevention by leuprorelin. Jpn. J. Cancer Res. Gann 2001, 92, 249–256. [Google Scholar] [CrossRef]
- Montgomery, E.J.; Xing, E.; Campbell, M.J.; Li, P.K.; Blachly, J.S.; Tsung, A.; Coss, C.C. Constitutively Active Androgen Receptor in Hepatocellular Carcinoma. Int. J. Mol. Sci. 2022, 23, 3768. [Google Scholar] [CrossRef]
- Nagasue, N.; Ito, A.; Yukaya, H.; Ogawa, Y. Androgen receptors in hepatocellular carcinoma and surrounding parenchyma. Gastroenterology 1985, 89, 643–647. [Google Scholar] [CrossRef]
- Zhang, B.; Yu, Z.; Zhang, J.; Xu, Y.; Zhang, M.; Dai, Z.; Zhu, J.; Zheng, S. Identification of Androgen Receptor as a Molecular Docking Target for Survival and Response to Metformin-Induced Ferroptosis in Liver Cancer. Cancer Rep. 2025, 8, e70245. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, J.; Wu, Q.; Zhang, X.; Lin, S.; Ran, W.; Zhu, L.; Tang, C.; Wang, X. Sex steroid axes in determining male predominance in hepatocellular carcinoma. Cancer Lett. 2023, 555, 216037. [Google Scholar] [CrossRef]
- Song, H.; Yu, Z.; Sun, X.; Feng, J.; Yu, Q.; Khan, H.; Zhu, X.; Huang, L.; Li, M.; Mok, M.T.S.; et al. Androgen receptor drives hepatocellular carcinogenesis by activating enhancer of zeste homolog 2-mediated Wnt/beta-catenin signaling. EBioMedicine 2018, 35, 155–166. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, X.; Wang, H.; Li, S.; Miao, Z.; Yang, J.; Zhang, Y.; Lei, K.; Wu, Y.; Kang, Y.; et al. Androgen receptor promotes arachidonic acid metabolism and angiogenic microenvironment in AFP-negative hepatocellular carcinoma. Nat. Commun. 2025, 16, 6451. [Google Scholar] [CrossRef]
- Zhao, J.; Fang, L.; Pu, R.; Liu, W.; Cai, S.; Wang, R.; Shi, Y.; Li, Z.; Zhang, Z.; Li, Z.; et al. Androgen receptor-induced molecules and androgen contribute synergistically to male-predominance of hepatocellular carcinoma. iScience 2024, 27, 110519. [Google Scholar] [CrossRef]
- Ruggieri, A.; Gagliardi, M.C.; Anticoli, S. Sex-Dependent Outcome of Hepatitis B and C Viruses Infections: Synergy of Sex Hormones and Immune Responses? Front. Immunol. 2018, 9, 2302. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.W.; Cheng, S.W.; Lin, M.W.; Yang, S.Y.; Liaw, Y.F.; Chang, H.C.; Hsiao, T.J.; Lin, S.M.; Lee, S.D.; Chen, P.J.; et al. Androgen-receptor gene CAG repeats, plasma testosterone levels, and risk of hepatitis B-related hepatocellular carcinoma. J. Natl. Cancer Inst. 2000, 92, 2023–2028. [Google Scholar] [CrossRef] [PubMed]
- Znaor, A.; Lortet-Tieulent, J.; Laversanne, M.; Jemal, A.; Bray, F. International variations and trends in renal cell carcinoma incidence and mortality. Eur. Urol. 2015, 67, 519–530. [Google Scholar] [CrossRef] [PubMed]
- King, S.C.; Pollack, L.A.; Li, J.; King, J.B.; Master, V.A. Continued increase in incidence of renal cell carcinoma, especially in young patients and high grade disease: United States 2001 to 2010. J. Urol. 2014, 191, 1665–1670. [Google Scholar] [CrossRef]
- Zhao, H.; Leppert, J.T.; Peehl, D.M. A Protective Role for Androgen Receptor in Clear Cell Renal Cell Carcinoma Based on Mining TCGA Data. PLoS ONE 2016, 11, e0146505. [Google Scholar] [CrossRef]
