Cervical Cancer Screening in the HPV-Vaccinated and Digital Era: Reassessing Strategies in Light of Artificial Intelligence and Evolving Risk
Abstract
Simple Summary
Abstract
1. Introduction
2. Methodology
3. The Impact of HPV Vaccination on Cervical Cancer Risk
3.1. Reductions in HPV Prevalence and CIN
3.2. Herd Immunity and Male Vaccination
3.3. Screening Performance and Predictive Value
3.4. Global Inequities in Vaccine Uptake
3.5. Implications for Screening Programs
4. Shifts in Screening Guidelines and Risk Stratification
5. Integration of Artificial Intelligence in Screening
5.1. AI in Cytology and Histology Interpretation
5.2. AI in Colposcopy and Visual Assessment
5.3. AI for Risk Stratification and Screening Workflow Optimisation
5.4. Limitations and Ethical Considerations
5.5. Discrepancies and Clinical Liability in AI Use
6. Digital Health Tools and Screening Access
6.1. Mobile Health (mHealth) and Text-Based Reminders
6.2. Telemedicine and Digital Colposcopy
6.3. Digital Registries and Integrated Health Records
6.4. Barriers to Digital Implementation
7. Equity, Ethics, and Implementation Challenges
7.1. Unequal Access to Innovation
7.2. Ethical Implications of AI and Digital Tools
7.3. Data Privacy and Informed Consent
7.4. Workforce and Health System Capacity
8. Future Directions and Research Gaps
8.1. Long-Term Impact of HPV Vaccination
8.2. Optimizing Screening in Vaccinated Populations
8.3. Validation of AI and Digital Tools
8.4. Self-Sampling, Equity, and Outreach
8.5. Cost-Effectiveness and Health Systems Integration
8.6. Current Controversies and Evidence Gaps
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Global Strategy to Accelerate the Elimination of Cervical Cancer as a Public Health Problem, 1st ed.; World Health Organization: Geneva, Switzerland, 2020; p. 1. [Google Scholar]
- Kyrgiou, M.; Arbyn, M.; Bergeron, C.; Bosch, F.X.; Dillner, J.; Jit, M.; Kim, J.; Poljak, M.; Nieminen, P.; Sasieni, P.; et al. Cervical screening: ESGO-EFC position paper of the European Society of Gynaecologic Oncology (ESGO) and the European Federation of Colposcopy (EFC). Br. J. Cancer 2020, 123, 510–517. [Google Scholar] [CrossRef]
- Joura, E.A.; Giuliano, A.R.; Iversen, O.E.; Bouchard, C.; Mao, C.; Mehlsen, J.; Moreira Jr, E.D.; Ngan, Y.; Petersen, L.K.; Lazcano-Ponce, E.; et al. A 9-valent HPV vaccine against infection and intraepithelial neoplasia in women. N. Engl. J. Med. 2015, 372, 711–723. [Google Scholar] [CrossRef]
- Drolet, M.; Bénard, É.; Pérez, N.; Brisson, M.; HPV Vaccination Impact Study Group. Population-level impact and herd effects following the introduction of human papillomavirus vaccination programmes: Updated systematic review and meta-analysis. Lancet Lond. Engl. 2019, 394, 497–509. [Google Scholar] [CrossRef]
- Falcaro, M.; Castañon, A.; Ndlela, B.; Checchi, M.; Soldan, K.; Lopez-Bernal, J.; Ellis-Brookes, L.; Sasieni, P. The effects of the national HPV vaccination programme in England, UK, on cervical cancer and grade 3 cervical intraepithelial neoplasia incidence: A register-based observational study. Lancet Lond. Engl. 2021, 398, 2084–2092. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Ploner, A.; Elfström, K.M.; Wang, J.; Roth, A.; Fang, F.; Sundström, K.; Dillner, J.; Sparén, P. HPV Vaccination and the Risk of Invasive Cervical Cancer. N. Engl. J. Med. 2020, 383, 1340–1348. [Google Scholar] [CrossRef] [PubMed]
- Chow, E.P.F.; Tabrizi, S.N.; Fairley, C.K.; Wigan, R.; Machalek, D.A.; Regan, D.G.; Hocking, J.S.; Garland, S.M.; Cornall, A.M.; Atchison, S.; et al. Prevalence of human papillomavirus in teenage heterosexual males following the implementation of female and male school-based vaccination in Australia: 2014–2017. Vaccine 2019, 37, 6907–6914. [Google Scholar] [CrossRef] [PubMed]
- Markowitz, L.E.; Gee, J.; Chesson, H.; Stokley, S. Ten Years of Human Papillomavirus Vaccination in the United States. Acad. Pediatr. 2018, 18 (Suppl. 2), S3–S10. [Google Scholar] [CrossRef]
- Ronco, G.; Dillner, J.; Elfström, K.M.; Tunesi, S.; Snijders, P.J.F.; Arbyn, M.; Kitchener, H.; Segnan, N.; Gilham, C.; Giorgi-Rossi, P.; et al. Efficacy of HPV-based screening for prevention of invasive cervical cancer: Follow-up of four European randomised controlled trials. Lancet Lond. Engl. 2014, 383, 524–532. [Google Scholar] [CrossRef]
- Arbyn, M.; Ronco, G.; Anttila, A.; Meijer, C.J.L.M.; Poljak, M.; Ogilvie, G.; Koliopoulos, G.; Naucler, P.; Sankaranarayanan, R.; Peto, J. Evidence regarding human papillomavirus testing in secondary prevention of cervical cancer. Vaccine 2012, 30 (Suppl. 5), F88–F99. [Google Scholar] [CrossRef]
