The Emerging Role of Magnesium in Preventing Acute Kidney Disease During Concurrent Chemoradiotherapy in Head and Neck Cancer
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Treatment
- -
- High-dose cisplatin concomitant to radiotherapy (≥200 mg/m2 cumulative dose).
- -
- Hydration with 1500 mL of normal saline solution and 16 mEq magnesium sulfate (MgSO4), administered before and following chemotherapy for a total of 3 L of normal saline solution and 32 mEq MgSO4, administered intravenously (i.v.) in 4 h.
- -
- Premedication with:
- Dexamethasone 12 mg i.v.
- Netupitant 300 mg per OS
- Omeprazole 40 mg i.v.
- Mannitol 100 mg i.v.
- -
- The same hydration regimen, magnesium dose, proton pump inhibitors, and corticosteroid administration were repeated on the day after chemotherapy.
2.2. Statistical Analyses
3. Results
3.1. Univariate Analysis of AKD Predictors
3.2. Multivariate Analysis of AKD Predictors
3.3. Comparison of eGFR Decline by AKD Status
3.4. Comparison of eGFR Decline by CKD Stage
3.5. Acute Kidney Disease Healing Between Treatment Cycles
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Forastiere, A.A.; Goepfert, H.; Maor, M.; Pajak, T.F.; Weber, R.; Morrison, W.; Glisson, B.; Trotti, A.; Ridge, J.A.; Chao, C.; et al. Concurrent Chemotherapy and Radiotherapy for Organ Preservation in Advanced Laryngeal Cancer. N. Engl. J. Med. 2003, 349, 2091–2098. [Google Scholar] [CrossRef]
- Pignon, J.-P.; le Maître, A.; Maillard, E.; Bourhis, J.; MACH-NC Collaborative Group. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): An update on 93 randomised trials and 17,346 patients. Radiother. Oncol. 2009, 92, 4–14. [Google Scholar] [CrossRef]
- Adelstein, D.J.; Li, Y.; Adams, G.L.; Wagner, H., Jr.; Kish, J.A.; Ensley, J.F.; Schuller, D.E.; Forastiere, A.A. An Intergroup Phase III Comparison of Standard Radiation Therapy and Two Schedules of Concurrent Chemoradiotherapy in Patients with Unresectable Squamous Cell Head and Neck Cancer. J. Clin. Oncol. 2003, 21, 92–98. [Google Scholar] [CrossRef]
- Pulito, C.; Cristaudo, A.; Porta, C.; Zapperi, S.; Blandino, G.; Morrone, A.; Strano, S. Oral mucositis: The hidden side of cancer therapy. J. Exp. Clin. Cancer Res. 2020, 39, 210. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kuhn, M.A.; Gillespie, M.B.; Ishman, S.L.; Ishii, L.E.; Brody, R.; Cohen, E.; Dhar, S.I.; Hutcheson, K.; Jefferson, G.; Johnson, F.; et al. Expert Consensus Statement: Management of Dysphagia in Head and Neck Cancer Patients. Otolaryngol. Head Neck Surg. 2023, 168, 571–592. [Google Scholar] [CrossRef] [PubMed]
- Khwaja, A. KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Kidney Int. Suppl. 2012, 120, c179–c184. [Google Scholar]
- Chawla, L.S.; Bellomo, R.; Bihorac, A.; Goldstein, S.L.; Siew, E.D.; Bagshaw, S.M.; Bittleman, D.; Cruz, D.; Endre, Z.; Fitzgerald, R.L.; et al. Acute Kidney Disease and Renal Recovery: Consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Nat. Rev. Nephrol. 2017, 13, 241–257. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Panichpisal, K.; Kurtzman, N.; Nugent, K. Cisplatin nephrotoxicity: A review. Am. J. Med. Sci. 2007, 334, 115–124. [Google Scholar] [CrossRef]
