Lack of Association Between Glucose Homeostasis and Immune Checkpoint Inhibitor Outcomes: A Retrospective Institutional Review
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Population
2.2. Study Variables
2.3. Statistical Analysis
3. Results
3.1. Personal and Clinical Demographics
3.2. Blood Glucose Levels and Response Data
3.3. Univariate Analysis
3.4. Adjusted Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ICIs | Immune checkpoint inhibitors |
OS | Overall survival |
irAEs | Immune-related adverse events |
PFS | Progression-free survival |
RFS | Recurrence-free survival |
DM | Diabetes Mellitus |
SD | Standard deviation |
LDH | Lactate dehydrogenase |
References
- American Cancer Society. Cancer Facts & Figures 2024; American Cancer Society: Atlanta, GA, USA, 2024. [Google Scholar]
- Conforti, C.; Zalaudek, I. Epidemiology and Risk Factors of Melanoma: A Review. Dermatol. Pract. Concept. 2021, 11 (Suppl. 1). [Google Scholar] [CrossRef]
- Kohler, B.A.; Ward, E.; McCarthy, B.J.; Schymura, M.J.; Ries, L.A.; Eheman, C.; Jemal, A.; Anderson, R.N.; Ajani, U.A.; Edwards, B.K. Annual report to the nation on the status of cancer, 1975-2007, featuring tumors of the brain and other nervous system. J. Natl. Cancer Inst. 2011, 103, 714–736. [Google Scholar] [CrossRef]
- Eljilany, I.; Castellano, E.; Tarhini, A.A. Adjuvant Therapy for High-Risk Melanoma: An In-Depth Examination of the State of the Field. Cancers 2023, 15, 4125. [Google Scholar] [CrossRef]
- Dobry, A.S.; Zogg, C.K.; Hodi, F.S.; Smith, T.R.; Ott, P.A.; Iorgulescu, J.B. Management of metastatic melanoma: Improved survival in a national cohort following the approvals of checkpoint blockade immunotherapies and targeted therapies. Cancer Immunol. Immunother. 2018, 67, 1833–1844. [Google Scholar] [CrossRef]
- Bajetta, E.; Del Vecchio, M.; Nova, P.; Fusi, A.; Daponte, A.; Sertoli, M.R.; Queirolo, P.; Taveggia, P.; Bernengo, M.G.; Legha, S.S.; et al. Multicenter phase III randomized trial of polychemotherapy (CVD regimen) versus the same chemotherapy (CT) plus subcutaneous interleukin-2 and interferon-alpha2b in metastatic melanoma. Ann. Oncol. 2006, 17, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Carlino, M.S.; Larkin, J.; Long, G.V. Immune checkpoint inhibitors in melanoma. Lancet 2021, 398, 1002–1014. [Google Scholar] [CrossRef]
- Granier, C.; De Guillebon, E.; Blanc, C.; Roussel, H.; Badoual, C.; Colin, E.; Saldmann, A.; Gey, A.; Oudard, S.; Tartour, E. Mechanisms of action and rationale for the use of checkpoint inhibitors in cancer. ESMO Open 2017, 2, e000213. [Google Scholar] [CrossRef]
- Wolchok, J.D.; Chiarion-Sileni, V.; Rutkowski, P.; Lance Cowey, C.; Schadendorf, D.; Wagstaff, J.; Queirolo, P.; Dummer, R.; OButler, M.; Hill, A.G.; et al. Final, 10-Year Outcomes with Nivolumab plus Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2025, 392, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Curkovic, N.B.; Johnson, D.B. Updates in toxicities associated with immune checkpoint inhibitors. Expert Rev. Clin. Immunol. 2023, 19, 1117–1129. [Google Scholar] [CrossRef] [PubMed]
- Indini, A.; Di Guardo, L.; Cimminiello, C.; Prisciandaro, M.; Randon, G.; De Braud, F.; Del Vecchio, M. Immune-related adverse events correlate with improved survival in patients undergoing anti-PD1 immunotherapy for metastatic melanoma. J. Cancer Res. Clin. Oncol. 2019, 145, 511–521. [Google Scholar] [CrossRef]
