Determining the Biological Features of Aggressive Meningioma Growth with Transcriptomic Profiling
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Tissue Samples
2.2. RNA Sequencing (RNA-Seq)
2.3. Analysis of RNA Sequencing Data
2.4. Analysis of Publicly Available Single-Cell RNA-Sequencing Experiment
2.5. Immunohistochemistry (IHC)
2.6. Statistical Analysis
3. Results
3.1. Genes Expression Profiles in Benign and High-Grade Meningiomas
3.2. Tumor Microenvironment and Cellular Communication in Benign and Aggressive Meningiomas
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BAM | border-associated macrophage |
BTI | Brain–tumor interface |
FFPE | formalin-fixed paraffin-embedded |
GI | WHO grade I |
GII | WHO grade II |
GIII | WHO grade III |
GOBP | Gene Ontology Biological Processes |
GOMF | Gene Ontology Molecular Function |
IHC | Immunohistochemistry |
M | millions |
RNA-seq | RNA sequencing |
scRNA-seq | single-cell RNA sequencing |
WHO | World Health Organization |
TIN | transcript integrity numbers |
UMAP | uniform manifold approximation and projection |
References
- Low, J.T.; Ostrom, Q.T.; Cioffi, G.; Neff, C.; Waite, K.A.; Kruchko, C.; Barnholtz-Sloan, J.S. Primary Brain and Other Central Nervous System Tumors in the United States (2014–2018): A Summary of the CBTRUS Statistical Report for Clinicians. Neuro Oncol. Pract. 2022, 9, 165–182. [Google Scholar] [CrossRef] [PubMed]
- WHO. Classification of Tumours of the Central Nervous System, 5th ed.; IARC: Lyon, France, 2022; Volume 6, ISBN 9789283245087.
- Louis, D.N.; Sahm, F.; Perry, A.; von Deimling, A.; Claus, E.B.; Mawrin, C.; Brastianos, P.K.; Meningiomas, S.S. Central Nervous System Tumours. In WHO Classification of Tumours; Brat, D.J., Ellison, D.W., Figarella-Branger, D., Hawkins, C., Louis, D.N., Ng, H.K., Perry, A., Pfister, S.M., Eds.; International Agency for Research on Cancer: Lyon, France, 2021. [Google Scholar]
- Landry, A.P.; Yefet, L.S.; Wang, J.Z.; Zadeh, G.; Nassiri, F. Methylation Profiling in the Contemporary Management of Meningioma. J. Neurooncol. 2024, 170, 521–525. [Google Scholar] [CrossRef]
- Pugazenthi, S.; Patel, B.; English, C.W.; Leidig, W.A.; McGeehan, K.P.; McCornack, C.R.; Mok, S.; Anzaldua-Campos, M.; Nouri, S.H.; Roberts, K.; et al. Multiomic and Clinical Analysis of Multiply Recurrent Meningiomas Reveals Risk Factors, Underlying Biology, and Insights into Evolution. Sci. Adv. 2024, 10, eadn4419. [Google Scholar] [CrossRef]
- Nassiri, F.; Liu, J.; Patil, V.; Mamatjan, Y.; Wang, J.Z.; Hugh-White, R.; Macklin, A.M.; Khan, S.; Singh, O.; Karimi, S.; et al. A Clinically Applicable Integrative Molecular Classification of Meningiomas. Nature 2021, 597, 119–125. [Google Scholar] [CrossRef]
- Esteve-Codina, A.; Arpi, O.; Martinez-García, M.; Pineda, E.; Mallo, M.; Gut, M.; Carrato, C.; Rovira, A.; Lopez, R.; Tortosa, A.; et al. A Comparison of RNA-Seq Results from Paired Formalin-Fixed Paraffin-Embedded and Fresh-Frozen Glioblastoma Tissue Samples. PLoS ONE 2017, 12, e0170632. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast Universal RNA-Seq Aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Korotkevich, G.; Sukhov, V.; Budin, N.; Shpak, B.; Artyomov, M.N.; Sergushichev, A. Fast Gene Set Enrichment Analysis. bioRxiv 2021. [Google Scholar] [CrossRef]