- Li, P.; Znaor, A.; Holcatova, I.; Fabianova, E.; Mates, D.; Wozniak, M.B.; Ferlay, J.; Scelo, G. Regional geographic variations in kidney cancer incidence rates in European countries. Eur. Urol. 2015, 67, 1134–1141. [Google Scholar] [CrossRef]
- Scelo, G.; Li, P.; Chanudet, E.; Muller, D.C. Variability of Sex Disparities in Cancer Incidence over 30 Years: The Striking Case of Kidney Cancer. Eur. Urol. Focus. 2018, 4, 586–590. [Google Scholar] [CrossRef]
- Guan, Z.; Li, C.; Fan, J.; He, D.; Li, L. Androgen receptor (AR) signaling promotes RCC progression via increased endothelial cell proliferation and recruitment by modulating AKT --> NF-kappaB --> CXCL5 signaling. Sci. Rep. 2016, 6, 37085. [Google Scholar] [CrossRef]
- Peila, R.; Arthur, R.S.; Rohan, T.E. Association of Sex Hormones with Risk of Cancers of the Pancreas, Kidney, and Brain in the UK Biobank Cohort Study. Cancer Epidemiol. Biomark. Prev. 2020, 29, 1832–1836. [Google Scholar] [CrossRef] [PubMed]
- Leibovich, B.C.; Lohse, C.M.; Crispen, P.L.; Boorjian, S.A.; Thompson, R.H.; Blute, M.L.; Cheville, J.C. Histological Subtype is an Independent Predictor of Outcome for Patients With Renal Cell Carcinoma. J. Urol. 2010, 183, 1309–1315. [Google Scholar] [CrossRef] [PubMed]
- Lipworth, L.; Morgans, A.K.; Edwards, T.L.; Barocas, D.A.; Chang, S.S.; Duke Herrell, S.; Penson, D.F.; Resnick, M.J.; Smith, J.A.; Clark, P.E. Renal cell cancer histological subtype distribution differs by race and sex. BJU Int. 2016, 117, 260–265. [Google Scholar] [CrossRef]
- Peng, L.; Li, Y.; Wei, S.; Li, X.; Dang, Y.; Zhang, W.; Zhang, G. LAMA4 activated by Androgen receptor induces the cisplatin resistance in gastric cancer. Biomed. Pharmacother. 2020, 124, 109667. [Google Scholar] [CrossRef]
- Kominea, A.; Konstantinopoulos, P.A.; Kapranos, N.; Vandoros, G.; Gkermpesi, M.; Andricopoulos, P.; Artelaris, S.; Savva, S.; Varakis, I.; Sotiropoulou-Bonikou, G.; et al. Androgen receptor (AR) expression is an independent unfavorable prognostic factor in gastric cancer. J. Cancer Res. Clin. Oncol. 2004, 130, 253–258. [Google Scholar] [CrossRef]
- Hou, J.; Pan, T.; Li, F.; Sang, Q.; Wu, X.; Li, J.; Yu, B.; Zang, M.; Zhu, Z.G.; Su, L.; et al. Androgen receptor promotes cell stemness via interacting with co-factor YAP1 in gastric cancer. Biochem. Pharmacol. 2023, 217, 115849. [Google Scholar] [CrossRef]
- Durovski, D.; Jankovic, M.; Prekovic, S. Insights into Androgen Receptor Action in Lung Cancer. Endocrines 2023, 4, 22. [Google Scholar] [CrossRef]
- May, L.; Shows, K.; Nana-Sinkam, P.; Li, H.; Landry, J.W. Sex Differences in Lung Cancer. Cancers 2023, 15, 3111. [Google Scholar] [CrossRef]
- Denos, M.; Sun, Y.Q.; Brumpton, B.M.; Li, Y.; Albanes, D.; Burnett-Hartman, A.; Campbell, P.T.; Kury, S.; Li, C.I.; White, E.; et al. Sex hormones and risk of lung and colorectal cancers in women: A Mendelian randomization study. Sci. Rep. 2024, 14, 23891. [Google Scholar] [CrossRef]