- Miller, R.P.; Tadagavadi, R.K.; Ramesh, G.; Reeves, W.B. Mechanisms of Cisplatin Nephrotoxicity. Toxins 2010, 2, 2490–2518. [Google Scholar] [CrossRef]
- Izzedine, H.; Launay-Vacher, V.; Deray, G. Antiretroviral drugs and the kidney: Further precisions. Kidney Int. 2005, 68, 409. [Google Scholar] [CrossRef] [PubMed]
- Noronha, V.; Joshi, A.; Patil, V.M.; Agarwal, J.; Ghosh-Laskar, S.; Budrukkar, A.; Murthy, V.; Gupta, T.; D’Cruz, A.K.; Banavali, S.; et al. Once-a-Week Versus Once-Every-3-Weeks Cisplatin Chemoradiation for Locally Advanced Head and Neck Cancer: A Phase III Randomized Noninferiority Trial. J. Clin. Oncol. 2018, 36, 1064–1072. [Google Scholar] [CrossRef] [PubMed]
- Cardellini, S.; Trevisani, F.; Deantoni, C.L.; Paccagnella, M.; Pontara, A.; Floris, M.; Giordano, L.; Caccialanza, R.; Mirabile, A. Nephrotoxicity in locally advanced head and neck cancer: When the end justifies the means to preserve nutritional status during chemoradiation. Support. Care Cancer 2024, 33, 13. [Google Scholar] [CrossRef] [PubMed]
- Stewart, D.J.; Evans, W.K. Non-chemotherapeutic agents that potentiate chemotherapy efficacy. Cancer Treat. Rev. 1989, 16, 1–40. [Google Scholar] [CrossRef]
- Machtay, M.; Moughan, J.; Trotti, A.; Garden, A.S.; Weber, R.S.; Cooper, J.S.; Forastiere, A.; Ang, K.K. Factors Associated with Severe Late Toxicity After Concurrent Chemoradiation for Locally Advanced Head and Neck Cancer: An RTOG Analysis. J. Clin. Oncol. 2008, 26, 3582–3589. [Google Scholar] [CrossRef]
- Lajer, H.; Daugaard, G. Cisplatin and hypomagnesemia. Cancer Treat. Rev. 1999, 25, 47–58. [Google Scholar] [CrossRef]
- Muggia, F.M.; Blessing, J.A.; Sorosky, J.; Reid, G.C. Phase II Trial of The Pegylated Liposomal Doxorubicin in Previously Treated Metastatic Endometrial Cancer: A Gynecologic Oncology Group study. J. Clin. Oncol. 2002, 20, 2360–2364. [Google Scholar] [CrossRef] [PubMed]
- Karasawa, T.; Steyger, P.S. An integrated view of cisplatin-induced nephrotoxicity and ototoxicity. Toxicol. Lett. 2015, 237, 219–227. [Google Scholar] [CrossRef]
- Ramesh, G.; Reeves, W.B. TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J. Clin. Investig. 2002, 110, 835–842. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gupta, S.; Glezerman, I.G.; Hirsch, J.S.; Chewcharat, A.; Wells, S.L.; Ortega, J.L.; Pirovano, M.; Kim, R.; Chen, K.L.; Jhaveri, K.D.; et al. Intravenous Magnesium and Cisplatin-Associated Acute Kidney Injury. JAMA Oncol. 2025, 11, 636. [Google Scholar] [CrossRef] [PubMed]
- Zaurito, P.; Calado, A.; Quarta, L.; Longoni, M.; Scilipoti, P.; Santangelo, A.; Viti, A.; Cosenza, A.; Scuderi, S.; Barletta, F.; et al. Incidence and Predictors of Acute Kidney Injury and Acute Kidney Disease After Robot-Assisted Radical Prostatectomy in Prostate Cancer Patients. Eur. Urol. Oncol. 2025. [Google Scholar] [CrossRef]
- Lameire, N.H.; Levin, A.; Kellum, J.A.; Cheung, M.; Jadoul, M.; Winkelmayer, W.C.; Stevens, P.E.; Caskey, F.J.; Farmer, C.K.; Fuentes, A.F.; et al. Harmonizing Acute and Chronic Kidney Disease Definition and Classification: Report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney Int. 2021, 100, 516–526. [Google Scholar] [CrossRef]
