Challenges in the Evolving Role of Calreticulin as a Promising Target for Precision Medicine in Myeloproliferative Neoplasms
Simple Summary
Abstract
1. Introduction
2. Genetic and Molecular Pathways in CALR-Mutated MPNs
2.1. Structure and Function of Calreticulin
2.2. Advances in Molecular Mechanisms and Oncogenic Transformation of CALR-Mutated MPNs
2.3. Clonal Dynamics and Open Challenges
3. Immunotherapeutic Strategies in CALR-Mutated MPNs
3.1. Anti-CALR Monoclonal Antibodies
3.2. Vaccination Strategies Against Exon 9 CALR Mutations and Immune Checkpoint Inhibition
3.3. CAR T-Cell Therapy Targeting Mutant CALR
4. Targeting CALR in the Era of Precision Medicine: Issues to Be Addressed
4.1. Will Anti-CALR Therapies Shift Management from Thrombotic Risk Reduction to Disease Modification?
4.2. Are We Ready for Measurable Residual Disease Monitoring?
4.3. How to Face the Immune Escape Issue?
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ACVR1 | Activin A receptor type 1 |
ADCC | Antibody-dependent cellular cytotoxicity |
ADCP | Antibody-dependent cellular phagocytosis |
CAR-T | Chimeric antigen receptor T cell |
CDC | Complement-dependent cytotoxicity |
CR | Complete response |
ET | Essential Thrombocytemia |
ER | Endoplasmic reticulum |
FLA | Fragment length analysis |
HMR | High molecular risk |
HSCT | Hematopoietic stem cell transplantation |
HU | Hydroxyurea |
MoAbs | Monoclonal antibodies |
MPN | Myeloproliferative neoplasm |
MHC MRD | Major histocompatibility complex Measurable residual disease |
NGS | Next-generation sequencing |
ORR | Overall response rate |
pADCs | Precision antibody–drug conjugates |
PCR | Polymerase chain reaction |
PLC | Peptide-loading complex |
PV | Polycythemia Vera |
PMF | Primary Myelofibrosis |
smCALR | Soluble mutant CALR |
TPO | Thrombopoietin |
Tregs | Regulatory T cells |
VAF | Variant allele frequency |
References
- Arber, D.A.; Orazi, A.; Hasserjian, R.P.; Borowitz, M.J.; Calvo, K.R.; Kvasnicka, H.-M.; Wang, S.A.; Bagg, A.; Barbui, T.; Branford, S.; et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: Integrating Morphologic, Clinical, and Genomic Data. Blood 2022, 140, 1200–1228. [Google Scholar] [CrossRef] [PubMed]
- Adamson, J.W.; Fialkow, P.J.; Murphy, S.; Prchal, J.F.; Steinmann, L. Polycythemia Vera: Stem-Cell and Probable Clonal Origin of the Disease. N. Engl. J. Med. 1976, 295, 913–916. [Google Scholar] [CrossRef]
- Pikman, Y.; Lee, B.H.; Mercher, T.; McDowell, E.; Ebert, B.L.; Gozo, M.; Cuker, A.; Wernig, G.; Moore, S.; Galinsky, I.; et al. MPLW515L Is a Novel Somatic Activating Mutation in Myelofibrosis with Myeloid Metaplasia. PLoS Med. 2006, 3, e270. [Google Scholar] [CrossRef]
- Nangalia, J.; Massie, C.E.; Baxter, E.J.; Nice, F.L.; Gundem, G.; Wedge, D.C.; Avezov, E.; Li, J.; Kollmann, K.; Kent, D.G.; et al. Somatic CALR Mutations in Myeloproliferative Neoplasms with Nonmutated JAK2. N. Engl. J. Med. 2013, 369, 2391–2405. [Google Scholar] [CrossRef] [PubMed]
- Klampfl, T.; Gisslinger, H.; Harutyunyan, A.S.; Nivarthi, H.; Rumi, E.; Milosevic, J.D.; Them, N.C.C.; Berg, T.; Gisslinger, B.; Pietra, D.; et al. Somatic Mutations of Calreticulin in Myeloproliferative Neoplasms. N. Engl. J. Med. 2013, 369, 2379–2390. [Google Scholar] [CrossRef]
- Michalak, M.; Groenendyk, J.; Szabo, E.; Gold, L.I.; Opas, M. Calreticulin, a Multi-Process Calcium-Buffering Chaperone of the Endoplasmic Reticulum. Biochem. J. 2009, 417, 651–666. [Google Scholar] [CrossRef]
- Houen, G.; Højrup, P.; Ciplys, E.; Gaboriaud, C.; Slibinskas, R. Structural Analysis of Calreticulin, an Endoplasmic Reticulum-Resident Molecular Chaperone. In Cellular Biology of the Endoplasmic Reticulum; Agellon, L.B., Michalak, M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 13–25. ISBN 978-3-030-67696-4. [Google Scholar]
- Wijeyesakere, S.J.; Gafni, A.A.; Raghavan, M. Calreticulin Is a Thermostable Protein with Distinct Structural Responses to Different Divalent Cation Environments. J. Biol. Chem. 2011, 286, 8771–8785. [Google Scholar] [CrossRef] [PubMed]
- Peterson, J.R.; Ora, A.; Van, P.N.; Helenius, A. Transient, Lectin-Like Association of Calreticulin with Folding Intermediates of Cellular and Viral Glycoproteins. Mol. Biol. Cell 1995, 6, 1173–1184. [Google Scholar] [CrossRef]
- Schürch, P.M.; Malinovska, L.; Hleihil, M.; Losa, M.; Hofstetter, M.C.; Wildschut, M.H.E.; Lysenko, V.; Lakkaraju, A.K.K.; Maat, C.A.; Benke, D.; et al. Calreticulin Mutations Affect Its Chaperone Function and Perturb the Glycoproteome. Cell Rep. 2022, 41, 111689. [Google Scholar] [CrossRef]