- Canfell, K.; Kim, J.J.; Brisson, M.; Keane, A.; Simms, K.T.; Caruana, M.; Burger, E.A.; Martin, D.; Nguyen, D.T.N.; Bénardt, E.; et al. Mortality impact of achieving WHO cervical cancer elimination targets: A comparative modelling analysis in 78 low-income and lower-middle-income countries. Lancet 2020, 395, 591–603. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization, Special Programme of Research, Development, and Research Training in Human Reproduction (World Health Organization). WHO Guideline for Screening and Treatment of Cervical Pre-Cancer Lesions for Cervical Cancer Prevention, 2nd ed.; World Health Organization: Geneva, Switzerland, 2021; p. 1. [Google Scholar]
- Kitchener, H.C.; Canfell, K.; Gilham, C.; Sargent, A.; Roberts, C.; Desai, M.; Peto, J. The Clinical Effectiveness and Cost-Effectiveness of Primary Human Papillomavirus Cervical Screening in England: Extended Follow-Up of the ARTISTIC Randomised Trial Cohort Through Three Screening Rounds. Health Technol. Assess. 2014, 18, 1–196. [Google Scholar] [CrossRef]
- Tambouret, R.H. The evolution of the Papanicolaou smear. Clin. Obstet. Gynecol. 2013, 56, 3–9. [Google Scholar] [CrossRef]
- Ang, J.X.; Tay, S.K. Comparison of Clinical Efficacy of Liquid-Based Cytology and High-Risk Human Papillomavirus Testing With Partial Genotyping in Cervical Screening of Women Below 30 Years Old. Cancer Control J. Moffitt Cancer Cent. 2025, 32, 10732748251336414. [Google Scholar] [CrossRef]
- Hu, L.; Bell, D.; Antani, S.; Xue, Z.; Yu, K.; Horning, M.P.; Gachuhi, N.; Wilson, B.; Jaiswal, M.S.; Befano, B.; et al. An Observational Study of Deep Learning and Automated Evaluation of Cervical Images for Cancer Screening. JNCI J. Natl. Cancer Inst. 2019, 111, 923–932. [Google Scholar] [CrossRef]
- Wentzensen, N.; Clarke, M.A.; Bremer, R.; Poitras, N.; Tokugawa, D.; Goldhoff, P.E.; Castle, P.E.; Schiffman, M.; Kingery, J.D.; Grewal, K.K.; et al. Clinical Evaluation of Human Papillomavirus Screening With p16/Ki-67 Dual Stain Triage in a Large Organized Cervical Cancer Screening Program. JAMA Intern. Med. 2019, 179, 881–888. [Google Scholar] [CrossRef]
- Zimmer-Stelmach, A.; Zak, J.; Pawlosek, A.; Rosner-Tenerowicz, A.; Budny-Winska, J.; Pomorski, M.; Fuchs, T.; Zimmer, M. The Application of Artificial Intelligence-Assisted Colposcopy in a Tertiary Care Hospital within a Cervical Pathology Diagnostic Unit. Diagnostics 2022, 12, 106. [Google Scholar] [CrossRef]
- Wiens, J.; Shenoy, E.S. Machine Learning for Healthcare: On the Verge of a Major Shift in Healthcare Epidemiology. Clin. Infect. Dis. 2018, 66, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Leslie, D. Understanding Artificial Intelligence Ethics and Safety: A Guide for the Responsible Design and Implementation of AI Systems in the Public Sector. Zenodo 2019. Available online: https://zenodo.org/record/3240529 (accessed on 3 September 2025). [CrossRef]
- Hall, M.T.; Simms, K.T.; Lew, J.B.; Smith, M.A.; Brotherton, J.M.; Saville, M.; Frazer, I.H.; Canfell, K. The projected timeframe until cervical cancer elimination in Australia: A modelling study. Lancet Public Health 2019, 4, e19–e27. [Google Scholar] [CrossRef] [PubMed]
- Campos, N.G.; Burger, E.A.; Sy, S.; Sharma, M.; Schiffman, M.; Rodriguez, A.C.; Hildesheim, A.; Herrero, R.; Kim, J.J. An updated natural history model of cervical cancer: Derivation of model parameters. Am. J. Epidemiol. 2014, 180, 545–555. [Google Scholar] [CrossRef] [PubMed]
- Aoki, E.S.; Saika, K.; Kiguchi, K.; Morisada, T.; Aoki, D. Validation of HPV triage in cytology-based cervical cancer screening for ASC-US cases using Japanese data. J. Gynecol. Oncol. 2023, 34, e14. [Google Scholar] [CrossRef]
- El Arab, R.A.; Al Moosa, O.A.; Sagbakken, M. Economic, ethical, and regulatory dimensions of artificial intelligence in healthcare: An integrative review. Front. Public Health 2025, 13, 1617138. [Google Scholar] [CrossRef]
- Giansanti, D.; Lastrucci, A.; Pirrera, A.; Villani, S.; Carico, E.; Giarnieri, E. AI in Cervical Cancer Cytology Diagnostics: A Narrative Review of Cutting-Edge Studies. Bioengineering 2025, 12, 769. [Google Scholar] [CrossRef] [PubMed]
- Yao, R.; Zhang, W.; Evans, R.; Cao, G.; Rui, T.; Shen, L. Inequities in Health Care Services Caused by the Adoption of Digital Health Technologies: Scoping Review. J. Med. Internet Res. 2022, 24, e34144. [Google Scholar] [CrossRef]
- Castle, P.E. Looking Back, Moving Forward: Challenges and Opportunities for Global Cervical Cancer Prevention and Control. Viruses 2024, 16, 1357. [Google Scholar] [CrossRef]
- Schiffman, M.; Wentzensen, N. From human papillomavirus to cervical cancer. Obstet. Gynecol. 2010, 116, 177–185. [Google Scholar] [CrossRef]
- Denny, L.; de Sanjose, S.; Mutebi, M.; Anderson, B.O.; Kim, J.; Jeronimo, J.; Herrero, R.; Yeater, K.; Ginsburg, O.; Sankaranarayanan, R. Interventions to close the divide for women with breast and cervical cancer between low-income and middle-income countries and high-income countries. Lancet Lond. Engl. 2017, 389, 861–870. [Google Scholar] [CrossRef]
- Poljak, M.; Kocjan, B.J.; Oštrbenk, A.; Seme, K. Commercially available molecular tests for human papillomaviruses (HPV): 2015 update. J. Clin. Virol. 2016, 76 (Suppl. 1), S3–S13. [Google Scholar] [CrossRef]