- Trevisani, F.; Di Marco, F.; Quattrini, G.; Lepori, N.; Floris, M.; Valsecchi, D.; Giordano, L.; Dell’oCa, I.; Cardellini, S.; Cinque, A.; et al. Acute kidney injury and acute kidney disease in high-dose cisplatin-treated head and neck cancer. Front. Oncol. 2023, 13, 1173578. [Google Scholar] [CrossRef] [PubMed]
- Nuttall, F.Q. Body Mass Index. Nutr. Today 2015, 50, 117–128. [Google Scholar] [CrossRef]
- Inker, L.A.; Schmid, C.H.; Tighiouart, H.; Eckfeldt, J.H.; Feldman, H.I.; Greene, T.; Kusek, J.W.; Manzi, J.; Van Lente, F.; Zhang, Y.L.; et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N. Engl. J. Med. 2012, 367, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Stevens, P.E.; Ahmed, S.B.; Carrero, J.J.; Foster, B.; Francis, A.; Hall, R.K.; Herrington, W.G.; Hill, G.; Inker, L.A.; Kazancıoğlu, R.; et al. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef]
- Trevisani, F.; Di Marco, F.; Capitanio, U.; Larcher, A.; Bettiga, A.; Dosio, F.; Ghidini, M.; Del Conte, G.; Vago, R.; Cinque, A.; et al. Renal Function Assessment Gap in Clinical Practice: An Awkward Truth. Kidney Blood Press. Res. 2020, 45, 166–179. [Google Scholar] [CrossRef]
- Workeneh, B.T.; Uppal, N.N.; Jhaveri, K.D.; Rondon-Berrios, H. Hypomagnesemia in the Cancer Patient. Kidney360 2021, 2, 154–166. [Google Scholar] [CrossRef]
- Oda, H.; Mizuno, T.; Ikejiri, M.; Nakamura, M.; Tsunoda, A.; Ishihara, M.; Saito, K.; Tamaru, S.; Yamashita, Y.; Nishimura, Y.; et al. Risk factors for cisplatin-induced acute kidney injury: A pilot study on the usefulness of genetic variants for predicting nephrotoxicity in clinical practice. Mol. Clin. Oncol. 2020, 13, 58. [Google Scholar] [CrossRef] [PubMed]
- Galfetti, E.; Cerutti, A.; Ghielmini, M.; Zucca, E.; Wannesson, L. Risk factors for renal toxicity after inpatient cisplatin administration. BMC Pharmacol. Toxicol. 2020, 21, 19. [Google Scholar] [CrossRef] [PubMed]
- Lyrio, R.M.d.C.; Rocha, B.R.A.; Corrêa, A.L.R.M.; Mascarenhas, M.G.S.; Santos, F.L.; Maia, R.d.H.; Segundo, L.B.; de Almeida, P.A.A.; Moreira, C.M.O.; Sassi, R.H. Chemotherapy-induced acute kidney injury: Epidemiology, pathophysiology, and therapeutic approaches. Front. Nephrol. 2024, 4, 1436896. [Google Scholar] [CrossRef]
- Szturz, P.; Wouters, K.; Kiyota, N.; Tahara, M.; Prabhash, K.; Noronha, V.; Castro, A.; Licitra, L.; Adelstein, D.; Vermorken, J.B. Weekly Low-Dose Versus Three-Weekly High-Dose Cisplatin for Concurrent Chemoradiation in Locoregionally Advanced Non-Nasopharyngeal Head and Neck Cancer: A Systematic Review and Meta-Analysis of Aggregate Data. Oncologist 2017, 22, 1056–1066. [Google Scholar] [CrossRef]
- Bauml, J.M.; Vinnakota, R.; Park, Y.-H.A.; E Bates, S.; Fojo, T.; Aggarwal, C.; Limaye, S.; Damjanov, N.; Di Stefano, J.; Ciunci, C.; et al. Cisplatin Every 3 Weeks Versus Weekly with Definitive Concurrent Radiotherapy for Squamous Cell Carcinoma of the Head and Neck. JNCI J. Natl. Cancer Inst. 2018, 111, 490–497. [Google Scholar] [CrossRef]