- Feng, Z.; Fu, J.; Wang, K.; Yang, J.; Jiang, X.; Wu, Q. Causal relationship between hormone levels and lung cancer: A Mendelian randomization study. Front. Endocrinol. 2025, 16, 1462531. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.X.; Yeap, B.B. Dihydrotestosterone and cancer risk. Curr. Opin. Endocrinol. Diabetes Obes. 2018, 25, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.P.; Fung, L.F.; Wang, E.; Chow, W.S.; Chiu, S.W.; Lam, W.K.; Ho, K.K.; Ma, E.S.; Wan, T.S.; Chung, L.P. Chromosomal aberrations of primary lung adenocarcinomas in nonsmokers. Cancer 2003, 97, 1263–1270. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, U.; Hofmann, J.; Schilli, M.; Wegmann, B.; Klotz, U.; Wedel, S.; Virmani, A.K.; Wollmer, E.; Branscheid, D.; Gazdar, A.F.; et al. Steroid-hormone receptors in cell lines and tumor biopsies of human lung cancer. Int. J. Cancer 1996, 67, 357–364. [Google Scholar] [CrossRef]
- Recchia, A.G.; Musti, A.M.; Lanzino, M.; Panno, M.L.; Turano, E.; Zumpano, R.; Belfiore, A.; Ando, S.; Maggiolini, M. A cross-talk between the androgen receptor and the epidermal growth factor receptor leads to p38MAPK-dependent activation of mTOR and cyclinD1 expression in prostate and lung cancer cells. Int. J. Biochem. Cell Biol. 2009, 41, 603–614. [Google Scholar] [CrossRef]
- Li, X.; Tang, Y.; Liang, P.; Sun, M.; Li, T.; Shen, Z.; Sha, S. Luteolin inhibits A549 cells proliferation and migration by down-regulating androgen receptors. Eur. J. Med. Res. 2023, 28, 353. [Google Scholar] [CrossRef]
- Liu, S.; Hu, C.; Li, M.; Zhou, W.; Wang, R.; Xiao, Y. Androgen receptor suppresses lung cancer invasion and increases cisplatin response via decreasing TPD52 expression. Int. J. Biol. Sci. 2023, 19, 3709–3725. [Google Scholar] [CrossRef]
- Arnold, M.; Singh, D.; Laversanne, M.; Vignat, J.; Vaccarella, S.; Meheus, F.; Cust, A.E.; de Vries, E.; Whiteman, D.C.; Bray, F. Global Burden of Cutaneous Melanoma in 2020 and Projections to 2040. JAMA Dermatol. 2022, 158, 495–503. [Google Scholar] [CrossRef]
- Santi, D.; Spaggiari, G.; Granata, A.R.M.; Setti, M.; Tagliavini, S.; Trenti, T.; Simoni, M. Seasonal Changes of Serum Gonadotropins and Testosterone in Men Revealed by a Large Data Set of Real-World Observations Over Nine Years. Front. Endocrinol. 2019, 10, 914. [Google Scholar] [CrossRef]
- Ong, J.S.; Seviiri, M.; Dusingize, J.C.; Wu, Y.; Han, X.; Shi, J.; Olsen, C.M.; Neale, R.E.; Thompson, J.F.; Saw, R.P.M.; et al. Uncovering the complex relationship between balding, testosterone and skin cancers in men. Nat. Commun. 2023, 14, 5962. [Google Scholar] [CrossRef]
- Mitchell, D.L.; Fernandez, A.A.; Garcia, R.; Paniker, L.; Lin, K.; Hanninen, A.; Zigelsky, K.; May, M.; Nuttall, M.; Lo, H.H.; et al. Acute exposure to ultraviolet-B radiation modulates sex steroid hormones and receptor expression in the skin and may contribute to the sex bias of melanoma in a fish model. Pigment Cell Melanoma Res. 2014, 27, 408–417. [Google Scholar] [CrossRef]
- Luo, P.; Guo, R.; Gao, D.; Zhang, Q. Causal relationship between sex hormones and cutaneous melanoma: A two-sample Mendelian randomized study. Melanoma Res. 2024, 34, 408–418. [Google Scholar] [CrossRef]