- Freeman-Keller, M.; Kim, Y.; Cronin, H.; Richards, A.; Gibney, G.; Weber, J.S. Nivolumab in Resected and Unresectable Metastatic Melanoma: Characteristics of Immune-Related Adverse Events and Association with Outcomes. Clin. Cancer Res. 2016, 22, 886–894. [Google Scholar] [CrossRef] [PubMed]
- Eggermont, A.M.M.; Kicinski, M.; Blank, C.U.; Mandala, M.; Long, G.V.; Atkinson, V.; Dalle, S.; Haydon, A.; Khattak, A.; Carlino, M.S. Association Between Immune-Related Adverse Events and Recurrence-Free Survival Among Patients with Stage III Melanoma Randomized to Receive Pembrolizumab or Placebo: A Secondary Analysis of a Randomized Clinical Trial. JAMA Oncol. 2020, 6, 519–527. [Google Scholar] [CrossRef]
- Shomali, N.; Mahmoudi, J.; Mahmoodpoor, A.; Zamiri, R.E.; Akbari, M.; Xu, H.; Shotorbani, S.S. Harmful effects of high amounts of glucose on the immune system: An updated review. Biotechnol. Appl. Biochem. 2021, 68, 404–410. [Google Scholar] [CrossRef]
- Collier, B.; Dossett, L.A.; May, A.K.; Diaz, J.J. Glucose control and the inflammatory response. Nutr. Clin. Pract. 2008, 23, 3–15. [Google Scholar] [CrossRef]
- Cortellini, A.; D’Alessio, A.; Cleary, S.; Buti, S.; Bersanelli, M.; Bordi, P.; Tonini, G.; Vincenzi, B.; Tucci, M.; Russo, A.; et al. Type 2 Diabetes Mellitus and Efficacy Outcomes from Immune Checkpoint Blockade in Patients with Cancer. Clin. Cancer Res. 2023, 29, 2714–2724. [Google Scholar] [CrossRef]
- Lee, H.; Kim, M.J.; Lee, I.K.; Hong, C.W.; Jeon, J.H. Impact of hyperglycemia on immune cell function: A comprehensive review. Diabetol. Int. 2024, 15, 745–760. [Google Scholar] [CrossRef]
- Jan, Y.J.A.; Chiang, C.H.; Osataphan, S.; Lawless, A.R.; Reynolds, K.L.; Sullivan, R.J. Body mass index and type 2 diabetes mellitus as metabolic determinants of immune checkpoint inhibitors response in melanoma. J. Immunother. Cancer 2024, 12, e009769. [Google Scholar] [CrossRef]
- Jan, Y.J.A.; Osataphan, S.; Chiang, C.H.; Reynolds, K.; Sullivan, R. 541 Diabetes and glucose level as metabolic determinants of immune checkpoint inhibitors response in melanoma. J. Immunother. Cancer 2023, 11 (Suppl. 1). [Google Scholar] [CrossRef]
- Mallardo, D.; Woodford, R.; Menzies, A.M.; Zimmer, L.; Williamson, A.; Ramelyte, E.; Dimitriou, F.; Wicky, A.; Wallace, R.; Mallardo, M.; et al. The role of diabetes in metastatic melanoma patients treated with nivolumab plus relatlimab. J. Transl. Med. 2023, 21, 753. [Google Scholar] [CrossRef] [PubMed]
- Hisanaga, K.; Uchino, H.; Kakisu, N.; Miyagi, M.; Yoshikawa, F.; Sato, G.; Isobe, K.; Kishi, K.; Homma, S.; Hirose, T. Pre-Existing Diabetes Limits Survival Rate After Immune Checkpoint Inhibitor Treatment for Advanced Lung Cancer: A Retrospective Study in Japan. Diabetes Metab. Syndr. Obes. 2021, 14, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Leshem, Y.; Dolev, Y.; Siegelmann-Danieli, N.; Sharman Moser, S.; Apter, L.; Chodick, G.; Nikolaevski-Berlin, A.; Shamai, S.; Merimsky, O.; Wolf, I. Association between diabetes mellitus and reduced efficacy of pembrolizumab in non-small cell lung cancer. Cancer 2023, 129, 2789–2797. [Google Scholar] [CrossRef] [PubMed]