- Obeid, M.; Tesniere, A.; Ghiringhelli, F.; Fimia, G.M.; Apetoh, L.; Perfettini, J.L.; Castedo, M.; Mignot, G.; Panaretakis, T.; Casares, N.; et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 2007, 13, 54–61. [Google Scholar] [CrossRef]
- Wijeyesakere, S.J.; Bedi, S.K.; Huynh, D.; Raghavan, M. The C-terminal acidic region of calreticulin mediates phosphatidylserine binding and apoptotic cell phagocytosis. J. Immunol. 2016, 196, 3896–3909. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Chen, J.Y.; Weissman-Tsukamoto, R.; Volkmer, J.P.; Ho, P.Y.; McKenna, K.M.; Cheshier, S.; Zhang, M.; Guo, N.; Gip, P.; et al. Macrophages eat cancer cells using their own calreticulin as a guide: Roles of TLR and Btk. Proc. Natl. Acad. Sci. USA 2015, 112, 2145–2150. [Google Scholar] [CrossRef] [PubMed]
- Tefferi, A.; Lasho, T.L.; Tischer, A.; Wassie, E.A.; Finke, C.M.; Belachew, A.A.; Ketterling, R.P.; Hanson, C.A.; Pardanani, A.D. The Prognostic Advantage of Calreticulin Mutations in Myelofibrosis Might Be Confined to Type 1 or Type 1-like CALR Variants. Blood 2014, 124, 2465–2466. [Google Scholar] [CrossRef]
- Li, B.; Xu, Z.; Li, Y.; Peter Gale, R.; Song, Z.; Ai, X.; Qin, T.; Zhang, Y.; Zhang, P.; Huang, G.; et al. The Different Prognostic Impact of Type-1 or Type-1 like and Type-2 or Type-2 like CALR Mutations in Patients with Primary Myelofibrosis. Am. J. Hematol. 2016, 91, E320–E321. [Google Scholar] [CrossRef]
- Guglielmelli, P.; Rotunno, G.; Fanelli, T.; Pacilli, A.; Brogi, G.; Calabresi, L.; Pancrazzi, A.; Vannucchi, A.M. Validation of the Differential Prognostic Impact of Type 1/Type 1-like versus Type 2/Type 2-like CALR Mutations in Myelofibrosis. Blood Cancer J. 2015, 5, e360. [Google Scholar] [CrossRef]
- Elf, S.; Abdelfattah, N.S.; Chen, E.; Perales-Patón, J.; Rosen, E.A.; Ko, A.; Peisker, F.; Florescu, N.; Giannini, S.; Wolach, O.; et al. Mutant Calreticulin Requires Both Its Mutant C-Terminus and the Thrombopoietin Receptor for Oncogenic Transformation. Cancer Discov. 2016, 6, 368–381. [Google Scholar] [CrossRef]
- Nivarthi, H.; Chen, D.; Cleary, C.; Kubesova, B.; Jäger, R.; Bogner, E.; Marty, C.; Pecquet, C.; Vainchenker, W.; Constantinescu, S.N.; et al. Thrombopoietin Receptor Is Required for the Oncogenic Function of CALR Mutants. Leukemia 2016, 30, 1759–1763. [Google Scholar] [CrossRef]
- Chachoua, I.; Pecquet, C.; El-Khoury, M.; Nivarthi, H.; Albu, R.-I.; Marty, C.; Gryshkova, V.; Defour, J.-P.; Vertenoeil, G.; Ngo, A.; et al. Thrombopoietin Receptor Activation by Myeloproliferative Neoplasm Associated Calreticulin Mutants. Blood 2016, 127, 1325–1335. [Google Scholar] [CrossRef] [PubMed]
- Araki, M.; Yang, Y.; Masubuchi, N.; Hironaka, Y.; Takei, H.; Morishita, S.; Mizukami, Y.; Kan, S.; Shirane, S.; Edahiro, Y.; et al. Activation of the Thrombopoietin Receptor by Mutant Calreticulin in CALR-Mutant Myeloproliferative Neoplasms. Blood 2016, 127, 1307–1316. [Google Scholar] [CrossRef]
- Elf, S.; Abdelfattah, N.S.; Baral, A.J.; Beeson, D.; Rivera, J.F.; Ko, A.; Florescu, N.; Birrane, G.; Chen, E.; Mullally, A. Defining the Requirements for the Pathogenic Interaction between Mutant Calreticulin and MPL in MPN. Blood 2018, 131, 782–786. [Google Scholar] [CrossRef]
- Salati, S.; Genovese, E.; Carretta, C.; Zini, R.; Bartalucci, N.; Prudente, Z.; Pennucci, V.; Ruberti, S.; Rossi, C.; Rontauroli, S.; et al. Calreticulin Ins5 and Del52 Mutations Impair Unfolded Protein and Oxidative Stress Responses in K562 Cells Expressing CALR Mutants. Sci. Rep. 2019, 9, 10558. [Google Scholar] [CrossRef] [PubMed]
- Nam, A.S.; Kim, K.-T.; Chaligne, R.; Izzo, F.; Ang, C.; Taylor, J.; Myers, R.M.; Abu-Zeinah, G.; Brand, R.; Omans, N.D.; et al. Somatic Mutations and Cell Identity Linked by Genotyping of Transcriptomes. Nature 2019, 571, 355–360. [Google Scholar] [CrossRef]
- Jutzi, J.S.; Marneth, A.E.; Jiménez-Santos, M.J.; Hem, J.; Guerra-Moreno, A.; Rolles, B.; Bhatt, S.; Myers, S.A.; Carr, S.A.; Hong, Y.; et al. CALR-Mutated Cells Are Vulnerable to Combined Inhibition of the Proteasome and the Endoplasmic Reticulum Stress Response. Leukemia 2023, 37, 359–369. [Google Scholar] [CrossRef]
- Papadopoulos, N.; Nédélec, A.; Derenne, A.; Şulea, T.A.; Pecquet, C.; Chachoua, I.; Vertenoeil, G.; Tilmant, T.; Petrescu, A.-J.; Mazzucchelli, G.; et al. Oncogenic CALR Mutant C-Terminus Mediates Dual Binding to the Thrombopoietin Receptor Triggering Complex Dimerization and Activation. Nat. Commun. 2023, 14, 1881. [Google Scholar] [CrossRef]