- Castle, P.E.; Solomon, D.; Wheeler, C.M.; Gravitt, P.E.; Wacholder, S.; Schiffman, M. Human papillomavirus genotype specificity of hybrid capture 2. J. Clin. Microbiol. 2008, 46, 2595–2604. [Google Scholar] [CrossRef] [PubMed]
- Bruni, L.; Diaz, M.; Barrionuevo-Rosas, L.; Herrero, R.; Bray, F.; Bosch, F.X.; Sanjosé, S.; Castellsagué, X. Global estimates of human papillomavirus vaccination coverage by region and income level: A pooled analysis. Lancet Glob. Health 2016, 4, e453–e463. [Google Scholar] [CrossRef] [PubMed]
- Gök, M.; Heideman, D.A.M.; van Kemenade, F.J.; Berkhof, J.; Rozendaal, L.; Spruyt, J.W.M.; Voorhost, F.; Beliën, J.A.M.; Babovic, M.; Snijders, P.J.F.; et al. HPV testing on self collected cervicovaginal lavage specimens as screening method for women who do not attend cervical screening: Cohort study. BMJ 2010, 340, c1040. [Google Scholar] [CrossRef] [PubMed]
- Arrossi, S.; Thouyaret, L.; Herrero, R.; Campanera, A.; Magdaleno, A.; Cuberli, M.; Barletta, P.; Laudi, R.; Orellana, L.; EMA Study team. Effect of self-collection of HPV DNA offered by community health workers at home visits on uptake of screening for cervical cancer (the EMA study): A population-based cluster-randomised trial. Lancet Glob. Health 2015, 3, e85–e94. [Google Scholar] [CrossRef]
- Van Keer, S.; Tjalma, W.A.A.; Pattyn, J.; Biesmans, S.; Pieters, Z.; Van Ostade, X.; Ieven, M.; Van Damme, P.; Vorsters, A. Human papillomavirus genotype and viral load agreement between paired first-void urine and clinician-collected cervical samples. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 859–869. [Google Scholar] [CrossRef]
- Kreimer, A.R.; Rodriguez, A.C.; Hildesheim, A.; Herrero, R.; Porras, C.; Schiffman, M.; González, P.; Solomon, D.; Jiménez, S.; Schiller, J.T.; et al. Proof-of-principle evaluation of the efficacy of fewer than three doses of a bivalent HPV16/18 vaccine. J. Natl. Cancer Inst. 2011, 103, 1444–1451. [Google Scholar] [CrossRef]
- de Sanjosé, S.; Brotons, M.; Pavón, M.A. The natural history of human papillomavirus infection. Best Pract. Res. Clin. Obstet. Gynecol. 2018, 47, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Garland, S.M.; Kjaer, S.K.; Muñoz, N.; Block, S.L.; Brown, D.R.; DiNubile, M.J.; Lindsay, B.R.; Kuter, B.J.; Perez, G.; Dominiak-Felden, G.; et al. Impact and Effectiveness of the Quadrivalent Human Papillomavirus Vaccine: A Systematic Review of 10 Years of Real-world Experience. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2016, 63, 519–527. [Google Scholar] [CrossRef]
- Saville, M.; Hawkes, D.; Keung, M.; Ip, E.; Silvers, J.; Sultana, F.; Malloy, M.J.; Velentzis, L.S.; Canfel, K.; Wrede, C.D.; et al. Analytical performance of HPV assays on vaginal self-collected vs practitioner-collected cervical samples: The SCoPE study. J. Clin. Virol. 2020, 127, 104375. [Google Scholar] [CrossRef] [PubMed]
- Denny, L.; Kuhn, L.; Pollack, A.; Wainwright, H.; Wright, T.C. Evaluation of alternative methods of cervical cancer screening for resource-poor settings. Cancer 2000, 89, 826–833. [Google Scholar] [CrossRef]
- Arbyn, M.; Verdoodt, F.; Snijders, P.J.F.; Verhoef, V.M.J.; Suonio, E.; Dillner, L.; Minozzi, S.; Bellisario, C.; Banzi, R.; Zhao, F.H.; et al. Accuracy of human papillomavirus testing on self-collected versus clinician-collected samples: A meta-analysis. Lancet Oncol. 2014, 15, 172–183. [Google Scholar] [CrossRef]
- Felsher, M.; Fisher-Borne, M.; Malik, T.; Santpurkar, N.; Martin, S.; Zaidi, O.; Wang, W.; Palmer, C. Cost-effectiveness modeling for gender-neutral human papillomavirus vaccines: A systematic literature review. Hum. Vaccines Immunother. 2025, 21, 2516322. [Google Scholar] [CrossRef]
- Catarino, R.; Vassilakos, P.; Scaringella, S.; Undurraga-Malinverno, M.; Meyer-Hamme, U.; Ricard-Gauthier, D.; Matute, J.C.; Petignat, P. Smartphone Use for Cervical Cancer Screening in Low-Resource Countries: A Pilot Study Conducted in Madagascar. PLoS ONE 2015, 10, e0134309. [Google Scholar] [CrossRef] [PubMed]
- Wentzensen, N.; Arbyn, M. HPV-based cervical cancer screening- facts, fiction, and misperceptions. Prev. Med. 2017, 98, 33–35. [Google Scholar] [CrossRef]
- Pathak, N.; Dodds, J.; Zamora, J.; Khan, K. Accuracy of urinary human papillomavirus testing for presence of cervical HPV: Systematic review and meta-analysis. BMJ 2014, 349, g5264. [Google Scholar] [CrossRef]
- Massad, L.S.; Einstein, M.H.; Huh, W.K.; Katki, H.A.; Kinney, W.K.; Schiffman, M.; Solomon, D.; Wentzensen, N.; Lawson, H.W.; 2012 ASCCP Consensus Guidelines Conference. 2012 updated consensus guidelines for the management of abnormal cervical cancer screening tests and cancer precursors. Obstet. Gynecol. 2013, 121, 829–846. [Google Scholar] [CrossRef] [PubMed]
- Poljak, M.; Oštrbenk Valenčak, A.; Gimpelj Domjanič, G.; Xu, L.; Arbyn, M. Commercially available molecular tests for human papillomaviruses: A global overview. Clin. Microbiol. Infect. 2020, 26, 1144–1150. [Google Scholar] [CrossRef]