- Tadokoro, T.; Itami, S.; Hosokawa, K.; Terashi, H.; Takayasu, S. Human genital melanocytes as androgen target cells. J. Investig. Dermatol. 1997, 109, 513–517. [Google Scholar] [CrossRef] [PubMed]
- Morvillo, V.; Luthy, I.A.; Bravo, A.I.; Capurro, M.I.; Portela, P.; Calandra, R.S.; Mordoh, J. Androgen receptors in human melanoma cell lines IIB-MEL-LES and IIB-MEL-IAN and in human melanoma metastases. Melanoma Res. 2002, 12, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Morvillo, V.; Luthy, I.A.; Bravo, A.I.; Capurro, M.I.; Donaldson, M.; Quintans, C.; Calandra, R.S.; Mordoh, J. Atypical androgen receptor in the human melanoma cell line IIB-MEL-J. Pigment Cell Res. 1995, 8, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Adhikari, E.; Lester, D.K.; Fang, B.; Johnson, J.O.; Tian, Y.; Mockabee-Macias, A.T.; Izumi, V.; Guzman, K.M.; White, M.G.; et al. Androgen drives melanoma invasiveness and metastatic spread by inducing tumorigenic fucosylation. Nat. Commun. 2024, 15, 1148. [Google Scholar] [CrossRef]
- Wang, Y.; Ou, Z.; Sun, Y.; Yeh, S.; Wang, X.; Long, J.; Chang, C. Androgen receptor promotes melanoma metastasis via altering the miRNA-539-3p/USP13/MITF/AXL signals. Oncogene 2017, 36, 1644–1654. [Google Scholar] [CrossRef]
- Xu, P.; Choi, E.; White, K.; Yafi, F.A. Low Testosterone in Male Cancer Patients and Survivors. Sex Med. Rev. 2021, 9, 133–142. [Google Scholar] [CrossRef]
- Markman, J.L.; Porritt, R.A.; Wakita, D.; Lane, M.E.; Martinon, D.; Noval Rivas, M.; Luu, M.; Posadas, E.M.; Crother, T.R.; Arditi, M. Loss of testosterone impairs anti-tumor neutrophil function. Nat. Commun. 2020, 11, 1613. [Google Scholar] [CrossRef]
- Regis, L.; Planas, J.; Celma, A.; de Torres, I.M.; Ferrer, R.; Morote, J. Behavior of total and free serum testosterone as a predictor for the risk of prostate cancer and its aggressiveness. Actas Urol. Esp. 2015, 39, 573–581. [Google Scholar] [CrossRef]
- Shen, B.; Mei, J.; Xu, R.; Cai, Y.; Wan, M.; Zhou, J.; Ding, J.; Zhu, Y. B7-H3 is associated with the armored-cold phenotype and predicts poor immune checkpoint blockade response in melanoma. Pathol. Res. Pract. 2024, 256, 155267. [Google Scholar] [CrossRef]
- Samarkina, A.; Youssef, M.K.; Ostano, P.; Ghosh, S.; Ma, M.; Tassone, B.; Proust, T.; Chiorino, G.; Levesque, M.P.; Goruppi, S.; et al. Androgen receptor is a determinant of melanoma targeted drug resistance. Nat. Commun. 2023, 14, 6498. [Google Scholar] [CrossRef]
- Gregory, C.W.; Johnson, R.T., Jr.; Mohler, J.L.; French, F.S.; Wilson, E.M. Androgen receptor stabilization in recurrent prostate cancer is associated with hypersensitivity to low androgen. Cancer Res. 2001, 61, 2892–2898. [Google Scholar]
- He, Z.; Rankinen, T.; Leon, A.S.; Skinner, J.S.; Tchernof, A.; Bouchard, C. Plasma Steroids and Cardiorespiratory Fitness Response to Regular Exercise. In Hormones, Metabolism and the Benefits of Exercise; Spiegelman, B., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 25–42. [Google Scholar]




| Males | Females | All | M/F Ratio | ||||||
|---|---|---|---|---|---|---|---|---|---|
| SEER Site Code | Rate | 95% CI | Rate | 95% CI | Rate | 95% CI | Ratio | 95% CI | |