- Turker, I.; Sharma, A.; Huang, S.; Johnson, D.B.; Alexander, M.R. Combination Immune Checkpoint Inhibitor Therapy is Associated with Increased Blood Pressure in Melanoma Patients. Hypertension 2023, 80, e43–e45. [Google Scholar] [CrossRef]
- Turker, I.; Nair, S.; Terry, J.G.; Huang, S.; Carr, J.J.; Moslehi, J.J.; Gupta, D.K.; Alexander, M.R.; Johnson, D.B. Immune Checkpoint Inhibitors’ Effects on Calcified Aortic Plaques in Melanoma Survivors: A Retrospective Cohort Study. JACC CardioOncol. 2023, 5, 536–538. [Google Scholar] [CrossRef]
- McQuade, J.L.; Daniel, C.R.; Hess, K.R.; Mak, C.; Wang, D.; Rai, R.R.; Park, J.J.; Haydu, L.E.; Spencer, C.; Wongchenko, M.; et al. Association of body-mass index and outcomes in patients with metastatic melanoma treated with targeted therapy, immunotherapy, or chemotherapy: A retrospective, multicohort analysis. Lancet Oncol. 2018, 19, 310–322. [Google Scholar] [CrossRef]
- Young, A.C.; Quach, H.T.; Song, H.; Davis, E.J.; Moslehi, J.; Ye, F.; Williams, G.R.; Johnson, D.B. Impact of body composition on outcomes from anti-PD1 +/- anti-CTLA-4 treatment in melanoma. J. Immunother. Cancer 2020, 8, e000821. [Google Scholar] [CrossRef]
- McQuade, J.L.; Hammers, H.; Furberg, H.; Engert, A.; Andre, T.; Blumenschein, G.; Tannir, N.; Baron, A.; Larkin, J.; El-Khoueiry, A.; et al. Association of Body Mass Index with the Safety Profile of Nivolumab with or Without Ipilimumab. JAMA Oncol. 2023, 9, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Pecci, F.; Cantini, L.; Cognigni, V.; Perrone, F.; Mazzaschi, G.; Agostinelli, V.; Mentrasti, G.; Favari, E.; Maffezzoli, M.; Cartellini, A.; et al. Prognostic Impact of Blood Lipid Profile in Patients with Advanced Solid Tumors Treated with Immune Checkpoint Inhibitors: A Multicenter Cohort Study. Oncologist 2024, 29, e372–e381. [Google Scholar] [CrossRef]
- Karayama, M.; Inui, N.; Inoue, Y.; Yoshimura, K.; Mori, K.; Hozumi, H.; Suzuki, Y.; Furuhashi, K.; Fujisawa, T.; Enomoto, N.; et al. Increased serum cholesterol and long-chain fatty acid levels are associated with the efficacy of nivolumab in patients with non-small cell lung cancer. Cancer Immunol. Immunother. 2022, 71, 203–217. [Google Scholar] [CrossRef] [PubMed]
- Perrone, F.; Minari, R.; Bersanelli, M.; Bordi, P.; Tiseo, M.; Favari, E.; Sabato, R.; Buti, S. The Prognostic Role of High Blood Cholesterol in Advanced Cancer Patients Treated with Immune Checkpoint Inhibitors. J. Immunother. 2020, 43, 196–203. [Google Scholar] [CrossRef]
- Ma, X.; Bi, E.; Lu, Y.; Su, P.; Huang, C.; Liu, L.; Wang, Q.; Yang, M.; Kalady, M.F.; Qian, J.; et al. Cholesterol Induces CD8+ T Cell Exhaustion in the Tumor Microenvironment. Cell Metab. 2019, 30, 143–156.e5. [Google Scholar] [CrossRef]
- Xiong, L.; Cheng, J. Rewiring lipid metabolism to enhance immunotherapy efficacy in melanoma: A frontier in cancer treatment. Front. Oncol. 2025, 15, 1519592. [Google Scholar] [CrossRef] [PubMed]
Monotherapy (n, %) (n = 394) | Combination Therapy (n, %) (n = 209) | Total (n, %) (n = 603) | |
---|---|---|---|
Treatment | |||
Nivolumab Pembrolizumab Nivolumab + Ipilimumab | 102 (25.6) 292 (74.1) 0 (0) | 0 (0) 0 (0) 209 (100) | 102 (16.9) 292 (48.4) 209 (34.7) |
Age | |||