- Bhatla, N.; Aoki, D.; Sharma, D.N.; Sankaranarayanan, R. Cancer of the cervix uteri. Int. J. Gynecol. Obstet. 2018, 143 (Suppl. 2), 22–36. [Google Scholar] [CrossRef]
- Basu, P.; Ponti, A.; Anttila, A.; Ronco, G.; Senore, C.; Vale, D.B.; Segnan, N.; Tomatis, M.; Soerjomataram, I.; Žakelj, M.P.; et al. Status of implementation and organization of cancer screening in The European Union Member States-Summary results from the second European screening report. Int. J. Cancer 2018, 142, 44–56. [Google Scholar]
- Schiffman, M.; Doorbar, J.; Wentzensen, N.; de Sanjosé, S.; Fakhry, C.; Monk, B.J.; Stanley, M.A.; Franceschi, S. Carcinogenic human papillomavirus infection. Nat. Rev. Dis. Primer 2016, 2, 16086. [Google Scholar]
- Castle, P.E.; Stoler, M.H.; Wright, T.C.; Sharma, A.; Wright, T.L.; Behrens, C.M. Performance of carcinogenic human papillomavirus (HPV) testing and HPV16 or HPV18 genotyping for cervical cancer screening of women aged 25 years and older: A subanalysis of the ATHENA study. Lancet Oncol. 2011, 12, 880–890. [Google Scholar] [CrossRef] [PubMed]
- Clarke, M.A.; Massad, L.S.; Khan, M.J.; Smith, K.M.; Guido, R.S.; Mayeaux, E.J.; Darragh, T.M.; Huh, W.K.; Johnson, A.L.; Gold, M.A.; et al. Challenges Associated With Cervical Cancer Screening and Management in Obese Women: A Provider Perspective. J. Low. Genit. Tract Dis. 2020, 24, 184–191. [Google Scholar] [CrossRef]
- Louie, K.S.; de Sanjose, S.; Mayaud, P. Epidemiology and prevention of human papillomavirus and cervical cancer in sub-Saharan Africa: A comprehensive review. Trop. Med. Int. Health TMIH 2009, 14, 1287–1302. [Google Scholar] [CrossRef]
- Narcisse, M.R.; McElfish, P.A.; Hallgren, E.; Pierre-Joseph, N.; Felix, H.C. Non-use and inadequate use of cervical cancer screening among a representative sample of women in the United States. Front. Public Health 2024, 12, 1321253. [Google Scholar] [CrossRef]
- Basu, S.; Ashok, G.; Debroy, R.; Ramaiah, S.; Livingstone, P.; Anbarasu, A. Impact of the COVID-19 pandemic on routine vaccine landscape: A global perspective. Hum. Vaccines Immunother. 2023, 19, 2199656. [Google Scholar] [CrossRef] [PubMed]
- Peirson, L.; Fitzpatrick-Lewis, D.; Ciliska, D.; Warren, R. Screening for cervical cancer: A systematic review and meta-analysis. Syst Rev. 2013, 2, 35. [Google Scholar] [CrossRef] [PubMed]
- Saraiya, M.; Steben, M.; Watson, M.; Markowitz, L. Evolution of cervical cancer screening and prevention in United States and Canada: Implications for public health practitioners and clinicians. Prev. Med. 2013, 57, 426–433. [Google Scholar] [CrossRef]
- Ali, H.A.; Hartner, A.M.; Echeverria-Londono, S.; Roth, J.; Li, X.; Abbas, K.; Portnoy, A.; Vynnycky, E.; Woodruff, K.; Ferguson, N.M.; et al. Vaccine equity in low and middle income countries: A systematic review and meta-analysis. Int. J. Equity Health 2022, 21, 82. [Google Scholar] [CrossRef] [PubMed]
- Gopalkrishnan, K.; Karim, R. Addressing Global Disparities in Cervical Cancer Burden: A Narrative Review of Emerging Strategies. Curr. HIV/AIDS Rep. 2025, 22, 18. [Google Scholar] [CrossRef]
- Del Mistro, A.; Frayle, H.; Ferro, A.; Fantin, G.; Altobelli, E.; Giorgi Rossi, P. Efficacy of self-sampling in promoting participation to cervical cancer screening also in subsequent round. Prev. Med. Rep. 2017, 5, 166–168. [Google Scholar] [CrossRef]
- Ginsburg, O.; Bray, F.; Coleman, M.P.; Vanderpuye, V.; Eniu, A.; Kotha, S.R.; Sarker, M.; Huong, T.T.; Allemani, C.; Dvaladze, A.; et al. The global burden of women’s cancers: A grand challenge in global health. Lancet Lond. Engl. 2017, 389, 847–860. [Google Scholar] [CrossRef]
- Manteghinejad, A.; Javanmard, S.H. Challenges and opportunities of digital health in a post-COVID19 world. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2021, 26, 11. [Google Scholar] [CrossRef]
- Franco, E.L.; Cuzick, J.; Hildesheim, A.; de Sanjosé, S. Chapter 20: Issues in planning cervical cancer screening in the era of HPV vaccination. Vaccine 2006, 24 (Suppl. 3), 171–177. [Google Scholar] [CrossRef]
- Ronco, G.; Giorgi-Rossi, P.; Carozzi, F.; Confortini, M.; Dalla Palma, P.; Del Mistro, A.; Gillio-Tos, A.; Minucci, D.; Naldoni, C.; Rizzolo, R.; et al. Results at recruitment from a randomized controlled trial comparing human papillomavirus testing alone with conventional cytology as the primary cervical cancer screening test. J. Natl. Cancer Inst. 2008, 100, 492–501. [Google Scholar] [CrossRef]
- Monsonego, J.; Hudgens, M.G.; Zerat, L.; Zerat, J.C.; Syrjänen, K.; Halfon, P.; Ruiz, F.; Smith, J.S. Evaluation of oncogenic human papillomavirus RNA and DNA tests with liquid-based cytology in primary cervical cancer screening: The FASE study. Int. J. Cancer 2011, 129, 691–701. [Google Scholar] [CrossRef]
- Tsikouras, P.; Zervoudis, S.; Manav, B.; Tomara, E.; Iatrakis, G.; Romanidis, C.; Bothou, A.; Galazios, G. Cervical cancer: Screening, diagnosis and staging. J. BUON Off. J. Balk. Union Oncol. 2016, 21, 320–325. [Google Scholar]