- Pecquet, C.; Chachoua, I.; Roy, A.; Balligand, T.; Vertenoeil, G.; Leroy, E.; Albu, R.-I.; Defour, J.-P.; Nivarthi, H.; Hug, E.; et al. Calreticulin Mutants as Oncogenic Rogue Chaperones for TpoR and Traffic-Defective Pathogenic TpoR Mutants. Blood 2019, 133, 2669–2681. [Google Scholar] [CrossRef]
- Araki, M.; Yang, Y.; Imai, M.; Mizukami, Y.; Kihara, Y.; Sunami, Y.; Masubuchi, N.; Edahiro, Y.; Hironaka, Y.; Osaga, S.; et al. Homomultimerization of Mutant Calreticulin Is a Prerequisite for MPL Binding and Activation. Leukemia 2019, 33, 122–131. [Google Scholar] [CrossRef]
- Pecquet, C.; Papadopoulos, N.; Balligand, T.; Chachoua, I.; Tisserand, A.; Vertenoeil, G.; Nédélec, A.; Vertommen, D.; Roy, A.; Marty, C.; et al. Secreted Mutant Calreticulins as Rogue Cytokines in Myeloproliferative Neoplasms. Blood 2023, 141, 917–929. [Google Scholar] [CrossRef]
- Hormoz, S.; Sankaran, V.G.; Mullally, A. Evolution of Myeloproliferative Neoplasms from Normal Blood Stem Cells. Haematologica 2025, 110, 840–849. [Google Scholar] [CrossRef]
- Van Egeren, D.; Escabi, J.; Nguyen, M.; Liu, S.; Reilly, C.R.; Patel, S.; Kamaz, B.; Kalyva, M.; DeAngelo, D.J.; Galinsky, I.; et al. Reconstructing the Lineage Histories and Differentiation Trajectories of Individual Cancer Cells in Myeloproliferative Neoplasms. Cell Stem Cell 2021, 28, 514–523.e9. [Google Scholar] [CrossRef] [PubMed]
- Williams, N.; Lee, J.; Mitchell, E.; Moore, L.; Baxter, E.J.; Hewinson, J.; Dawson, K.J.; Menzies, A.; Godfrey, A.L.; Green, A.R.; et al. Life Histories of Myeloproliferative Neoplasms Inferred from Phylogenies. Nature 2022, 602, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Sousos, N.; Leathlobhair, M.N.; Karali, C.S.; Louka, E.; Bienz, N.; Royston, D.; Clark, S.-A.; Hamblin, A.; Howard, K.; Mathews, V.; et al. In utero origin of myelofibrosis presenting in adult monozygotic twins. Nat. Med. 2022, 28, 1207–1211. [Google Scholar] [CrossRef]
- Hermange, G.; Rakotonirainy, A.; Bentriou, M.; Tisserand, A.; El-Khoury, M.; Girodon, F.; Marzac, C.; Vainchenker, W.; Plo, I.; Cournède, P.-H. Inferring the Initiation and Development of Myeloproliferative Neoplasms. Proc. Natl. Acad. Sci. USA 2022, 119, e2120374119. [Google Scholar] [CrossRef]
- Olschok, K.; Han, L.; de Toledo, M.A.S.; Böhnke, J.; Graßhoff, M.; Costa, I.G.; Theocharides, A.; Maurer, A.; Schüler, H.M.; Buhl, E.M.; et al. CALR frameshift mutations in MPN patient-derived iPSCs accelerate maturation of megakaryocytes. Stem Cell Rep. 2021, 16, 2768–2783. [Google Scholar] [CrossRef] [PubMed]
- Foßelteder, J.; Pabst, G.; Sconocchia, T.; Schlacher, A.; Auinger, L.; Kashofer, K.; Beham-Schmid, C.; Trajanoski, S.; Waskow, C.; Schöll, W.; et al. Human Gene-Engineered Calreticulin Mutant Stem Cells Recapitulate MPN Hallmarks and Identify Targetable Vulnerabilities. Leukemia 2023, 37, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Prins, D.; Park, H.J.; Grinfeld, J.; Gonzalez-Arias, C.; Loughran, S.; Dovey, O.M.; Klampfl, T.; Bennett, C.; Hamilton, T.L.; et al. Mutant Calreticulin Knockin Mice Develop Thrombocytosis and Myelofibrosis without a Stem Cell Self-Renewal Advantage. Blood 2018, 131, 649–661. [Google Scholar] [CrossRef] [PubMed]
- Shide, K.; Kameda, T.; Yamaji, T.; Sekine, M.; Inada, N.; Kamiunten, A.; Akizuki, K.; Nakamura, K.; Hidaka, T.; Kubuki, Y.; et al. Calreticulin Mutant Mice Develop Essential Thrombocythemia That Is Ameliorated by the JAK Inhibitor Ruxolitinib. Leukemia 2017, 31, 1136–1144. [Google Scholar] [CrossRef]
- Achyutuni, S.; Nivarthi, H.; Majoros, A.; Hug, E.; Schueller, C.; Jia, R.; Varga, C.; Schuster, M.; Senekowitsch, M.; Tsiantoulas, D.; et al. Hematopoietic Expression of a Chimeric Murine-Human CALR Oncoprotein Allows the Assessment of Anti-CALR Antibody Immunotherapies in Vivo. Am. J. Hematol. 2021, 96, 698–707. [Google Scholar] [CrossRef]
- Benlabiod, C.; Cacemiro, M.d.C.; Nédélec, A.; Edmond, V.; Muller, D.; Rameau, P.; Touchard, L.; Gonin, P.; Constantinescu, S.N.; Raslova, H.; et al. Calreticulin Del52 and Ins5 Knock-in Mice Recapitulate Different Myeloproliferative Phenotypes Observed in Patients with MPN. Nat. Commun. 2020, 11, 4886. [Google Scholar] [CrossRef]
- Shide, K.; Kameda, T.; Kamiunten, A.; Ozono, Y.; Tahira, Y.; Yokomizo-Nakano, T.; Kubota, S.; Ono, M.; Ikeda, K.; Sekine, M.; et al. Calreticulin Haploinsufficiency Augments Stem Cell Activity and Is Required for Onset of Myeloproliferative Neoplasms in Mice. Blood 2020, 136, 106–118. [Google Scholar] [CrossRef]