- Li, J.; Wu, Y.; Chen, C.; Zhang, W.; Yue, L.; Liu, T. A systematic review for prevention of cisplatin-induced nephrotoxicity using different hydration protocols and meta-analysis for magnesium hydrate supplementation. Clin. Exp. Nephrol. 2023, 28, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Volarevic, V.; Djokovic, B.; Jankovic, M.G.; Harrell, C.R.; Fellabaum, C.; Djonov, V.; Arsenijevic, N. Molecular mechanisms of cisplatin-induced nephrotoxicity: A balance on the knife edge between renoprotection and tumor toxicity. J. Biomed. Sci. 2019, 26, 25. [Google Scholar] [CrossRef] [PubMed]
- Solanki, M.H.; Chatterjee, P.K.; Gupta, M.; Xue, X.; Plagov, A.; Metz, M.H.; Mintz, R.; Singhal, P.C.; Metz, C.N. Magnesium protects against cisplatin-induced acute kidney injury by regulating platinum accumulation. Am. J. Physiol. Physiol. 2014, 307, F369–F384. [Google Scholar] [CrossRef]
- Crona, D.J.; Faso, A.; Nishijima, T.F.; McGraw, K.A.; Galsky, M.D.; Milowsky, M.I. A Systematic Review of Strategies to Prevent Cisplatin-Induced Nephrotoxicity. Oncologist 2017, 22, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Suppadungsuk, S.; Phitakwatchara, W.; Reungwetwattana, T.; Pathumarak, A.; Phakdeekitcharoen, B.; Kitiyakara, C.; Srisuwarn, P.; Davenport, A.; Nongnuch, A. Preloading magnesium attenuates cisplatin-associated nephrotoxicity: Pilot randomized controlled trial (PRAGMATIC study). ESMO Open 2021, 7, 100351. [Google Scholar] [CrossRef]
- Okamoto, K.; Saito, Y.; Yamaguchi, A.; Narumi, K.; Kobayashi, M. Relationship between magnesium dosage and the preventive effect on cisplatin-induced nephrotoxicity: Meta-analysis and meta-regression analysis. Int. J. Clin. Oncol. 2024, 29, 1817–1824. [Google Scholar] [CrossRef]
- Kitchlu, A.; McArthur, E.; Amir, E.; Booth, C.M.; Sutradhar, R.; Majeed, H.; Nash, D.M.; Silver, S.A.; Garg, A.X.; Chan, C.T.; et al. Acute Kidney Injury in Patients Receiving Systemic Treatment for Cancer: A Population-Based Cohort Study. J. Natl. Cancer Inst. 2019, 111, 727–736. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, L.Y.; Wang, J.N.; Diao, Z.L.; Guan, Y.M.; Liu, W.H. Acute Kidney Injury in Oncology Patients. J. Cancer 2020, 11, 4700–4708. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Parodi, E.; Rossi, M.; Bottiglieri, A.; Ladetto, M.; Merlotti, G.; Cantaluppi, V.; Quaglia, M. Pharmacotherapy considerations in patients who develop acute kidney injury during anti-cancer therapy. Expert Opi. Pharmacother. 2024, 25, 595–610. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.S.; McMahon, K.R.; Wang, S.; Chui, H.; Lebel, A.; Lee, J.; Cockovski, V.; Rassekh, S.R.; Schultz, K.R.; Blydt-Hansen, T.D.; et al. Tubular Injury Biomarkers to Predict CKD and Hypertension at 3 Months Post-Cisplatin in Children. Kidney360 2024, 5, 821–833. [Google Scholar] [CrossRef] [PubMed]
- Chebotareva, N.; Zhukova, L.; Krasnova, T.; Grechukhina, K. NGAL/KIM-1 as Early Cisplatin Nephrotoxicity Biomarkers (ASCO Abstract); ASCO Publications: Alexandria, VA, USA, 2023. [Google Scholar]
- Sikking, C.; Niggebrugge-Mentink, K.L.; van der Sman, A.S.E.; Smit, R.H.P.; Bouman-Wammes, E.W.; Beex-Oosterhuis, M.M.; van Kesteren, C. Hydration Methods for Cisplatin Containing Chemotherapy: A Systematic Review. Oncologist 2023, 29, e173–e186. [Google Scholar] [CrossRef] [PubMed]