- Pavia, G.; Branda, F.; Ciccozzi, A.; Romano, C.; Locci, C.; Azzena, I.; Pascale, N.; Marascio, N.; Quirino, A.; Matera, G.; et al. Integrating Digital Health Solutions with Immunization Strategies: Improving Immunization Coverage and Monitoring in the Post-COVID-19 Era. Vaccines 2024, 12, 847. [Google Scholar] [CrossRef] [PubMed]
- Allanson, E.R.; Schmeler, K.M. Cervical Cancer Prevention in Low- and Middle-Income Countries. Clin. Obstet. Gynecol. 2021, 64, 501–518. [Google Scholar] [CrossRef] [PubMed]
- Tsu, V.D.; LaMontagne, D.S.; Atuhebwe, P.; Bloem, P.N.; Ndiaye, C. National implementation of HPV vaccination programs in low-resource countries: Lessons, challenges, and future prospects. Prev. Med. 2021, 144, 106335. [Google Scholar] [CrossRef] [PubMed]
- Feldstein, O.; Gali-Zamir, H.; Schejter, E.; Feinberg, T.; Yehuda-Shnaidman, E.; Bornstein, J.; Levy, T. High-risk HPV testing vs liquid-based cytology for cervical cancer screening among 25- to 30-year-old women: A historical cohort study. Acta Obstet. Gynecol. Scand. 2023, 102, 226–233. [Google Scholar] [CrossRef]
- Koliopoulos, G.; Nyaga, V.N.; Santesso, N.; Bryant, A.; Martin-Hirsch, P.P.; Mustafa, R.A.; Schünemann, H.; Paraskevaidis, E.; Arbyn, M. Cytology versus HPV testing for cervical cancer screening in the general population. Cochrane Database Syst. Rev. 2017, 8, CD008587. [Google Scholar] [CrossRef]
- Jansen, E.E.L.; de Kok, I.M.C.M.; Kaljouw, S.; Demirel, E.; de Koning, H.J.; Hontelez, J.A.C. Rapid elimination of cervical cancer while maintaining the harms and benefits ratio of cervical cancer screening: A modelling study. BMC Med. 2022, 20, 433. [Google Scholar] [CrossRef]
- Inturrisi, F.; Lissenberg-Witte, B.I.; Veldhuijzen, N.J.; Bogaards, J.A.; Ronco, G.; Meijer, C.J.L.M.; Berkhof, J. Estimating the direct effect of human papillomavirus vaccination on the lifetime risk of screen-detected cervical precancer. Int. J. Cancer 2021, 148, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Kaljouw, S.; Jansen, E.E.L.; Aitken, C.A.; De Kok, I.M.C.M. Shift in harms and benefits of cervical cancer screening in the era of HPV screening and vaccination: A modelling study. BJOG Int. J. Obstet. Gynecol. 2022, 129, 1862–1869. [Google Scholar] [CrossRef]
- Noguchi, N.; Teixeira-Pinto, A.; Marinovich, M.L.; Louw, D.C.; Wylie, E.J.; Houssami, N. Risk Models to Predict Screen-Detected and Interval Breast Cancers in Population Mammography Screening Participants. Cancers 2025, 17, 810. [Google Scholar] [CrossRef]
- Brisson, M.; Kim, J.J.; Canfell, K.; Drolet, M.; Gingras, G.; Burger, E.A.; Martin, D.; Simms, K.T.; Bénard, É.; Boily, M.C.; et al. Impact of HPV vaccination and cervical screening on cervical cancer elimination: A comparative modelling analysis in 78 low-income and lower-middle-income countries. Lancet Lond. Engl. 2020, 395, 575–590. [Google Scholar] [CrossRef]
- Galeș, L.N.; Păun, M.A.; Anghel, R.M.; Trifănescu, O.G. Cancer Screening: Present Recommendations, the Development of Multi-Cancer Early Development Tests, and the Prospect of Universal Cancer Screening. Cancers 2024, 16, 1191. [Google Scholar] [CrossRef] [PubMed]
- Gori, S.; Battagello, J.; Gustinucci, D.; Campari, C.; Zorzi, M.; Frayle, H.; Passamonti, B.; Sartori, G.; Bulletti, S.; Fodero, C.; et al. Clinical relevance of partial HPV16/18 genotyping in stratifying HPV-positive women attending routine cervical cancer screening: A population-based cohort study. BJOG Int. J. Obstet. Gynecol. 2021, 128, 1353–1362. [Google Scholar] [CrossRef]
- Grech, G.; Grossman, I. (Eds.) Preventive and Predictive Genetics: Towards Personalised Medicine. In Advances in Predictive, Preventive and Personalised Medicine; Springer International Publishing: Cham, Switzerland, 2015; Volume 9. [Google Scholar] [CrossRef]
- Gupta, S.; Palmer, C.; Bik, E.M.; Cardenas, J.P.; Nuñez, H.; Kraal, L.; Bird, S.W.; Bowers, J.; Smith, A.; Walton, N.A.; et al. Self-Sampling for Human Papillomavirus Testing: Increased Cervical Cancer Screening Participation and Incorporation in International Screening Programs. Front. Public Health 2018, 6, 77. [Google Scholar] [CrossRef]
- Anawade, P.A.; Sharma, D.; Gahane, S. A Comprehensive Review on Exploring the Impact of Telemedicine on Healthcare Accessibility. Cureus 2024, 16, e55996. [Google Scholar] [CrossRef] [PubMed]
- Mackay, O.; Lifford, K.J.; Kalra, A.; Williams, D. Identifying optimum implementation for human papillomavirus self-sampling in underserved communities: A systematic review. J. Med. Screen. 2025, 32, 2–18. [Google Scholar] [CrossRef]
- Daponte, N.; Valasoulis, G.; Michail, G.; Magaliou, I.; Daponte, A.I.; Garas, A.; Grivea, I.; Bogdanos, D.P.; Daponte, A. HPV-Based Self-Sampling in Cervical Cancer Screening: An Updated Review of the Current Evidence in the Literature. Cancers 2023, 15, 1669. [Google Scholar] [CrossRef]