- Oron, A.P.; Jiang, Z.; Gentleman, R. Gene Set Enrichment Analysis Using Linear Models and Diagnostics. Bioinformatics 2008, 24, 2586–2591. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING Database in 2023: Protein-Protein Association Networks and Functional Enrichment Analyses for Any Sequenced Genome of Interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, A.; Magill, S.T.; Eaton, C.D.; Prager, B.C.; Chen, W.C.; Cady, M.A.; Seo, K.; Lucas, C.H.G.; Casey-Clyde, T.J.; Vasudevan, H.N.; et al. Meningioma DNA Methylation Groups Identify Biological Drivers and Therapeutic Vulnerabilities. Nat. Genet. 2022, 54, 649–659. [Google Scholar] [CrossRef]
- Hao, Y.; Stuart, T.; Kowalski, M.H.; Choudhary, S.; Hoffman, P.; Hartman, A.; Srivastava, A.; Molla, G.; Madad, S.; Fernandez-Granda, C.; et al. Dictionary Learning for Integrative, Multimodal and Scalable Single-Cell Analysis. Nat. Biotechnol. 2024, 42, 293–304. [Google Scholar] [CrossRef]
- Bais, A.S.; Kostka, D. Scds: Computational Annotation of Doublets in Single-Cell RNA Sequencing Data. Bioinformatics 2020, 36, 1150–1158. [Google Scholar] [CrossRef]
- Lun, A.T.L.; McCarthy, D.J.; Marioni, J.C. A Step-by-Step Workflow for Low-Level Analysis of Single-Cell RNA-Seq Data with Bioconductor. F1000Research 2016, 5, 2122. [Google Scholar] [CrossRef]
- Farrell, J.A.; Wang, Y.; Riesenfeld, S.J.; Shekhar, K.; Regev, A.; Schier, A.F. Single-Cell Reconstruction of Developmental Trajectories during Zebrafish Embryogenesis. Science 2018, 360, eaar3131. [Google Scholar] [CrossRef]
- Jew, B.; Alvarez, M.; Rahmani, E.; Miao, Z.; Ko, A.; Garske, K.M.; Sul, J.H.; Pietiläinen, K.H.; Pajukanta, P.; Halperin, E. Accurate Estimation of Cell Composition in Bulk Expression through Robust Integration of Single-Cell Information. Nat. Commun. 2020, 11, 1971. [Google Scholar] [CrossRef]
- Jin, S.; Guerrero-Juarez, C.F.; Zhang, L.; Chang, I.; Ramos, R.; Kuan, C.H.; Myung, P.; Plikus, M.V.; Nie, Q. Inference and Analysis of Cell-Cell Communication Using CellChat. Nat. Commun. 2021, 12, 1088. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.C.; Vasudevan, H.N.; Choudhury, A.; Pekmezci, M.; Lucas, C.H.G.; Phillips, J.; Magill, S.T.; Susko, M.S.; Braunstein, S.E.; Bush, N.A.O.; et al. A Prognostic Gene-Expression Signature and Risk Score for Meningioma Recurrence after Resection. Neurosurgery 2021, 88, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.J.; Wan, Y.W.; Al-Ouran, R.; Revelli, J.P.; Cardenas, M.F.; Oneissi, M.; Xi, L.; Jalali, A.; Magnotti, J.F.; Muzny, D.M.; et al. Molecular Profiling Predicts Meningioma Recurrence and Reveals Loss of DREAM Complex Repression in Aggressive Tumors. Proc. Natl. Acad. Sci. USA 2019, 116, 21715–21726. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Z.; Patil, V.; Liu, J.; Dogan, H.; Tabatabai, G.; Yefet, L.S.; Behling, F.; Hoffman, E.; Bunda, S.; Yakubov, R.; et al. Increased MRNA Expression of CDKN2A Is a Transcriptomic Marker of Clinically Aggressive Meningiomas. Acta Neuropathol. 2023, 146, 145–162. [Google Scholar] [CrossRef]