- Shide, K.; Kameda, T.; Kamiunten, A.; Oji, A.; Ozono, Y.; Sekine, M.; Honda, A.; Kitanaka, A.; Akizuki, K.; Tahira, Y.; et al. Mice with Calr Mutations Homologous to Human CALR Mutations Only Exhibit Mild Thrombocytosis. Blood Cancer J. 2019, 9, 42. [Google Scholar] [CrossRef]
- Balligand, T.; Achouri, Y.; Pecquet, C.; Gaudray, G.; Colau, D.; Hug, E.; Rahmani, Y.; Stroobant, V.; Plo, I.; Vainchenker, W.; et al. Knock-in of Murine Calr Del52 Induces Essential Thrombocythemia with Slow-Rising Dominance in Mice and Reveals Key Role of Calr Exon 9 in Cardiac Development. Leukemia 2020, 34, 510–521. [Google Scholar] [CrossRef]
- Tang, L.; Huang, Z.; Mei, H.; Hu, Y. Immunotherapy in Hematologic Malignancies: Achievements, Challenges and Future Prospects. Signal Transduct. Target. Ther. 2023, 8, 306. [Google Scholar] [CrossRef] [PubMed]
- Kihara, Y.; Araki, M.; Imai, M.; Mori, Y.; Horino, M.; Ogata, S.; Yoshikawa, S.; Taguchi, T.; Masubuchi, N.; Mabuchi, Y.; et al. Therapeutic Potential of an Antibody Targeting the Cleaved Form of Mutant Calreticulin in Myeloproliferative Neoplasms. Blood 2020, 136, 9–10. [Google Scholar] [CrossRef]
- Mughal, F.P.; Bergmann, A.C.; Huynh, H.U.B.; Jørgensen, S.H.; Mansha, I.; Kesmez, M.; Schürch, P.M.; Theocharides, A.P.A.; Hansen, P.R.; Friis, T.; et al. Production and Characterization of Peptide Antibodies to the C-Terminal of Frameshifted Calreticulin Associated with Myeloproliferative Diseases. Int. J. Mol. Sci. 2022, 23, 6803. [Google Scholar] [CrossRef]
- Tvorogov, D.; Thompson-Peach, C.A.; Foßelteder, J.; Dottore, M.; Stomski, F.; Onnesha, S.A.; Lim, K.; Moretti, P.A.; Pitson, S.M.; Ross, D.M.; et al. Targeting Human CALR-mutated MPN Progenitors with a Neoepitope-directed Monoclonal Antibody. EMBO Rep. 2022, 23, e52904. [Google Scholar] [CrossRef]
- Reis, E.S.; Buonpane, R.; Celik, H.; Marty, C.; Lei, A.; Jobe, F.; Rupar, M.; Zhang, Y.; DiMatteo, D.; Awdew, R.; et al. Selective Targeting of Mutated Calreticulin by the Monoclonal Antibody INCA033989 Inhibits Oncogenic Function of MPN. Blood 2024, 144, 2336–2348. [Google Scholar] [CrossRef] [PubMed]
- Marty, C.; Rosa, E.; Evrard, M.; Pegliasco, J.; Chedeville, A.; Blampey, Q.; Aid, Z.; Mercher, T.; Legros, L.; Fouquet, G.; et al. Efficacy of INCA033989 in Chronic and Advanced Forms of CALRdel52 and CALRins5 Myeloproliferative Neoplasms (MPN) Models. HemaSphere 2024, 8 (Suppl. S1), 1795–1796. [Google Scholar]
- Mascarenhas, J.; Ali, H.; Yacoub, A.; Jain, T.; Chee, L.; Gupta, V.; Harrison, C.; Kiladjian, J.-J.; Mesa, R.; Shomali, W.; et al. INCA33989 Is a Novel, First in Class, Mutant Calreticulin-Specific Monoclonal Antibody That Demonstrates Safety and Efficacy in Patients with Essential Thrombocythemia. Presented at the Annual Meeting of the European Hematology Association, Milano, Italy, 12–15 June 2025. [Google Scholar]
- Kuchnio, A.; Samakai, E.; Hug, E.; Balmaña, M.; Janssen, L.; Amorim, R.; Cornelissen, I.; Majoros, A.; Broux, M.; Taneja, I.; et al. Discovery of JNJ-88549968, a Novel, First-in-Class CALRmutxCD3 T-Cell Redirecting Antibody for the Treatment of Myeloproliferative Neoplasms. Blood 2023, 142, 1777. [Google Scholar] [CrossRef]
- Pandey, V.; Wang, L.-C.; Kulkarni, A.; Hendriks, L.; Steevels, T.; Merenich, D.; Guan, J.; Ren, E.; Langalia, N.; Fiedorczuk, K.; et al. INCA035784, a novel, equipotent T cell-redirecting antibody for patients with myeloproliferative neoplasms carrying different types of calreticulin mutations. HemaSphere 2025, 9 (Suppl. S1), 258–259. [Google Scholar]
- Fultang, N.; Schwab, A.; Chandratre, S.; Johnson, I.; Karwoski, J.; Bhagwat, N.; Zou, Y.; Buesking, A.; Foroutan, M.; Chen, C.; et al. Discovery of First-in-Class Precision Antibody Drug Conjugates Targeting Mutant Calreticulin for the Treatment of Myeloproliferative Neoplasms. HemaSphere 2025, 9 (Suppl. S1), 256–257. [Google Scholar]
- Fultang, N.; Schwab, A.M.; Johnson, I.; Grego, A.; Filler, E.; Bachner, C.; Karwoski, J.; Moore, A.; Bartilomo, A.; Agarwal, A.; et al. Selective SMARCA2 Degradation Promotes Leukemic Differentiation and Synergizes with CDK9 Inhibition to Potently Induce Death in Pre-Clinical Models of Acute Myeloid Leukemia. Blood 2024, 144 (Suppl. S1), 2774. [Google Scholar] [CrossRef]
- Cantley, J.; Ye, X.; Rousseau, E.; Januario, T.; Hamman, B.D.; Rose, C.M.; Cheung, T.K.; Hinkle, T.; Soto, L.; Quinn, C.; et al. Selective PROTAC-Mediated Degradation of SMARCA2 Is Efficacious in SMARCA4 Mutant Cancers. Nat. Commun. 2022, 13, 6814. [Google Scholar] [CrossRef]
- Zaidi, N.; Jaffee, E.M.; Yarchoan, M. Recent Advances in Therapeutic Cancer Vaccines. Nat. Rev. Cancer 2025, 25, 517–533. [Google Scholar] [CrossRef]