- Gupta, R.; Gupta, S.; Mehrotra, R.; Sodhani, P. Cervical Cancer Screening in Resource-Constrained Countries: Current Status and Future Directions. Asian Pac. J. Cancer Prev. APJCP 2017, 18, 1461–1467. [Google Scholar]
- Anwar, S. The global health workforce crisis: Are task-shifting strategies sustainable? BMJ Glob. Health 2025, 10, e019264. [Google Scholar] [CrossRef]
- Baena, A.; Mesher, D.; Salgado, Y.; Martínez, S.; Villalba, G.R.; Amarilla, M.L.; Salgado, B.; Flores, B.; Bellido-Fuentes, Y.; Álvarez-Larraondo, M.; et al. Performance of visual inspection of the cervix with acetic acid (VIA) for triage of HPV screen-positive women: Results from the ESTAMPA study. Int. J. Cancer 2023, 152, 1581–1592. [Google Scholar] [CrossRef]
- Maleki Varnosfaderani, S.; Forouzanfar, M. The Role of AI in Hospitals and Clinics: Transforming Healthcare in the 21st Century. Bioengineering 2024, 11, 337. [Google Scholar] [CrossRef]
- Lansing, A.E.; Romero, N.J.; Siantz, E.; Silva, V.; Center, K.; Casteel, D.; Gilmer, T. Building trust: Leadership reflections on community empowerment and engagement in a large urban initiative. BMC Public Health 2023, 23, 1252. [Google Scholar] [CrossRef]
- Rahmadhan, M.A.W.P.; Handayani, P.W. Challenges of vaccination information system implementation: A systematic literature review. Hum. Vaccines Immunother. 2023, 19, 2257054. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Shen, G.; Zhou, L.; Li, Y.; Wang, T.; Ma, X. Artificial Intelligence in Cervical Cancer Screening and Diagnosis. Front. Oncol. 2022, 12, 851367. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Lucas, E.; Zhao, F.; Basu, P.; Qiao, Y. Artificial intelligence strengthenes cervical cancer screening—Present and future. Cancer Biol. Med. 2024, 21, 864–879. [Google Scholar] [CrossRef]
- Kumar, Y.; Koul, A.; Singla, R.; Ijaz, M.F. Artificial intelligence in disease diagnosis: A systematic literature review, synthesizing framework and future research agenda. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 8459–8486. [Google Scholar] [CrossRef] [PubMed]
- Evans, K.K.; Tambouret, R.H.; Evered, A.; Wilbur, D.C.; Wolfe, J.M. Prevalence of Abnormalities Influences Cytologists’ Error Rates in Screening for Cervical Cancer. Arch. Pathol. Lab. Med. 2011, 135, 1557–1560. [Google Scholar] [CrossRef]
- Leung, G.M.; Ni, M.Y.; Wong, P.T.; Lee, P.H.; Chan, B.H.; Stewart, S.M.; Schooling, C.M.; Johnston, J.M.; Lam, W.W.T.; Chan, S.S.; et al. Cohort Profile: FAMILY Cohort. Int. J. Epidemiol. 2017, 46, e1. [Google Scholar] [CrossRef] [PubMed]
- Roberson, M.L.; McGee-Avila, J.K. Justice-Involved Women and Cervical Cancer Disparities: Issues of Surveillance, Education, and Policy. J. Correct. Health Care 2021, 27, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Shi, X.; Liu, J.; Zhang, L. Correlation between human papillomavirus viral load and cervical lesions classification: A review of current research. Front. Med. 2023, 10, 1111269. [Google Scholar] [CrossRef] [PubMed]
- Polman, N.J.; Ebisch, R.M.F.; Heideman, D.A.M.; Melchers, W.J.G.; Bekkers, R.L.M.; Molijn, A.C.; Meijer, C.J.L.M.; Quint, W.G.V.; Snijders, P.J.F.; Massuger, L.F.A.G.; et al. Performance of human papillomavirus testing on self-collected versus clinician-collected samples for the detection of cervical intraepithelial neoplasia of grade 2 or worse: A randomised, paired screen-positive, non-inferiority trial. Lancet Oncol. 2019, 20, 229–238. [Google Scholar] [CrossRef]
- Bienefeld, N.; Keller, E.; Grote, G. AI Interventions to Alleviate Healthcare Shortages and Enhance Work Conditions in Critical Care: Qualitative Analysis. J. Med. Internet Res. 2025, 27, e50852. [Google Scholar] [CrossRef]
- Ditzian, L.R.; David-West, G.; Maza, M.; Hartmann, B.; Shirazian, T.; Cremer, M. Cervical cancer screening in low- and middle-income countries. Mt. Sinai J. Med. N. Y. 2011, 78, 319–326. [Google Scholar] [CrossRef]
- Khosravi, P.; Fuchs, T.J.; Ho, D.J. Artificial Intelligence–Driven Cancer Diagnostics: Enhancing Radiology and Pathology through Reproducibility, Explainability, and Multimodality. Cancer Res. 2025, 85, 2356–2367. [Google Scholar] [CrossRef]
- Poirier, B.; Sethi, S.; Garvey, G.; Hedges, J.; Canfell, K.; Smith, M.; Ju, X.; Jamieson, L. HPV vaccine: Uptake and understanding among global Indigenous communities—A qualitative systematic review. BMC Public Health 2021, 21, 2062. [Google Scholar] [CrossRef]
- de Kok, I.M.C.M.; van Rosmalen, J.; Dillner, J.; Arbyn, M.; Sasieni, P.; Iftner, T.; van Ballegooijen, M. Primary screening for human papillomavirus compared with cytology screening for cervical cancer in European settings: Cost effectiveness analysis based on a Dutch microsimulation model. BMJ 2012, 344, e670. [Google Scholar] [CrossRef]
- Wright, T.C.; Stoler, M.H.; Behrens, C.M.; Sharma, A.; Zhang, G.; Wright, T.L. Primary cervical cancer screening with human papillomavirus: End of study results from the ATHENA study using HPV as the first-line screening test. Gynecol. Oncol. 2015, 136, 189–197. [Google Scholar] [CrossRef]