- Chen, W.C.; Choudhury, A.; Youngblood, M.W.; Polley, M.Y.C.; Lucas, C.H.G.; Mirchia, K.; Maas, S.L.N.; Suwala, A.K.; Won, M.; Bayley, J.C.; et al. Targeted Gene Expression Profiling Predicts Meningioma Outcomes and Radiotherapy Responses. Nat. Med. 2023, 29, 3067–3076. [Google Scholar] [CrossRef]
- Pérez-Magán, E.; Campos-Martín, Y.; Mur, P.; Fiaño, C.; Ribalta, T.; García, J.F.; Rey, J.A.; Rodríguez De Lope, A.; Mollejo, M.; Meléndez, B. Genetic Alterations Associated with Progression and Recurrence in Meningiomas. J. Neuropathol. Exp. Neurol. 2012, 71, 882–893. [Google Scholar] [CrossRef]
- Chen, F.; Xiang, C.X.; Zhou, Y.; Ao, X.S.; Zhou, D.Q.; Peng, P.; Zhang, H.Q.; Liu, H.D.; Huang, X. Gene Expression Profile for Predicting Survival of Patients with Meningioma. Int. J. Oncol. 2015, 46, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Watson, M.A.; Gutmann, D.H.; Peterson, K.; Chicoine, M.R.; Kleinschmidt-DeMasters, B.K.; Brown, H.G.; Perry, A. Molecular Characterization of Human Meningiomas by Gene Expression Profiling Using High-Density Oligonucleotide Microarrays. Am. J. Pathol. 2002, 161, 665–672. [Google Scholar] [CrossRef]
- Fèvre-Montange, M.; Champier, J.; Durand, A.; Wierinckx, A.; Honnorat, J.; Guyotat, J.; Jouvet, A. Microarray Gene Expression Profiling in Meningiomas: Differential Expression According to Grade or Histopathological Subtype. Int. J. Oncol. 2009, 35, 1395–1407. [Google Scholar] [CrossRef]
- Schulten, H.J.; Hussein, D.; Al-Adwani, F.; Karim, S.; Al-Maghrabi, J.; Al-Sharif, M.; Jamal, A.; Al-Ghamdi, F.; Baeesa, S.S.; Bangash, M.; et al. Microarray Expression Data Identify DCC as a Candidate Gene for Early Meningioma Progression. PLoS ONE 2016, 11, e0153681. [Google Scholar] [CrossRef]
- Wrobel, G.; Roerig, P.; Kokocinski, F.; Neben, K.; Hahn, M.; Reifenberger, G.; Lichter, P. Microarray-Based Gene Expression Profiling of Benign, Atypical and Anaplastic Meningiomas Identifies Novel Genes Associated with Meningioma Progression. Int. J. Cancer 2005, 114, 249–256. [Google Scholar] [CrossRef]
- Aarhus, M.; Lund-Johansen, M.; Knappskog, P.M. Gene Expression Profiling of Meningiomas: Current Status after a Decade of Microarray-Based Transcriptomic Studies. Acta Neurochir. 2011, 153, 447–456. [Google Scholar] [CrossRef]
- Vasudevan, H.N.; Braunstein, S.E.; Phillips, J.J.; Pekmezci, M.; Tomlin, B.A.; Wu, A.; Reis, G.F.; Magill, S.T.; Zhang, J.; Feng, F.Y.; et al. Comprehensive Molecular Profiling Identifies FOXM1 as a Key Transcription Factor for Meningioma Proliferation. Cell Rep. 2018, 22, 3672–3683. [Google Scholar] [CrossRef] [PubMed]
- Vasudevan, H.N.; Castro, M.R.H.; Lee, J.C.; Villanueva-Meyer, J.E.; Bush, N.A.O.; McDermott, M.W.; Solomon, D.A.; Perry, A.; Magill, S.T.; Raleigh, D.R. DNA Methylation Profiling Demonstrates Superior Diagnostic Classification to RNA-Sequencing in a Case of Metastatic Meningioma. Acta Neuropathol. Commun. 2020, 8, 82. [Google Scholar] [CrossRef] [PubMed]
