Incidence and Prevalence of Bone Metastases in Different Solid Tumors Determined by Natural Language Processing of CT Reports
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Dataset
2.2. Manual Report Curation
2.3. NLP Model Development
2.4. Statistical Analysis
3. Results
3.1. Study Dataset Characteristics
3.2. NLP Model Performance
3.3. Incidence Rates of Bone Metastases Across Cancer Types
3.4. Prevalence Rates of Bone Metastases Across Cancer Types
3.5. Bone Metastases-Free Survival Across Cancer Types
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Huang, J.F.; Shen, J.; Li, X.; Rengan, R.; Silvestris, N.; Wang, M.; Derosa, L.; Zheng, X.; Belli, A.; Zhang, X.L.; et al. Incidence of patients with bone metastases at diagnosis of solid tumors in adults: A large population-based study. Ann. Transl. Med. 2020, 8, 482. [Google Scholar] [CrossRef] [PubMed]
- Schmid-Alliana, A.; Schmid-Antomarchi, H.; Al-Sahlanee, R.; Lagadec, P.; Scimeca, J.C.; Verron, E. Understanding the Progression of Bone Metastases to Identify Novel Therapeutic Targets. Int. J. Mol. Sci. 2018, 19, 148. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, J.; Ji, P.; Ling, H.; Hu, X.; Shao, Z.M. Incidence proportions and prognosis of breast cancer patients with bone metastases at initial diagnosis. Cancer Med. 2018, 7, 4156–4169. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Kuai, Y.; Zhu, R.; Zhou, C.; Tao, Y.; Han, W.; Chen, Q. Prognosis of prostate cancer and bone metastasis pattern of patients: A SEER-based study and a local hospital based study from China. Sci. Rep. 2020, 10, 9104. [Google Scholar] [CrossRef] [PubMed]
- Pons, E.; Braun, L.M.; Hunink, M.G.; Kors, J.A. Natural Language Processing in Radiology: A Systematic Review. Radiology 2016, 279, 329–343. [Google Scholar] [CrossRef] [PubMed]
- Cai, T.; Giannopoulos, A.A.; Yu, S.; Kelil, T.; Ripley, B.; Kumamaru, K.K.; Rybicki, F.J.; Mitsouras, D. Natural Language Processing Technologies in Radiology Research and Clinical Applications. Radiographics 2016, 36, 176–191. [Google Scholar] [CrossRef]
- Groot, O.Q.; Bongers, M.E.R.; Karhade, A.V.; Kapoor, N.D.; Fenn, B.P.; Kim, J.; Verlaan, J.J.; Schwab, J.H. Natural language processing for automated quantification of bone metastases reported in free-text bone scintigraphy reports. Acta Oncol. 2020, 59, 1455–1460. [Google Scholar] [CrossRef]
- Do, R.K.G.; Lupton, K.; Causa Andrieu, P.I.; Luthra, A.; Taya, M.; Batch, K.; Nguyen, H.; Rahurkar, P.; Gazit, L.; Nicholas, K.; et al. Patterns of Metastatic Disease in Patients with Cancer Derived from Natural Language Processing of Structured CT Radiology Reports over a 10-year Period. Radiology 2021, 301, 115–122. [Google Scholar] [CrossRef]
- Abrams, H.L. Skeletal metastases in carcinoma. Radiology 1950, 55, 534–538. [Google Scholar] [CrossRef]
- Christensen, T.D.; Jensen, S.G.; Larsen, F.O.; Nielsen, D.L. Systematic review: Incidence, risk factors, survival and treatment of bone metastases from colorectal cancer. J. Bone Oncol. 2018, 13, 97–105. [Google Scholar] [CrossRef]
- Katoh, M.; Unakami, M.; Hara, M.; Fukuchi, S. Bone metastasis from colorectal cancer in autopsy cases. J. Gastroenterol. 1995, 30, 615–618. [Google Scholar] [CrossRef] [PubMed]
- Bubendorf, L.; Schopfer, A.; Wagner, U.; Sauter, G.; Moch, H.; Willi, N.; Gasser, T.C.; Mihatsch, M.J. Metastatic patterns of prostate cancer: An autopsy study of 1,589 patients. Hum. Pathol. 2000, 31, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.T. Breast carcinoma: Pattern of metastasis at autopsy. J. Surg. Oncol. 1983, 23, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Galasko, C. The anatomy and pathways of skeletal metastases. In Bone Metastases; Weiss, L., Gilbert, A., Eds.; GK Hall: Boston, MA, USA, 1981. [Google Scholar]
- Zhang, J.; Cai, D.; Hong, S. Prevalence and prognosis of bone metastases in common solid cancers at initial diagnosis: A population-based study. BMJ Open 2023, 13, e069908. [Google Scholar] [CrossRef]
- Coleman, R.E. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin. Cancer Res. 2006, 12, 6243s–6249s. [Google Scholar] [CrossRef]
- Coleman, R.E.; Rubens, R.D. The clinical course of bone metastases from breast cancer. Br. J. Cancer 1987, 55, 61–66. [Google Scholar] [CrossRef]
- Chen, W.Z.; Shen, J.F.; Zhou, Y.; Chen, X.Y.; Liu, J.M.; Liu, Z.L. Clinical characteristics and risk factors for developing bone metastases in patients with breast cancer. Sci. Rep. 2017, 7, 11325. [Google Scholar] [CrossRef]