- Purandare, C.N. Cervical Cancer Elimination. 90:70:90. Together We Can. J. Obstet. Gynecol. India 2024, 74, 292–294. [Google Scholar] [CrossRef]
- Simms, K.T.; Smith, M.A.; Lew, J.B.; Kitchener, H.C.; Castle, P.E.; Canfell, K. Will cervical screening remain cost-effective in women offered the next generation nonavalent HPV vaccine? Results for four developed countries. Int. J. Cancer 2016, 139, 2771–2780. [Google Scholar] [CrossRef]
- Arbyn, M.; Simon, M.; de Sanjosé, S.; Clarke, M.A.; Poljak, M.; Rezhake, R.; Berkhof, J.; Nyaga, V.; Gultekin, M.; Canfell, K.; et al. Accuracy and effectiveness of HPV mRNA testing in cervical cancer screening: A systematic review and meta-analysis. Lancet Oncol. 2022, 23, 950–960. [Google Scholar] [CrossRef]
- Rossman, A.H.; Reid, H.W.; Pieters, M.M.; Mizelle, C.; von Isenburg, M.; Ramanujam, N.; Huchko, M.J.; Vasudevan, L. Digital Health Strategies for Cervical Cancer Control in Low- and Middle-Income Countries: Systematic Review of Current Implementations and Gaps in Research. J. Med. Internet Res. 2021, 23, e23350. [Google Scholar] [CrossRef]
- Burt, L.M.; McCormak, M.; Lecuru, F.; Kanyike, D.M.; Bvochora-Nsingo, M.; Ndlovu, N.; Scott, A.A.; Anorlu, R.I.; Sharma, V.; Plante, M.; et al. Cervix Cancer in Sub-Saharan Africa: An Assessment of Cervical Cancer Management. JCO Glob. Oncol. 2021, 7, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.B.; Wei, W.Q.; Weeraratne, D.; Frisse, M.E.; Misulis, K.; Rhee, K.; Snowdon, J.L. Precision Medicine, AI, and the Future of Personalized Health Care. Clin. Transl. Sci. 2021, 14, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Costa, S.; Verberckmoes, B.; Castle, P.E.; Arbyn, M. Offering HPV self-sampling kits: An updated meta-analysis of the effectiveness of strategies to increase participation in cervical cancer screening. Br. J. Cancer 2023, 128, 805–813. [Google Scholar] [CrossRef]
- Williamson, S.M.; Prybutok, V. Balancing Privacy and Progress: A Review of Privacy Challenges, Systemic Oversight, and Patient Perceptions in AI-Driven Healthcare. Appl. Sci. 2024, 14, 675. [Google Scholar] [CrossRef]
- O’Sullivan, B.; Brierley, J.; Byrd, D.; Bosman, F.; Kehoe, S.; Kossary, C.; Piñeros, M.; Van Eycken, E.; Weir, H.K.; Gospodarowicz, M. The TNM classification of malignant tumours-towards common understanding and reasonable expectations. Lancet Oncol. 2017, 18, 849–851. [Google Scholar] [CrossRef] [PubMed]
- Weinstock, H.; Berman, S.; Cates, W. Sexually transmitted diseases among American youth: Incidence and prevalence estimates, 2000. Perspect. Sex. Reprod. Health 2004, 36, 6–10. [Google Scholar] [CrossRef]
- Cheun, A.S.A.; Loomis, J. A Culturally Sensitive Approach to Cervical Cancer Prevention in the Latina Population Using the Promotora Model. Nurs. Womens Health 2018, 22, 338–345. [Google Scholar] [CrossRef]
- Brisson, M.; Bénard, É.; Drolet, M.; Bogaards, J.A.; Baussano, I.; Vänskä, S.; Jit, M.; Boily, M.C.; Smith, M.A.; Berkhof, J.; et al. Population-level impact, herd immunity, and elimination after human papillomavirus vaccination: A systematic review and meta-analysis of predictions from transmission-dynamic models. Lancet Public Health 2016, 1, e8–e17. [Google Scholar] [CrossRef]
- Ding, H.; Jin, H.; Tang, Y. HPV genotype distribution and cervical lesions in Chongqing: A comprehensive analysis of 229,770 females (2015‒2023). BMC Infect. Dis. 2025, 25, 760. [Google Scholar] [CrossRef]
- Simms, K.T.; Steinberg, J.; Caruana, M.; Smith, M.A.; Lew, J.B.; Soerjomataram, I.; Castle, P.E.; Bray, F.; Canfell, K. Impact of scaled up human papillomavirus vaccination and cervical screening and the potential for global elimination of cervical cancer in 181 countries, 2020–2099: A modelling study. Lancet Oncol. 2019, 20, 394–407. [Google Scholar] [CrossRef]
- Vassilakos, P.; Catarino, R.; Frey Tirri, B.; Petignat, P. Cervical cancer screening in Switzerland: Time to rethink the guidelines. Swiss Med. Wkly. 2015, 145, w14112. [Google Scholar] [CrossRef]
- Stroud, A.M.; Minteer, S.A.; Zhu, X.; Ridgeway, J.L.; Miller, J.E.; Barry, B.A. Patient information needs for transparent and trustworthy cardiovascular artificial intelligence: A qualitative study. PLOS Digit. Health 2025, 4, e0000826. [Google Scholar] [CrossRef] [PubMed]
- Liao, F.; Adelaine, S.; Afshar, M.; Patterson, B.W. Governance of Clinical AI applications to facilitate safe and equitable deployment in a large health system: Key elements and early successes. Front. Digit. Health 2022, 4, 931439. [Google Scholar] [CrossRef]
- Price, I.I.W.N.; Gerke, S.; Cohen, I.G. Liability for use of artificial intelligence in medicine. In Research Handbook on Health, AI and the Law; Solaiman, B., Cohen, I.G., Eds.; Edward Elgar Publishing Ltd.: Cheltenham, UK, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK613216/ (accessed on 25 September 2025).