- Slavik, H.; Balik, V.; Zavadil Kokas, F.; Slavkovsky, R.; Vrbkova, J.; Rehulkova, A.; Lausova, T.; Ehrmann, J.; Gurska, S.; Uberall, I.; et al. Transcriptomic Profiling Revealed Lnc-GOLGA6A-1 as a Novel Prognostic Biomarker of Meningioma Recurrence. Neurosurgery 2022, 91, 360–369. [Google Scholar] [CrossRef]
- Choudhury, A.; Chen, W.C.; Lucas, C.H.G.; Bayley, J.C.; Harmanci, A.S.; Maas, S.L.N.; Santagata, S.; Klisch, T.; Perry, A.; Bi, W.L.; et al. Hypermitotic Meningiomas Harbor DNA Methylation Subgroups with Distinct Biological and Clinical Features. Neuro-Oncology 2023, 25, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Suppiah, S.; Liu, J.; Karimi, S.; Aldape, K.; Zadeh, G. Differential Gene Expression and Pathway Analysis of Radiation-Induced Meningiomas. J. Neurol. Surg. B Skull Base 2018, 79, S1–S188. [Google Scholar] [CrossRef]
- Collord, G.; Tarpey, P.; Kurbatova, N.; Martincorena, I.; Moran, S.; Castro, M.; Nagy, T.; Bignell, G.; Maura, F.; Young, M.D.; et al. An Integrated Genomic Analysis of Anaplastic Meningioma Identifies Prognostic Molecular Signatures. Sci. Rep. 2018, 8, 13537. [Google Scholar] [CrossRef]
- Tsitsikov, E.N.; Hameed, S.; Tavakol, S.A.; Stephens, T.M.; Tsytsykova, A.V.; Garman, L.; Bi, W.L.; Dunn, I.F. Specific Gene Expression Signatures of Low Grade Meningiomas. Front. Oncol. 2023, 13, 1126550. [Google Scholar] [CrossRef]
- Viaene, A.N.; Zhang, B.; Martinez-Lage, M.; Xiang, C.; Tosi, U.; Thawani, J.P.; Gungor, B.; Zhu, Y.; Roccograndi, L.; Zhang, L.; et al. Transcriptome Signatures Associated with Meningioma Progression. Acta Neuropathol. Commun. 2019, 7, 67. [Google Scholar] [CrossRef] [PubMed]
- Thirimanne, H.N.; Almiron-Bonnin, D.; Nuechterlein, N.; Arora, S.; Jensen, M.; Parada, C.A.; Qiu, C.; Szulzewsky, F.; English, C.W.; Chen, W.C.; et al. Meningioma Transcriptomic Landscape Demonstrates Novel Subtypes with Regional Associated Biology and Patient Outcome. Cell Genom. 2024, 4, 100566. [Google Scholar] [CrossRef]
- Pereira, B.J.A.; Lerario, A.M.; Sola, P.R.; de Sousa Laurentino, T.; Mohan, D.R.; de Almeida, A.N.; Pires de Aguiar, P.H.; da Silva Paiva, W.; Wakamatsu, A.; Jacobsen Teixeira, M.; et al. Impact of a Cell Cycle and an Extracellular Matrix Remodeling Transcriptional Signature on Tumor Progression and Correlation with EZH2 Expression in Meningioma. J. Neurosurg. 2023, 138, 649–662. [Google Scholar] [CrossRef]
- Yuzawa, S.; Nishihara, H.; Tanaka, S. Genetic Landscape of Meningioma. Brain Tumor Pathol. 2016, 33, 237–247. [Google Scholar] [CrossRef]
- Sahm, F.; Schrimpf, D.; Stichel, D.; Jones, D.T.W.; Hielscher, T.; Schefzyk, S.; Okonechnikov, K.; Koelsche, C.; Reuss, D.E.; Capper, D.; et al. DNA Methylation-Based Classification and Grading System for Meningioma: A Multicentre, Retrospective Analysis. Lancet Oncol. 2017, 18, 682–694. [Google Scholar] [CrossRef] [PubMed]
- Faubert, B.; Solmonson, A.; DeBerardinis, R.J. Metabolic Reprogramming and Cancer Progression. Science 2020, 368, eaaw5473. [Google Scholar] [CrossRef] [PubMed]
- Fendt, S.M. 100 Years of the Warburg Effect: A Cancer Metabolism Endeavor. Cell 2024, 187, 3824–3828. [Google Scholar] [CrossRef] [PubMed]