- Holmström, M.O.; Riley, C.H.; Svane, I.M.; Hasselbalch, H.C.; Andersen, M.H. The CALR Exon 9 Mutations Are Shared Neoantigens in Patients with CALR Mutant Chronic Myeloproliferative Neoplasms. Leukemia 2016, 30, 2413–2416. [Google Scholar] [CrossRef]
- Holmström, M.O.; Ahmad, S.M.; Klausen, U.; Bendtsen, S.K.; Martinenaite, E.; Riley, C.H.; Svane, I.M.; Kjær, L.; Skov, V.; Ellervik, C.; et al. High Frequencies of Circulating Memory T Cells Specific for Calreticulin Exon 9 Mutations in Healthy Individuals. Blood Cancer J. 2019, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- Gigoux, M.; Holmström, M.O.; Zappasodi, R.; Park, J.J.; Pourpe, S.; Bozkus, C.C.; Mangarin, L.M.B.; Redmond, D.; Verma, S.; Schad, S.; et al. Calreticulin Mutant Myeloproliferative Neoplasms Induce MHC-I Skewing, Which Can Be Overcome by an Optimized Peptide Cancer Vaccine. Sci. Transl. Med. 2022, 14, eaba4380. [Google Scholar] [CrossRef] [PubMed]
- Handlos Grauslund, J.; Holmström, M.O.; Jørgensen, N.G.; Klausen, U.; Weis-Banke, S.E.; El Fassi, D.; Schöllkopf, C.; Clausen, M.B.; Gjerdrum, L.M.R.; Breinholt, M.F.; et al. Therapeutic Cancer Vaccination With a Peptide Derived From the Calreticulin Exon 9 Mutations Induces Strong Cellular Immune Responses in Patients With CALR-Mutant Chronic Myeloproliferative Neoplasms. Front. Oncol. 2021, 11, 637420. [Google Scholar] [CrossRef]
- Otoukesh, S.; Psaila, B.; Kuykendall, A.; Gerds, A.T.; Abdulgawad, A.; Bose, P.; Van Bogaert, C.; Bishop, J.; Wilkinson, P.; Liu, B.; et al. A phase 1 study of VAC85135, a neoantigen vaccine regimen targeting calreticulin and JAK2 mutations, in combination with ipilimumab (IPI) in patients (PTS) with myeloproliferative neoplasms (MPNS). Presented at the Annual Meeting of the European Hematology Association, Milano, Italy, 12–15 June 2025. [Google Scholar]
- Schueller, C.; Varga, C.; Wais, T.; Höhrhan, M.; Xiong, S.; Balmanya, M.; Zagrijtschuk, O.; Kralovics, R. Targeted T Cells against Hematopoietic Cells Expressing Oncogenic Calreticulin Mutants. In Proceedings of the Annual Meeting of European Hematology Association, Milano, Italy, 12–15 June 2025. [Google Scholar]
- Rampotas, A.; Wong, Z.; Gannon, I.; Benlabiod, C.; Shen, Y.; Brierley, C.; Olijnik, A.-A.; Khan, S.; Hayder, N.; Cheung, G.W.-K.; et al. Development of a First-in-Class CAR-T Therapy Against Calreticulin-Mutant Neoplasms and Evaluation in the Relevant Human Tissue Environment. Blood 2024, 144 (Suppl. S1), 871. [Google Scholar] [CrossRef]
- Rotunno, G.; Mannarelli, C.; Guglielmelli, P.; Pacilli, A.; Pancrazzi, A.; Pieri, L.; Fanelli, T.; Bosi, A.; Vannucchi, A.M.; Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative Investigators. Impact of calreticulin mutations on clinical and hematological phenotype and outcome in essential thrombocythemia. Blood 2014, 123, 1552–1555. [Google Scholar] [CrossRef]
- Gangat, N.; Karrar, O.; Al-Kali, A.; Begna, K.H.; Elliott, M.A.; Wolanskyj-Spinner, A.P.; Pardanani, A.; Hanson, C.A.; Ketterling, R.P.; Tefferi, A. One Thousand Patients with Essential Thrombocythemia: The Mayo Clinic Experience. Blood Cancer J. 2024, 14, 11. [Google Scholar] [CrossRef]
- Loscocco, G.G.; Gesullo, F.; Capecchi, G.; Atanasio, A.; Maccari, C.; Mannelli, F.; Vannucchi, A.M.; Guglielmelli, P. One Thousand Patients with Essential Thrombocythemia: The Florence-CRIMM Experience. Blood Cancer J. 2024, 14, 10. [Google Scholar] [CrossRef]
- Tefferi, A.; Nicolosi, M.; Mudireddy, M.; Szuber, N.; Finke, C.M.; Lasho, T.L.; Hanson, C.A.; Ketterling, R.P.; Pardanani, A.; Gangat, N.; et al. Driver Mutations and Prognosis in Primary Myelofibrosis: Mayo-Careggi MPN Alliance Study of 1095 Patients. Am. J. Hematol. 2018, 93, 348–355. [Google Scholar] [CrossRef]
- Passamonti, F.; Giorgino, T.; Mora, B.; Guglielmelli, P.; Rumi, E.; Maffioli, M.; Rambaldi, A.; Caramella, M.; Komrokji, R.; Gotlib, J.; et al. A Clinical-Molecular Prognostic Model to Predict Survival in Patients with Post Polycythemia Vera and Post Essential Thrombocythemia Myelofibrosis. Leukemia 2017, 31, 2726–2731. [Google Scholar] [CrossRef]
- Tefferi, A.; Lasho, T.L.; Finke, C.M.; Knudson, R.A.; Ketterling, R.; Hanson, C.H.; Maffioli, M.; Caramazza, D.; Passamonti, F.; Pardanani, A. CALR vs JAK2 vs MPL-Mutated or Triple-Negative Myelofibrosis: Clinical, Cytogenetic and Molecular Comparisons. Leukemia 2014, 28, 1472–1477. [Google Scholar] [CrossRef] [PubMed]
- Mora, B.; Bucelli, C.; Cattaneo, D.; Bellani, V.; Versino, F.; Barbullushi, K.; Fracchiolla, N.; Iurlo, A.; Passamonti, F. Prognostic and Predictive Models in Myelofibrosis. Curr. Hematol. Malig. Rep. 2024, 19, 223–235. [Google Scholar] [CrossRef]