- Sainamthip, P.; Saichaemchan, S.; Satirapoj, B.; Prasongsook, N. The Effect of Intravenous Mannitol Combined with Normal Saline in Preventing Cisplatin-Induced Nephrotoxicity: A Randomized, Double-Blind, Placebo-Controlled Trial. JCO Glob. Oncol. 2022, 8, e2100275. [Google Scholar] [CrossRef] [PubMed]
(a) | |||||||
Valid | Missing | Median | Minimum | Maximum | 25th Percentile | 75th Percentile | |
Age | 207 | 0 | 64.00 | 28.00 | 84.00 | 57.00 | 72.00 |
Height | 206 | 1 | 170.00 | 150.00 | 195.00 | 165.00 | 178.00 |
Weight | 206 | 1 | 73.00 | 40.00 | 130.00 | 62.00 | 82.00 |
BMI | 206 | 1 | 24.69 | 15.02 | 40.12 | 22.13 | 27.51 |
Cycle 1 urea | 78 | 129 | 34.00 | 14.00 | 61.00 | 28.00 | 39.00 |
Cycle 1 hb | 195 | 12 | 13.90 | 8.50 | 17.20 | 12.55 | 14.80 |
Cycle 1 wbc | 196 | 11 | 7.40 | 2.80 | 21.80 | 5.64 | 9.09 |
Cycle 1 neut | 194 | 13 | 4.80 | 0.60 | 15.90 | 3.49 | 6.27 |
Cycle 1 lympt | 194 | 13 | 1.80 | 0.40 | 4.50 | 1.40 | 2.30 |
Cycle 2 urea | 143 | 64 | 33.00 | 13.00 | 152.00 | 24.00 | 41.00 |
Cycle 2 hb | 190 | 17 | 13.00 | 8.60 | 17.20 | 11.80 | 13.90 |
Cycle 2 wbc | 192 | 15 | 4.20 | 0.80 | 14.40 | 3.10 | 5.40 |
Cycle 2 neut | 193 | 14 | 2.60 | 0.60 | 28.60 | 1.80 | 3.90 |
Cycle 2 lymph | 193 | 14 | 0.70 | 0.10 | 43.80 | 0.50 | 1.00 |
Cycle 3 urea | 104 | 103 | 38.50 | 11.00 | 142.00 | 30.00 | 50.00 |
Cycle 3 hb | 154 | 53 | 12.20 | 3.80 | 15.80 | 11.00 | 13.20 |
Cycle 3 wbc | 157 | 50 | 4.05 | 1.50 | 28.40 | 3.10 | 6.40 |
Cycle 3 neut | 157 | 50 | 3.20 | 0.80 | 8.65 | 2.10 | 4.70 |
Cycle 3 lymph | 157 | 50 | 0.50 | 0.00 | 18.40 | 0.30 | 0.70 |
Cycle 1 eGFR (CKD-EPI formula 2012) | 197 | 10 | 92.45 | 44.37 | 133.52 | 84.61 | 100.09 |
Cycle 2 eGFR CKD-EPI formula 2012) | 193 | 14 | 88.78 | 32.72 | 136.23 | 75.03 | 99.12 |
Cycle 3 eGFR (CKD-EPI formula 2012) | 156 | 51 | 88.73 | 36.38 | 127.09 | 74.79 | 98.76 |
(b) | |||||||
Variable | Frequency | Percent | |||||
ASA (Y) | 22 | 10.63 | |||||
Oral antidiabetic agents (Y) | 12 | 5.8 | |||||
Insulin (Y) | 7 | 3.38 | |||||
PPI (Y) | 36 | 17.39 | |||||
Steroids (Y) | 6 | 2.9 | |||||
Potus (Y) | 33 | 15.94 | |||||
Opioid Analgesic(Y) | 6 | 2.9 | |||||
RAAS inhibitors (Y) | 44 | 21.26 | |||||
Beta blockers (Y) | 26 | 12.56 | |||||
Calcium antagonist (Y) | 6 | 2.9 | |||||
Diuretics (Y) | 20 | 9.66 | |||||
Diabetes (Y) | 16 | 7.73 | |||||
Hypertension (Y) | 62 | 29.95 | |||||
Smoker (Y) | 121 | 58.45 | |||||
Gender (F) | 57 | 27.54 | |||||
(c) | |||||||
CKD Stage | Frequency | Percent (%) | Valid Percent (%) | Cumulative Percent (%) | |||
1 | 112 | 54.11 | 57.14 | 57.14 | |||
2 | 78 | 37.68 | 39.80 | 96.94 | |||
3a | 3 | 1.45 | 1.53 | 98.47 | |||
3b | 3 | 1.45 | 1.53 | 100.00 | |||
Missing | 11 | 5.31 | – | – | |||
Total | 207 | 100.00 | – | – |
(a) | ||||
Variable (Yes Category) | AKD Yes (n) | Total (n) | Total (%) | p-Value |
Insulin (Y) | 0 | 7 | 3.4 | 0.52 |
PPI (Y) | 1 | 36 | 17.4 | 0.46 |
Steroids (Y) | 0 | 6 | 2.9 | 0.56 |
ASA (Y) | 1 | 22 | 10.6 | 0.87 |
Oral antidiabetic agents (Y) | 1 | 12 | 5.8 | 0.63 |
Potus (Y) | 0 | 33 | 15.9 | 0.14 |