| Esophageal Cancer | C15 | 7.37 | 7.31, 7.42 | 1.77 | 1.75, 1.80 | 4.30 | 4.27, 4.33 | 4.16 | 4.09, 4.23 |
| Bladder Cancer | C67 | 34.51 | 34.38, 34.63 | 8.42 | 8.36, 8.47 | 19.66 | 19.60, 19.73 | 4.10 | 4.06, 4.13 |
| Head and Neck Cancer | C00–C14, C32 | 23.04 | 22.95, 23.14 | 8.10 | 8.05, 8.16 | 15.00 | 14.95, 15.05 | 2.84 | 2.82, 2.87 |
| Liver Cancer | C22 | 12.78 | 12.71, 12.86 | 4.65 | 4.61,4.69 | 8.43 | 8.39, 8.47 | 2.75 | 2.72, 2.78 |
| Kidney Cancer | C64 | 20.10 | 20.00, 20.19 | 10.04 | 9.98, 10.10 | 14.66 | 14.61, 14.72 | 2.00 | 1.99, 2.02 |
| Stomach Cancer | C16 | 10.93 | 10.86, 11.00 | 6.09 | 6.04, 6.14 | 8.22 | 8.18, 8.26 | 1.80 | 1.78, 1.81 |
| Cutaneous Melanoma | C44 | 34.62 | 34.50, 34.75 | 20.41 | 20.32, 20.49 | 26.43 | 26.36, 26.51 | 1.70 | 1.69, 1.71 |
| Lung Cancer | C34 | 66.06 | 65.89, 66.23 | 48.20 | 48.07, 48.33 | 55.88 | 55.77, 55.98 | 1.37 | 1.37, 1.38 |
| Petrick et al., 2019 [69] | Xie et al., 2020 [70] | Meta-Study (Xie et al., 2020 [70]) | Meta-Study (Liu et al., 2023 [71]) | |
|---|---|---|---|---|
| n = 518 (Men Only) | n = 488 (Men Only) | |||
| DHEA | 0.62 (0.47 to 0.82) | |||
| DHT | 0.94 (0.71 to 1.24) | |||
| T/E2 | 1.09 (0.79 to 1.51) | 0.46 (0.23, 0.91) a | 0.64 (0.34, 1.22) | 0.66 (0.36, 1.21) |
| Testosterone | 0.91 (0.71 to 1.16) | 0.44 (0.22, 0.88) b | 0.60 (0.38, 0.97) | 0.99 (0.81, 1.20) |
| 0.56 (0.27, 1.13) c | ||||
| SHBG | 0.92 (0.66 to 1.28) | 0.79 (0.38, 1.64) | 0.93 (0.58, 1.49) | 1.12 (0.97, 1.30) |
| Location of AR | Detection Methods | Tumor vs. Normal | Known Co-Regulators or Targets | References | |
|---|---|---|---|---|---|
| Esophagus Cancer | Nucleus | IHC, WB | upregulated in tumor | UGT2B15, MMP2, pAKT, AP-1, GATA3, IL-6, DUSP4, FOSB | [72,73,74,75] |
| Bladder Cancer | Nucleus | IHC | upregulated in tumor | CD24, EGFR, VEGF, ncRNAs, UGT1A, FOXO1, GATA3, ADAR2 | [76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94] |
| HNSCC | Nucleus and cytoplasmic | IHC | up or down, depending on subtypes and stages | VEGF, MMP9, RBAP48, TP53, EGFR, AKT | [95,96,97,98,99,100,101,102,103,104,105] |
| Liver Cancer | Nucleus | IHC | up or down, depending on stages | EZH2, BIRC7, IGFBP3, NTSR1 | [106,107,108,109,110] |
| Kidney Cancer | Nucleus | IHC | no difference | lncRNA-TANAR/TWIST1, circHIAT1 | [111,112,113,114] |
| Stomach Cancer | Nucleus | qRT-PCR, WB, IHC | upregulated in tumor | LAMA4, YAP1, GSK3b/b-catenin, Snail, TWIST, STAT3 | [115,116,117,118,119,120,121,122,123,124,125,126] |
| Melanoma | Nucleus, cytoplasmic | IF, IHC | unknown | Ku70/Ku80/RNA pol II, ICAM1, STING, FUT4, EGFR, TGF-b | [53,62,127,128,129,130,131,132] |
| Lung Cancer (NSCLC) | Nucleus, some cytoplasmic | IHC | upregulated in tumor | EGFR, p38, miR-23a-3p, circular-SLCO1B7/miR-139-5p, miR-224-5p | [48,126,133,134,135] |
| Association | Preliminary Conclusion | References | |
|---|---|---|---|
| Esophagus | mixed: DHEA—yes; T or DHT—no and yes; SHBG—no | Higher T may be protective | [69,70,71] |
| Bladder Cancer | mixed: T—no and yes; MR study—no | Likely no association | [111,146,147] |
| Head and Neck Cancer | T—No, but HRT seems protective in women | Insufficient data | [100,104] |