- Szuber, N.; Lasho, T.L.; Finke, C.; Hanson, C.A.; Ketterling, R.P.; Pardanani, A.; Gangat, N.; Tefferi, A. Determinants of Long-Term Outcome in Type 1 Calreticulin-Mutated Myelofibrosis. Leukemia 2019, 33, 780–785. [Google Scholar] [CrossRef]
- Alvarez-Larrán, A.; Sant’Antonio, E.; Harrison, C.; Kiladjian, J.J.; Griesshammer, M.; Mesa, R.; Ianotto, J.C.; Palandri, F.; Hernández-Boluda, J.C.; Birgegård, G.; et al. Unmet Clinical Needs in the Management of CALR-Mutated Essential Thrombocythaemia: A Consensus-Based Proposal from the European LeukemiaNet. Lancet Haematol. 2021, 8, e658–e665. [Google Scholar] [CrossRef] [PubMed]
- Bieniaszewska, M.; Sobieralski, P.; Leszczyńska, A.; Dutka, M. Anagrelide in essential thrombocythemia: Efficacy and long-term consequences in young patient population. Leuk. Res. 2022, 123, 106962. [Google Scholar] [CrossRef]
- Mazzucconi, M.G.; Baldacci, E.; Latagliata, R.; Breccia, M.; Paoloni, F.; Di Veroli, A.; Cedrone, M.; Anaclerico, B.; Villivà, N.; Porrini, R.; et al. Anagrelide in Essential Thrombocythemia (ET): Results from 150 Patients over 25 Years by the “Ph1-Negative Myeloproliferative Neoplasms Latium Group”. Eur. J. Haematol. 2020, 105, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Tefferi, A.; Vannucchi, A.M.; Barbui, T. Essential Thrombocythemia: 2024 Update on Diagnosis, Risk Stratification, and Management. Am. J. Hematol. 2024, 99, 697–718. [Google Scholar] [CrossRef]
- Harrison, C.N.; Mead, A.J.; Panchal, A.; Fox, S.; Yap, C.; Gbandi, E.; Houlton, A.; Alimam, S.; Ewing, J.; Wood, M.; et al. Ruxolitinib vs Best Available Therapy for ET Intolerant or Resistant to Hydroxycarbamide. Blood 2017, 130, 1889–1897. [Google Scholar] [CrossRef]
- Quintás-Cardama, A.; Kantarjian, H.; Manshouri, T.; Luthra, R.; Estrov, Z.; Pierce, S.; Richie, M.A.; Borthakur, G.; Konopleva, M.; Cortes, J.; et al. Pegylated Interferon Alfa-2a Yields High Rates of Hematologic and Molecular Response in Patients with Advanced Essential Thrombocythemia and Polycythemia Vera. J. Clin. Oncol. 2009, 27, 5418–5424. [Google Scholar] [CrossRef]
- Kiladjian, J.-J.; Cassinat, B.; Chevret, S.; Turlure, P.; Cambier, N.; Roussel, M.; Bellucci, S.; Grandchamp, B.; Chomienne, C.; Fenaux, P. Pegylated Interferon-Alfa-2a Induces Complete Hematologic and Molecular Responses with Low Toxicity in Polycythemia Vera. Blood 2008, 112, 3065–3072. [Google Scholar] [CrossRef] [PubMed]
- Mesa, R.A.; Gill, H.; Xiao, Z.; Komatsu, N.; Qin, A.; Tashi, T.; Zhang, L.; Jin, J.; Kirito, K.; Ohishi, K.; et al. Ropeginterferon Alfa-2b versus Anagrelide for the Treatment of Essential Thrombocythemia: Topline Results of the Phase 3 SURPASS-ET Trial. J. Clin. Oncol. 2025, 43, 6500. [Google Scholar] [CrossRef]
- Passamonti, F.; Caramazza, D.; Maffioli, M. JAK Inhibitor in CALR-Mutant Myelofibrosis. N. Engl. J. Med. 2014, 370, 1168–1169. [Google Scholar] [CrossRef] [PubMed]
- Guglielmelli, P.; Rotunno, G.; Bogani, C.; Mannarelli, C.; Giunti, L.; Provenzano, A.; Giglio, S.; Squires, M.; Stalbovskaya, V.; Gopalakrishna, P.; et al. Ruxolitinib Is an Effective Treatment for CALR-Positive Patients with Myelofibrosis. Br. J. Haematol. 2016, 173, 938–940. [Google Scholar] [CrossRef]
- Tefferi, A.; Pardanani, A.; Begna, K.H.; Al-Kali, A.; Hogan, W.J.; Litzow, M.R.; Ketterling, R.P.; Reichard, K.K.; Gangat, N. Calr Type 1/like Mutation in Myelofibrosis Is the Most Prominent Predictor of Momelotinib Drug Survival and Longevity without Transplant. Blood Cancer J. 2024, 14, 51. [Google Scholar] [CrossRef] [PubMed]
- Palandri, F.; Branzanti, F.; Morsia, E.; Dedola, A.; Benevolo, G.; Tiribelli, M.; Beggiato, E.; Farina, M.; Martino, B.; Caocci, G.; et al. Impact of Calreticulin Mutations on Treatment and Survival Outcomes in Myelofibrosis during Ruxolitinib Therapy. Ann. Hematol. 2025, 104, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Boluda, J.-C.; Pereira, A.; Zinger, N.; Gras, L.; Martino, R.; Paneesha, S.; Finke, J.; Chinea, A.; Rambaldi, A.; Robin, M.; et al. Allogeneic Hematopoietic Cell Transplantation in Patients with Myeloid/Lymphoid Neoplasm with FGFR1-Rearrangement: A Study of the Chronic Malignancies Working Party of EBMT. Bone Marrow Transpl. 2022, 57, 416–422. [Google Scholar] [CrossRef]
- Gagelmann, N.; Quarder, M.; Badbaran, A.; Rathje, K.; Janson, D.; Lück, C.; Richter, J.; Marquard, F.; Oechsler, S.; Massoud, R.; et al. Clearance of Driver Mutations after Transplantation for Myelofibrosis. N. Engl. J. Med. 2025, 392, 150–160. [Google Scholar] [CrossRef]