- Ijare, O.B.; Hambarde, S.; Brasil Da Costa, F.H.; Lopez, S.; Sharpe, M.A.; Helekar, S.A.; Hangel, G.; Bogner, W.; Widhalm, G.; Bachoo, R.M.; et al. Glutamine Anaplerosis Is Required for Amino Acid Biosynthesis in Human Meningiomas. Neuro-Oncology 2022, 24, 556–568. [Google Scholar] [CrossRef] [PubMed]
- Feichtinger, R.G.; Weis, S.; Mayr, J.A.; Zimmermann, F.A.; Bogner, B.; Sperl, W.; Kofler, B. Alterations of Oxidative Phosphorylation in Meningiomas and Peripheral Nerve Sheath Tumors. Neuro-Oncology 2016, 18, 184–194. [Google Scholar] [CrossRef]
- Masalha, W.; Daka, K.; Woerner, J.; Pompe, N.; Weber, S.; Delev, D.; Krüger, M.T.; Schnell, O.; Beck, J.; Heiland, D.H.; et al. Metabolic Alterations in Meningioma Reflect the Clinical Course. BMC Cancer 2021, 21, 211. [Google Scholar] [CrossRef]
- Selke, P.; Rosenstock, P.; Bork, K.; Strauss, C.; Horstkorte, R.; Scheer, M. Glycation of Benign Meningioma Cells Leads to Increased Invasion. Biol. Chem. 2021, 402, 849–859. [Google Scholar] [CrossRef]
- Zhang, K.; Sun, L.; Kang, Y. Regulation of Phosphoglycerate Kinase 1 and Its Critical Role in Cancer. Cell Commun. Signal. 2023, 21, 240. [Google Scholar] [CrossRef]
- Nguyen, P.M.; Morshed, A.R.; Youngblood, W.M.; Perlow, K.H.; Lucas, G.C.-H.; Patel, J.A.; Palmer, D.J.; Horbinski, M.C.; Magill, T.S.; Chen, C.W.; et al. A Targeted Gene Expression Biomarker Predicts Clinic Low-Risk Meningioma Recurrence. Neuro-Oncology 2025, 27, 445–454. [Google Scholar] [CrossRef]
- Morshed, R.A.; Nguyen, M.P.; Youngblood, M.W.; Perlow, H.K.; Lucas, C.-H.G.; Patel, A.J.; Palmer, J.D.; Chandler, J.P.; Theodosopoulos, P.V.; Magill, S.T.; et al. Gene Expression Changes Associated with Recurrence After Gross Total Resection of Newly Diagnosed World Health Organization Grade 1 Meningioma. Neurosurgery 2025, 96, 521–528. [Google Scholar] [CrossRef]
- Stuart, J.E.; Lusis, E.A.; Scheck, A.C.; Coons, S.W.; Lal, A.; Perry, A.; Gutmann, D.H. Identification of Gene Markers Associated with Aggressive Meningioma by Filtering across Multiple Sets of Gene Expression Arrays. J. Neuropathol. Exp. Neurol. 2011, 70, 1–12. [Google Scholar] [CrossRef]
- Yang, B.; Wei, S.; Ma, Y.B.; Chu, S.H. Integrated Transcriptomic Analysis Reveals the Molecular Mechanism of Meningiomas by Weighted Gene Coexpression Network Analysis. Biomed Res. Int. 2020, 2020, 4927547. [Google Scholar] [CrossRef] [PubMed]
- Kraft, R.; Benndorf, K.; Patt, S. Large Conductance Ca2+-Activated K+ Channels in Human Meningioma Cells. J. Membr. Biol. 2000, 175, 25–33. [Google Scholar] [CrossRef]
- Maklad, A.; Sharma, A.; Azimi, I. Calcium Signaling in Brain Cancers: Roles and Therapeutic Targeting. Cancers 2019, 11, 145. [Google Scholar] [CrossRef]
- Lei, Z.; Niu, J.; Cai, H.; Kong, Z.; Ding, X.; Dong, Y.; Zhang, D.; Li, X.; Shao, J.; Lin, A.; et al. NF2 Regulates IP3R-Mediated Ca2+ Signal and Apoptosis in Meningiomas. FASEB J. 2024, 38, e23737. [Google Scholar] [CrossRef]
- Sun, R.; Jiang, H. Border-Associated Macrophages in the Central Nervous System. J. Neuroinflamm. 2024, 21, 67. [Google Scholar] [CrossRef]
- Kierdorf, K.; Masuda, T.; Jordão, M.J.C.; Prinz, M. Macrophages at CNS Interfaces: Ontogeny and Function in Health and Disease. Nat. Rev. Neurosci. 2019, 20, 547–562. [Google Scholar] [CrossRef]