Opioid Analgesic (Y) | 0 | 6 | 2.9 | 0.56 |
RAAS inhibitors (Y) | 5 | 44 | 21.3 | 0.04 |
Beta blockers (Y) | 2 | 26 | 12.6 | 0.56 |
Calcium antagonist (Y) | 0 | 6 | 2.9 | 0.56 |
Diuretics (Y) | 2 | 20 | 9.7 | 0.56 |
Diabetes (Y) | 1 | 16 | 7.7 | 0.86 |
Hypertension (Y) | 6 | 62 | 30.0 | 0.07 |
Smoker (1) | 9 | 121 | 58.5 | 0.26 |
Gender (F) | 2 | 57 | 27.5 | 0.48 |
(b) | ||||
Variable | U | p-Value | ||
Age | 842.50 | 0.22 | ||
Height | 1208.50 | 0.48 | ||
Weight | 714.50 | 0.06 | ||
BMI | 605.50 | 0.02 | ||
GFR_C1 | 1368.50 | 0.06 |
Variable | Estimate | SE | Odds Ratio | z | p-Value | 95% CI (Lower) | 95% CI (Upper) |
---|---|---|---|---|---|---|---|
Intercept | −9.60 | 2.53 | 6.81 × 10−5 | −3.79 | <0.001 | −14.55 | −4.64 |
BMI | 0.31 | 0.18 | 1.36 | 1.74 | 0.08 | −0.04 | 0.65 |
Weight | −0.04 | 0.05 | 0.96 | −0.95 | 0.34 | −0.14 | 0.05 |
Cycle 1 creatinine | 2.27 | 1.83 | 9.65 | 1.24 | 0.22 | −1.32 | 5.85 |
AKD YN | Mean Slope eGFR (mL/min/1.73 m2/day) | SD | Min | Median | Max |
---|---|---|---|---|---|
No (0) | −0.0672 | 0.2156 | −0.7130 | −0.0483 | 0.5035 |
Yes (1) | −0.3963 | 0.2331 | −0.7435 | −0.3917 | −0.0419 |
CKD Stage | Mean Slope eGFR (mL/min/1.73 m2/day) | SD | Min | Median | Max |
---|---|---|---|---|---|
1 | −0.1119 | 0.1986 | −0.7435 | −0.060 | 0.2832 |
2 | −0.0592 | 0.2598 | −0.7130 | −0.0419 | 0.5035 |
3a | 0.0853 | 0.1604 | −0.0435 | 0.0343 | 0.2651 |
3b | 0.0337 | 0.2355 | −0.1188 | −0.0849 | 0.3049 |
Interval | Patients with AKD | %Recover | %Not Recover |
---|---|---|---|
C1→C2 | 8 | 12.5 | 87.5 |
C2→C3 | 3 | 0.0 | 100.0 |
CKD Stage | Frequency | Percent (%) | Valid Percent (%) | Cumulative Percent (%) |
---|---|---|---|---|
1 | 112 | 54.11 | 57.14 | 57.14 |
2 | 78 | 37.68 | 39.80 | 96.94 |
3a | 3 | 1.45 | 1.53 | 98.47 |
3b | 3 | 1.45 | 1.53 | 100.00 |
Missing | 11 | 5.31 | – | – |
Total | 207 | 100.00 | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Francesco, T.; Andrea, A.; Matteo, F.; Sara, C.; Leone, G.; Alberta, C.; Agnese, M.; Aurora, M. The Emerging Role of Magnesium in Preventing Acute Kidney Disease During Concurrent Chemoradiotherapy in Head and Neck Cancer. Cancers 2025, 17, 3310. https://doi.org/10.3390/cancers17203310
Francesco T, Andrea A, Matteo F, Sara C, Leone G, Alberta C, Agnese M, Aurora M. The Emerging Role of Magnesium in Preventing Acute Kidney Disease During Concurrent Chemoradiotherapy in Head and Neck Cancer. Cancers. 2025; 17(20):3310. https://doi.org/10.3390/cancers17203310
Chicago/Turabian StyleFrancesco, Trevisani, Angioi Andrea, Floris Matteo, Cardellini Sara, Giordano Leone, Culiersi Alberta, Monti Agnese, and Mirabile Aurora. 2025. "The Emerging Role of Magnesium in Preventing Acute Kidney Disease During Concurrent Chemoradiotherapy in Head and Neck Cancer" Cancers 17, no. 20: 3310. https://doi.org/10.3390/cancers17203310
APA StyleFrancesco, T., Andrea, A., Matteo, F., Sara, C., Leone, G., Alberta, C., Agnese, M., & Aurora, M. (2025). The Emerging Role of Magnesium in Preventing Acute Kidney Disease During Concurrent Chemoradiotherapy in Head and Neck Cancer. Cancers, 17(20), 3310. https://doi.org/10.3390/cancers17203310