- Guglielmelli, P.; Mora, B.; Gesullo, F.; Mannelli, F.; Loscocco, G.G.; Signori, L.; Pessina, C.; Colugnat, I.; Aquila, R.; Balliu, M.; et al. Clinical Impact of Mutated JAK2 Allele Burden Reduction in Polycythemia Vera and Essential Thrombocythemia. Am. J. Hematol. 2024, 99, 1550–1559. [Google Scholar] [CrossRef] [PubMed]
- Cottin, L.; Riou, J.; Orvain, C.; Ianotto, J.C.; Boyer, F.; Renard, M.; Truchan-Graczyk, M.; Murati, A.; Jouanneau-Courville, R.; Allangba, O.; et al. Sequential Mutational Evaluation of CALR -Mutated Myeloproliferative Neoplasms with Thrombocytosis Reveals an Association between CALR Allele Burden Evolution and Disease Progression. Br. J. Haematol. 2020, 188, 935–944. [Google Scholar] [CrossRef] [PubMed]
- Guglielmelli, P.; Szuber, N.; Gangat, N.; Capecchi, G.; Maccari, C.; Harnois, M.; Karrar, O.; Abdelmagid, M.; Balliu, M.; Nacca, E.; et al. CALR Mutation Burden in Essential Thrombocythemia and Disease Outcome. Blood 2024, 143, 1310–1314. [Google Scholar] [CrossRef] [PubMed]
- Aubin, L.; Vilas Boas, R.; Daltro De Oliveira, R.; Le Brun, V.; Divoux, M.; Rey, J.; Mansier, O.; Ianotto, J.-C.; Pastoret, C.; Desmares, A.; et al. CALR-Mutated Patients with Low Allele Burden Represent a Specific Subtype of Essential Thrombocythemia: A Study on Behalf of FIM and GBMHM. Am. J. Hematol. 2024, 99, 1001–1004. [Google Scholar] [CrossRef]
- Mroczkowska-Bękarciak, A.; Szeremet, A.; Chyrko, O.; Wróbel, T. CALR—Mutant Myeloproliferative Neoplasms: Insights from next-Generation Sequencing. J. Appl. Genet. 2025. [Google Scholar] [CrossRef]
- Bewersdorf, J.P.; Giri, S.; Wang, R.; Podoltsev, N.; Williams, R.T.; Tallman, M.S.; Rampal, R.K.; Zeidan, A.M.; Stahl, M. Interferon Alpha Therapy in Essential Thrombocythemia and Polycythemia Vera—A Systematic Review and Meta-Analysis. Leukemia 2021, 35, 1643–1660. [Google Scholar] [CrossRef]
- Kjær, L.; Cordua, S.; Holmström, M.O.; Thomassen, M.; Kruse, T.A.; Pallisgaard, N.; Larsen, T.S.; de Stricker, K.; Skov, V.; Hasselbalch, H.C. Differential Dynamics of CALR Mutant Allele Burden in Myeloproliferative Neoplasms during Interferon Alfa Treatment. PLoS ONE 2016, 11, e0165336. [Google Scholar] [CrossRef]
- Czech, J.; Cordua, S.; Weinbergerova, B.; Baumeister, J.; Crepcia, A.; Han, L.; Maié, T.; Costa, I.G.; Denecke, B.; Maurer, A.; et al. JAK2V617F but Not CALR Mutations Confer Increased Molecular Responses to Interferon-α via JAK1/STAT1 Activation. Leukemia 2019, 33, 995–1010. [Google Scholar] [CrossRef]
- Stegelmann, F.; Teichmann, L.L.; Heidel, F.H.; Crodel, C.C.; Ernst, T.; Kreil, S.; Reiter, A.; Otten, S.; Schauer, S.; Körber, R.-M.; et al. Clinicohematologic and Molecular Response of Essential Thrombocythemia Patients Treated with Pegylated Interferon-α: A Multi-Center Study of the German Study Group-Myeloproliferative Neoplasms (GSG-MPN). Leukemia 2023, 37, 924–928. [Google Scholar] [CrossRef]
- Harrison, C.N.; Nangalia, J.; Boucher, R.; Jackson, A.; Yap, C.; O’Sullivan, J.; Fox, S.; Ailts, I.; Dueck, A.C.; Geyer, H.L.; et al. Ruxolitinib Versus Best Available Therapy for Polycythemia Vera Intolerant or Resistant to Hydroxycarbamide in a Randomized Trial. J. Clin. Oncol. 2023, 41, 3534–3544. [Google Scholar] [CrossRef]
- Jones, A.V.; Ward, D.; Lyon, M.; Leung, W.; Callaway, A.; Chase, A.; Dent, C.L.; White, H.E.; Drexler, H.G.; Nangalia, J.; et al. Evaluation of Methods to Detect CALR Mutations in Myeloproliferative Neoplasms. Leuk. Res. 2015, 39, 82–87. [Google Scholar] [CrossRef]
- Mansier, O.; Migeon, M.; Saint-Lézer, A.; James, C.; Verger, E.; Robin, M.; Socié, G.; Bidet, A.; Mahon, F.X.; Cassinat, B.; et al. Quantification of the Mutant CALR Allelic Burden by Digital PCR: Application to Minimal Residual Disease Evaluation after Bone Marrow Transplantation. J. Mol. Diagn. 2016, 18, 68–74. [Google Scholar] [CrossRef]
- Chi, J.; Manoloukos, M.; Pierides, C.; Nicolaidou, V.; Nicolaou, K.; Kleopa, M.; Vassiliou, G.; Costeas, P. Calreticulin Mutations in Myeloproliferative Neoplasms and New Methodology for Their Detection and Monitoring. Ann. Hematol. 2015, 94, 399–408. [Google Scholar] [CrossRef]
- Anelli, L.; Zagaria, A.; Coccaro, N.; Tota, G.; Minervini, A.; Casieri, P.; Impera, L.; Minervini, C.F.; Brunetti, C.; Ricco, A.; et al. Droplet digital PCR assay for quantifying CALR mutant allelic burden in myeloproliferative neoplasms. Ann. Hematol. 2016, 95, 1559–1560. [Google Scholar] [CrossRef] [PubMed]