Mean (SD) * Median [Q1, Q3] Missing Value | 63.9 (13.8) 66.0 [55.0, 74.0] 0 (0) | 58.0 (14.2) 61.0 [48.0, 68.5] 2 (1.0) | 61.9 (14.2) 63.0 [52.0, 73.0] 2 (0.3) |
Sex | |||
Female Male | 148 (37.6) 246 (62.4) | 65 (31.1) 144 (68.9) | 213 (35.3) 390 (64.7) |
Prior Therapy | |||
Yes No | 137 (34.8) 257 (65.2) | 70 (33.5) 139 (66.5) | 207 (34.3) 396 (65.7) |
Stage | |||
Stage III Stage IV M1a/b Stage IV M1c/d | 116 (29.4) 123 (31.2) 155 (39.3) | 5 (2.4) 74 (35.4) 130 (62.2) | 121 (20.1) 197 (32.7) 285 (47.3) |
LDH * (U/L) | |||
≤225 >225 Missing Value | 232 (58.9) 142 (36.0) 20 (5.1) | 91 (43.5) 112 (53.6) 6 (2.9) | 323 (53.6) 254 (42.1) 26 (4.3) |
Diabetes Diagnosis | |||
Diabetes at Start Diabetes at 12 Weeks No Diabetes | 7 (1.8) 6 (1.5) 381 (96.7) | 6 (2.9) 4 (1.9) 199 (95.2) | 13 (2.2) 10 (1.7) 580 (96.2) |
Required Steroids | |||
Yes No Missing | 112 (31.0) 270 (68.5) 2 (0.5) | 150 (71.8) 59 (28.2) 0 (0) | 272 (45.1) 329 (54.6) 2 (0.3) |
Response (n, %) | Median PFS * [Q1, Q3] | Median OS * [Q1, Q3] | Any irAE * (n, %) | |
---|---|---|---|---|
Baseline Glucose > 200 (n = 41) | 12 (29.3) | 9.4 months [3.3, 42.3] | 23.0 months [8.7, 49.7] | 32 (78) |
Baseline Glucose ≤ 200 (n = 499) | 180 (36.1) | 8.0 months [2.6, 33.6] | 23.1 months [8.9, 58.2] | 343 (68.7) |
p-value | 0.79 | 0.64 | 0.56 | 0.29 |
Any Glucose > 200 (n = 135) | 42 (31.1) | 6.1 months [2.3, 21.3] | 17.4 months [6.6, 50.7] | 102 (75.6) |
All Glucose ≤ 200 (n = 468) | 176 (37.6) | 8.3 months [2.7, 35.2] | 23.5 months [9.8, 59.2] | 317 (67.7) |
p-value | 0.20 | 0.45 | 0.36 | 0.11 |
>10% Decrease in Glucose (n = 151) | 54 (35.8) | 8.2 months [2.5, 30.7] | 28.0 months [10.5, 61.7] | 108 (71.5) |
10% Decrease to 10% Increase (n = 283) | 104 (36.7) | 9.9 months [2.8, 35.1] | 22.7 months [9.5, 58.1] | 192 (67.8) |
>10% Increase in Glucose (n = 169) | 60 (35.5) | 5.7 months [2.6, 29.1] | 19.3 months [8.1, 52.3] | 119 (70.4) |
p-value | 0.74 | 0.65 | 0.44 | 0.67 |
Diagnosis of Diabetes (n = 23) | 8 (34.8) | 14.9 months [3.7, 38.7] | 27.8 months [16.8, 51.5] | 20 (87.0) |
No Diagnosis of Diabetes (n = 580) | 210 (36.2) | 7.8 months [2.7, 32.6] | 21.6 months [8.7, 57.9] | 399 (68.8) |
p-value | 0.84 | 0.12 | 0.0034 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Justice, J.; Burnette, H.; Irlmeier, R.; Ye, F.; Johnson, D.B. Lack of Association Between Glucose Homeostasis and Immune Checkpoint Inhibitor Outcomes: A Retrospective Institutional Review. Cancers 2025, 17, 3230. https://doi.org/10.3390/cancers17193230
Justice J, Burnette H, Irlmeier R, Ye F, Johnson DB. Lack of Association Between Glucose Homeostasis and Immune Checkpoint Inhibitor Outcomes: A Retrospective Institutional Review. Cancers. 2025; 17(19):3230. https://doi.org/10.3390/cancers17193230
Chicago/Turabian StyleJustice, Joy, Hannah Burnette, Rebecca Irlmeier, Fei Ye, and Douglas B. Johnson. 2025. "Lack of Association Between Glucose Homeostasis and Immune Checkpoint Inhibitor Outcomes: A Retrospective Institutional Review" Cancers 17, no. 19: 3230. https://doi.org/10.3390/cancers17193230
APA StyleJustice, J., Burnette, H., Irlmeier, R., Ye, F., & Johnson, D. B. (2025). Lack of Association Between Glucose Homeostasis and Immune Checkpoint Inhibitor Outcomes: A Retrospective Institutional Review. Cancers, 17(19), 3230. https://doi.org/10.3390/cancers17193230