- Delpech, Y.; Bashour, S.I.; Lousquy, R.; Rouzier, R.; Hess, K.; Coutant, C.; Barranger, E.; Esteva, F.J.; Ueno, N.T.; Pusztai, L.; et al. Clinical nomogram to predict bone-only metastasis in patients with early breast carcinoma. Br. J. Cancer 2015, 113, 1003–1009. [Google Scholar] [CrossRef]
- Xiong, Z.; Deng, G.; Huang, X.; Li, X.; Xie, X.; Wang, J.; Shuang, Z.; Wang, X. Bone metastasis pattern in initial metastatic breast cancer: A population-based study. Cancer Manag. Res. 2018, 10, 287–295. [Google Scholar] [CrossRef]
- Futakuchi, M.; Fukamachi, K.; Suzui, M. Heterogeneity of tumor cells in the bone microenvironment: Mechanisms and therapeutic targets for bone metastasis of prostate or breast cancer. Adv. Drug Deliv. Rev. 2016, 99, 206–211. [Google Scholar] [CrossRef]
- Bagi, C.M. Skeletal implications of prostate cancer. J. Musculoskelet. Neuronal Interact. 2003, 3, 112–117. [Google Scholar] [PubMed]
- Smith, M.R.; Cook, R.J.; Coleman, R.; Brown, J.; Lipton, A.; Major, P.; Hei, Y.J.; Saad, F. Predictors of skeletal complications in men with hormone-refractory metastatic prostate cancer. Urology 2007, 70, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Abrams, H.L.; Spiro, R.; Goldstein, N. Metastases in carcinoma; analysis of 1000 autopsied cases. Cancer 1950, 3, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, R.K.; Wade, S.W.; Reich, A.; Pirolli, M.; Liede, A.; Lyman, G.H. Incidence of bone metastases in patients with solid tumors: Analysis of oncology electronic medical records in the United States. BMC Cancer 2018, 18, 44. [Google Scholar] [CrossRef]
- Deng, K.; Yang, C.; Tan, Q.; Song, W.; Lu, M.; Zhao, W.; Lou, G.; Li, Z.; Li, K.; Hou, Y. Sites of distant metastases and overall survival in ovarian cancer: A study of 1481 patients. Gynecol. Oncol. 2018, 150, 460–465. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, X.; Peltzer, K.; Ma, W.; Qi, L.; Zhang, Y.; Han, X.; Baklaushev, V.P.; Yao, Y.; Wang, G.; et al. The prevalence, associated factors for bone metastases development and prognosis in newly diagnosed ovarian cancer: A large population based real-world study. J. Cancer 2019, 10, 3133–3139. [Google Scholar] [CrossRef]
- Haverkamp, W.; Strodthoff, N.; Tennenbaum, J.; Israel, C. Big hype about ChapGPT in medicine: Is it something for rhythmologists? What must be taken into consideration? Herzschrittmacherther Elektrophysiol. 2023, 34, 240–245. [Google Scholar] [CrossRef]
Tumor Type | 5-Year Incidence Rate | 95% Confidence Interval |
---|---|---|
Prostate | 52% | 50–54% |
Breast | 41% | 39–42% |
Head and Neck | 36% | 32–40% |
Lung/Bronchus | 33% | 32–34% |
Melanoma | 27% | 25–29% |
Hepatobiliary | 25% | 23–28% |
Thyroid/Endocrine | 25% | 22–27% |
Genitourinary (Renal & Bladder) | 24% | 23–25% |
Pancreas | 24% | 22–27% |
Esophagus | 23% | 21–26% |
Cervix | 17% | 13–21% |
Gastric | 17% | 14–20% |
Uterus | 16% | 14–18% |
Colorectal | 16% | 15–17% |
Ovary | 11% | 10–13% |
Small Bowel | 10% | 8–13% |
Central Nervous System | 8% | 4–11% |
Testicular | 5% | 4–6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, N.; Woodlock, D.; D’Agostino, R.; Nguyen, G.; Gangai, N.; Sevilimedu, V.; Do, R.K.G. Incidence and Prevalence of Bone Metastases in Different Solid Tumors Determined by Natural Language Processing of CT Reports. Cancers 2025, 17, 218. https://doi.org/10.3390/cancers17020218
Long N, Woodlock D, D’Agostino R, Nguyen G, Gangai N, Sevilimedu V, Do RKG. Incidence and Prevalence of Bone Metastases in Different Solid Tumors Determined by Natural Language Processing of CT Reports. Cancers. 2025; 17(2):218. https://doi.org/10.3390/cancers17020218
Chicago/Turabian StyleLong, Niamh, David Woodlock, Robert D’Agostino, Gary Nguyen, Natalie Gangai, Varadan Sevilimedu, and Richard Kinh Gian Do. 2025. "Incidence and Prevalence of Bone Metastases in Different Solid Tumors Determined by Natural Language Processing of CT Reports" Cancers 17, no. 2: 218. https://doi.org/10.3390/cancers17020218
APA StyleLong, N., Woodlock, D., D’Agostino, R., Nguyen, G., Gangai, N., Sevilimedu, V., & Do, R. K. G. (2025). Incidence and Prevalence of Bone Metastases in Different Solid Tumors Determined by Natural Language Processing of CT Reports. Cancers, 17(2), 218. https://doi.org/10.3390/cancers17020218