- Wolschke, C.; Badbaran, A.; Zabelina, T.; Christopeit, M.; Ayuk, F.; Triviai, I.; Zander, A.; Alchalby, H.; Bacher, U.; Fehse, B.; et al. Impact of molecular residual disease post allografting in myelofibrosis patients. Bone Marrow Transpl. 2017, 52, 1526–1529. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Zhao, L.; Loos, F.; Marty, C.; Xie, W.; Martins, I.; Lachkar, S.; Qu, B.; Waeckel-Énée, E.; Plo, I.; et al. Immunosuppression by Mutated Calreticulin Released from Malignant Cells. Mol. Cell 2020, 77, 748–760.e9. [Google Scholar] [CrossRef]
- Daitoku, S.; Takenaka, K.; Yamauchi, T.; Yurino, A.; Jinnouchi, F.; Nunomura, T.; Eto, T.; Kamimura, T.; Higuchi, M.; Harada, N.; et al. Calreticulin mutation does not contribute to disease progression in essential thrombocythemia by inhibiting phagocytosis. Exp. Hematol. 2016, 44, 817–825.e3. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, D.; Endres, C.; Hoefflin, R.; Andrieux, G.; Zwick, M.; Karantzelis, N.; Staehle, H.F.; Vinnakota, J.M.; Duquesne, S.; Mozaffari Jovein, M.; et al. Oncogenic Calreticulin Induces Immune Escape by Stimulating TGFβ Expression and Regulatory T-Cell Expansion in the Bone Marrow Microenvironment. Cancer Res. 2024, 84, 2985–3003. [Google Scholar] [CrossRef]
- Bozkus, C.C.; Roudko, V.; Finnigan, J.P.; Mascarenhas, J.; Hoffman, R.; Iancu-Rubin, C.; Bhardwaj, N. Immune Checkpoint Blockade Enhances Shared Neoantigen-Induced T Cell Immunity Directed against Mutated Calreticulin in Myeloproliferative Neoplasms. Cancer Discov. 2019, 9, 1192–1207. [Google Scholar] [CrossRef]
- Wijeyesakere, S.J.; Gagnon, J.K.; Arora, K.; Brooks, C.L.; Raghavan, M. Regulation of Calreticulin–Major Histocompatibility Complex (MHC) Class I Interactions by ATP. Proc. Natl. Acad. Sci. USA 2015, 112, E5608–E5617. [Google Scholar] [CrossRef] [PubMed]
- Brunnberg, J.; Barends, M.; Frühschulz, S.; Winter, C.; Battin, C.; de Wet, B.; Cole, D.K.; Steinberger, P.; Tampé, R. Dual Role of the Peptide-Loading Complex as Proofreader and Limiter of MHC-I Presentation. Proc. Natl. Acad. Sci. USA 2024, 121, e2321600121. [Google Scholar] [CrossRef] [PubMed]
- Desikan, H.; Kaur, A.; Pogozheva, I.D.; Raghavan, M. Effects of Calreticulin Mutations on Cell Transformation and Immunity. J. Cell. Mol. Med. 2023, 27, 1032–1044. [Google Scholar] [CrossRef] [PubMed]
NCT Identifies | Drug | Population Study | Primary Endpoint |
---|---|---|---|
Anti-CALR Monoclonal Antibodies | |||
NCT05936359 NCT06034002 | INCA033989 | HR † ET, with platelets > 450 × 109/L; resistant to or intolerant to ≥1 prior cytoreductive therapy (concomitant therapy with ANA or HU permitted) DIPSS IR/HR PMF/Post-ET MF previously treated with JAKi for >12 weeks; resistant/refractory/intolerant/loss response to JAKi; blast < 10%; | DLTs, TEAEs, and TEAEs ‡ leading to dose modification or discontinuation |
NCT07008118 | INCA035784 | DIPSS+ IR-2/HR MF with prior JAKi, <20% blasts, and measurable spleen; resistant, refractory, intolerant, or has lost response to ≥1 prior line of therapy HR ET with platelets >450 × 109/L and ≥2 prior treatment lines | DLTs, TEAEs, and TEAEs leading to treatment interruption, discontinuation or delay |
NCT06150157 | JNJ-88549968 | CALR-mutated ET and MF | DLTs, AEs and AEs by severity |
Anti-CALR Vaccination | |||
NCT05025488 | Peptide-based vaccine and Poly-ICLC § | HR ET; previously treated or relapsed/refractory LR/IR-1 (DIPSS 0-1) PMF or post-ET MF | DLTs |
NCT03566446 | CALRLong36 peptide | ET, post-ET MF, prefibrotic MF, overt MF | AEs |
NCT05444530 | VAC85135 + ipilimumab | CALR-mutated MPN (type 1/2 or like) or JAK2 V617F with HLA-A*02:01 | DLTs, AEs, serious AEs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, A.; Breccia, M. Challenges in the Evolving Role of Calreticulin as a Promising Target for Precision Medicine in Myeloproliferative Neoplasms. Cancers 2025, 17, 3397. https://doi.org/10.3390/cancers17213397
Costa A, Breccia M. Challenges in the Evolving Role of Calreticulin as a Promising Target for Precision Medicine in Myeloproliferative Neoplasms. Cancers. 2025; 17(21):3397. https://doi.org/10.3390/cancers17213397
Chicago/Turabian StyleCosta, Alessandro, and Massimo Breccia. 2025. "Challenges in the Evolving Role of Calreticulin as a Promising Target for Precision Medicine in Myeloproliferative Neoplasms" Cancers 17, no. 21: 3397. https://doi.org/10.3390/cancers17213397
APA StyleCosta, A., & Breccia, M. (2025). Challenges in the Evolving Role of Calreticulin as a Promising Target for Precision Medicine in Myeloproliferative Neoplasms. Cancers, 17(21), 3397. https://doi.org/10.3390/cancers17213397