- Ochocka, N.; Segit, P.; Walentynowicz, K.A.; Wojnicki, K.; Cyranowski, S.; Swatler, J.; Mieczkowski, J.; Kaminska, B. Single-Cell RNA Sequencing Reveals Functional Heterogeneity of Glioma-Associated Brain Macrophages. Nat. Commun. 2021, 12, 1151. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Song, L.; Fan, J.; Ma, J.; Li, X.; Zhang, J.; Hu, J.; Wu, Z.; Zhang, D.; Wang, L. Decoding Meningioma Heterogeneity and Neoplastic Cell—Macrophage Interaction through Single-Cell Transcriptome Profiling across Pathological Grades. J. Transl. Med. 2023, 21, 751. [Google Scholar] [CrossRef]
- Zhang, X. Single-Cell RNA Sequencing Identifies Macrophage Signatures Correlated with Clinical Features and Tumour Microenvironment in Meningiomas. IET Syst. Biol. 2023, 17, 259–270. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, H.; Bao, Y.; Pang, L.; Yang, C. Neutrophils in Cancer: From Immune Defense to Tumor Promotion. Cancer Biol. Med. 2025, 22, 598–617. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Liu, G.; Li, H.; Cheng, L. Target Neutrophil Heterogeneity and Plasticity in Cancer. J. Hematol. Oncol. 2025, 18, 79. [Google Scholar] [CrossRef] [PubMed]
Patients Clinical/Demographical Feature | |
---|---|
Number of patients | 60 |
Females | 38/60 (63.33%) |
Males | 22/62 (36.67%) |
Age at surgery (years; median (range)) | 62.5 (38–88) |
Meningioma histological subtype | |
WHO grade I | 30/60 (50%) |
Meningothelial | 19/60 (31.67%) |
Fibrous | 11/60 (18.33%) |
WHO grade II, Atypical | 18/60 (30%) |
WHO grade III, Anaplastic | 12/60 (20%) |
Histological Subtype | No Expression (No. of Samples) | Weak Expression (No. of Samples) | Moderate Expression (No. of Samples) | High Expression (No. of Samples) |
---|---|---|---|---|
WHO grade I Meningothelial (n = 6) | 0 | 4 | 1 | 1 |
WHO grade I Fibrous (n = 6) | 0 | 4 | 2 | 0 |
WHO grade II, Atypical (n = 6) | 0 | 0 | 3 | 3 |
WHO grade III, Anaplastic (n = 6) | 0 | 0 | 2 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baluszek, S.; Kober, P.; Myśliwy, I.; Oziębło, A.; Mandat, T.; Jeżewski, M.P.; Bujko, M. Determining the Biological Features of Aggressive Meningioma Growth with Transcriptomic Profiling. Cancers 2025, 17, 3324. https://doi.org/10.3390/cancers17203324
Baluszek S, Kober P, Myśliwy I, Oziębło A, Mandat T, Jeżewski MP, Bujko M. Determining the Biological Features of Aggressive Meningioma Growth with Transcriptomic Profiling. Cancers. 2025; 17(20):3324. https://doi.org/10.3390/cancers17203324
Chicago/Turabian StyleBaluszek, Szymon, Paulina Kober, Izabella Myśliwy, Artur Oziębło, Tomasz Mandat, Mateusz Piotr Jeżewski, and Mateusz Bujko. 2025. "Determining the Biological Features of Aggressive Meningioma Growth with Transcriptomic Profiling" Cancers 17, no. 20: 3324. https://doi.org/10.3390/cancers17203324
APA StyleBaluszek, S., Kober, P., Myśliwy, I., Oziębło, A., Mandat, T., Jeżewski, M. P., & Bujko, M. (2025). Determining the Biological Features of Aggressive Meningioma Growth with Transcriptomic Profiling. Cancers, 17(20), 3324. https://doi.org/10.3390/cancers17203324