| Liver Cancer | Total T and SHBG—yes in men, no in women; | Higher T may elevate risk | [71,111,148,149] |
| Kidney Cancer | No association | No association | [110,138] |
| Stomach | Total or free T—no; SHBG—yes in men, no in women | Likely no association | [71,111] |
| Melanoma | Total or free T—yes in men, no in older women | Likely higher T is associated with melanoma risk, but it may be confounded by UVR | [111,150,151,152] |
| Lung Cancer | No association | No association | [111] |
| Results | Preliminary Conclusion | References | |
|---|---|---|---|
| Esophageal Cancer | Higher AR is associated with poorer survival | AR likely exhibits harmful effects on survival | [69,70,71] |
| Bladder Cancer | Higher AR in cancer than in normal tissue; AR facilitates chemically induced tumors; 5α-reductase inhibitors improve patient survival; castration inhibits tumor growth; absence of AR increases recurrence. | AR likely promotes tumor formation and growth (harmful) | [77,78,79,80,81,82,83,84,85,86,87] |
| Head and Neck Cancer (c76.0) | Higher AR is associated with cell invasion and poor survival of patients; AR is proposed to be a treatment target. | AR likely exhibits harmful effects on survival | [50,104,156] |
| Liver Cancer | Mixed results: Higher AR is linked to recurrence and poor survival, as well as better survival, depending on studies. | Controversial | [96,164,165,166,167,168,169,170,171,172] |
| Kidney Cancer | AR promotes vasculogenesis but is also linked to better patient survival. | Controversial | [173,174,175,176] |
| Stomach Cancer | AR is linked to drug resistance, likely promotes tumors. | AR likely exhibits harmful effects | [119,120,121,122,123] |
| Cutaneous Melanoma | AR is linked to cell proliferation, invasiveness, and drug resistance, but higher AR patients exhibit better survival. | Controversial | [40,127,128,129,130,131,132,210,211,212,223] |
| Lung Cancer | AR collaborates with EGFR to promote tumor growth, but AR-positive patients show better survival. | Controversial | [133,135,199,200,201,208] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, J.; Zhu, J.; Fowke, J.; Narayanan, R.; Liu-Smith, F. Testosterone and Androgen Receptor in Cancers with Significant Sex Dimorphism in Incidence Rates and Survival. Cancers 2025, 17, 3414. https://doi.org/10.3390/cancers17213414
Lin J, Zhu J, Fowke J, Narayanan R, Liu-Smith F. Testosterone and Androgen Receptor in Cancers with Significant Sex Dimorphism in Incidence Rates and Survival. Cancers. 2025; 17(21):3414. https://doi.org/10.3390/cancers17213414
Chicago/Turabian StyleLin, Jianjian, Jingwen Zhu, Jay Fowke, Ramesh Narayanan, and Feng Liu-Smith. 2025. "Testosterone and Androgen Receptor in Cancers with Significant Sex Dimorphism in Incidence Rates and Survival" Cancers 17, no. 21: 3414. https://doi.org/10.3390/cancers17213414
APA StyleLin, J., Zhu, J., Fowke, J., Narayanan, R., & Liu-Smith, F. (2025). Testosterone and Androgen Receptor in Cancers with Significant Sex Dimorphism in Incidence Rates and Survival. Cancers, 17(21), 3414. https://doi.org/10.3390/cancers17213414