- Lehtinen, M.; Ault, K.A.; Lyytikainen, E.; Dillner, J.; Garland, S.M.; Ferris, D.G.; Koutsky, L.A.; Sings, H.L.; Lu, S.; Haupt, R.M.; et al. Chlamydia trachomatis infection and risk of cervical intraepithelial neoplasia. Sex. Transm. Infect. 2011, 87, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Cody, P.; Tobe, K.; Abe, M.; Elbasha, E.H. Public health impact and cost effectiveness of routine and catch-up vaccination of girls and women with a nine-valent HPV vaccine in Japan: A model-based study. BMC Infect. Dis. 2021, 21, 11. [Google Scholar] [CrossRef] [PubMed]
- Dawson, C.; Morris, S.M.; Toussaint, E.; Fénelon, D.L.; Banigbe, B.; Kwan, G.F. Text message reminders for visit adherence among non-communicable disease patients in Haiti: A pilot study. PLOS Glob. Public Health 2025, 5, e0004376. [Google Scholar] [CrossRef]
- Warren, J.R.; Hopfer, S.; Fields, E.J.; Natarajan, S.; Belue, R.; McKee, F.X.; Hecht, M.; Lebed, J.P. Digital HPV education to increase vaccine uptake among low income women. PEC Innov. 2023, 2, 100111. [Google Scholar] [CrossRef]
- Tamang, P.; Gupta, M.; Thatal, A. Digital colposcopy image analysis techniques requirements and their role in clinical diagnosis: A systematic review. Expert Rev. Med. Devices 2024, 21, 955–969. [Google Scholar] [CrossRef]
- Lee, A.Y.L.; Wong, A.K.C.; Hung, T.T.M.; Yan, J.; Yang, S. Nurse-led Telehealth Intervention for Rehabilitation (Telerehabilitation) Among Community-Dwelling Patients With Chronic Diseases: Systematic Review and Meta-analysis. J. Med. Internet Res. 2022, 24, e40364. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Xu, X. Progress in the application research of cervical cancer screening developed by artificial intelligence in large populations. Discov. Oncol. 2025, 16, 1282. [Google Scholar] [CrossRef] [PubMed]
- Quinley, K.E.; Gormley, R.H.; Ratcliffe, S.J.; Shih, T.; Szep, Z.; Steiner, A.; Ramogola-Masire, D.; Kovarik, C.L. Use of mobile telemedicine for cervical cancer screening. J. Telemed. Telecare 2011, 17, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.H.; Eghdam, A.; Davoody, N.; Wright, G.; Flowerday, S.; Koch, S. Effects of Electronic Health Record Implementation and Barriers to Adoption and Use: A Scoping Review and Qualitative Analysis of the Content. Life 2020, 10, 327. [Google Scholar] [CrossRef]
- Teoh, D.; Vogel, R.I.; Langer, A.; Bharucha, J.; Geller, M.A.; Harwood, E.; Kulasingam, S.; Melton, G.B. Effect of an Electronic Health Record Decision Support Alert to Decrease Excess Cervical Cancer Screening. J. Low. Genit. Tract Dis. 2019, 23, 253–258. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; Torkamani, A.; Butte, A.J.; Glicksberg, B.S.; Schuller, B.; Rodriguez, B.; Ting, D.S.W.; Bates, D.; Schaden, E.; Peng, H.; et al. The promise of digital healthcare technologies. Front. Public Health 2023, 11, 1196596. [Google Scholar] [CrossRef]
- Goldschmitt, M.; Gleim, P.; Mandelartz, S.; Kellmeyer, P.; Rigotti, T. Digitalizing informed consent in healthcare: A scoping review. BMC Health Serv. Res. 2025, 25, 893. [Google Scholar] [CrossRef]
- Idoko, B.; Alakwe, J.A.; Ugwu, O.J.; Idoko, J.E.; Idoko, F.O.; Ayoola, V.B.; Ejembi, E.V.; Adeyinka, T. Enhancing healthcare data privacy and security: A comparative study of regulations and best practices in the US and Nigeria. Magna Sci. Adv. Res. Rev. 2024, 11, 151–167. [Google Scholar] [CrossRef]
- Gomes, M.; Provaggi, E.; Pembe, A.B.; Olaitan, A.; Gentry-Maharaj, A. Advancing Cervical Cancer Prevention Equity: Innovations in Self-Sampling and Digital Health Technologies Across Healthcare Settings. Diagnostics 2025, 15, 1176. [Google Scholar] [CrossRef]
- Alshammari, A.H.; Ishii, H.; Hirotsu, T.; Hatakeyama, H.; Morishita, M.; di Luccio, E. Bridging the gap in cervical cancer screening for underserved communities: MCED and the promise of future technologies. Front. Oncol. 2024, 14, 1407008. [Google Scholar] [CrossRef] [PubMed]
- Istasy, P.; Lee, W.S.; Iansavichene, A.; Upshur, R.; Gyawali, B.; Burkell, J.; Sadikovic, B.; Lazo-Langner, A.; Chin-Yee, B. The Impact of Artificial Intelligence on Health Equity in Oncology: Scoping Review. J. Med. Internet Res. 2022, 24, e39748. [Google Scholar] [CrossRef]
- Pawar, S.; Chougule, M.; Channaveer, R.M. Human capital and stakeholder engagement intervention: A women empowerment pathway to achieve sustainable community development in water, sanitation, and hygiene at Vaijapur Village of Karnataka, India. Front. Sustain. 2025, 6, 1562033. [Google Scholar] [CrossRef]
- Whitehead, L.; Talevski, J.; Fatehi, F.; Beauchamp, A. Barriers to and Facilitators of Digital Health Among Culturally and Linguistically Diverse Populations: Qualitative Systematic Review. J. Med. Internet Res. 2023, 25, e42719. [Google Scholar] [CrossRef]
- Hanna, M.G.; Pantanowitz, L.; Jackson, B.; Palmer, O.; Visweswaran, S.; Pantanowitz, J.; Deebajah, M.; Rashidi, H.H. Ethical and Bias Considerations in Artificial Intelligence/Machine Learning. Mod. Pathol. 2025, 38, 100686. [Google Scholar] [CrossRef]
- Pannonhalmi, Á.; Sipos, B.; Kurucz, R.I.; Katona, G.; Kemény, L.; Csóka, I. Advancing Regulatory Oversight of Medical Device Trials to Align with Clinical Drug Standards in the European Union. Pharmaceuticals 2025, 18, 876. [Google Scholar] [CrossRef]
- Gesualdo, F.; Daverio, M.; Palazzani, L.; Dimitriou, D.; Diez-Domingo, J.; Fons-Martinez, J.; Jackson, S.; Vignally, P.; Rizzo, C.; Tozzi, A.E. Digital tools in the informed consent process: A systematic review. BMC Med. Ethics. 2021, 22, 18. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Oh, J. Navigating Privacy: A Global Comparative Analysis of Data Protection Laws. IET Inf. Secur. 2025, 2025, 5536763. [Google Scholar] [CrossRef]
- Das, S.; Grant, L.; Fernandes, G. Task shifting healthcare services in the post-COVID world: A scoping review. PLOS Glob. Public Health 2023, 3, e0001712. [Google Scholar] [CrossRef]
- Boldeanu, L.; Assani, M.Z.; Boldeanu, M.V.; Siloși, I.; Manolea, M.M.; Văduva, C.C.; Assani, A.D.; Dijmărescu, A.L. Cervical Cancer in the Era of HPV: Translating Molecular Mechanisms into Preventive Public Health Action. Int. J. Mol. Sci. 2025, 26, 8463. [Google Scholar] [CrossRef]
- Oliveira, C.R.; Niccolai, L.M. Monitoring HPV vaccine impact on cervical disease: Status and future directions for the era of cervical cancer elimination. Prev. Med. 2021, 144, 106363. [Google Scholar] [CrossRef] [PubMed]
- Brotherton, J.M.L.; Wheeler, C.; Clifford, G.M.; Elfström, M.; Saville, M.; Kaldor, J.; Machalek, D.A. Surveillance systems for monitoring cervical cancer elimination efforts: Focus on HPV infection, cervical dysplasia, cervical screening and treatment. Prev. Med. 2021, 144, 106293. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.; He, X.; Huang, Y.; Liu, R.; Li, Z. The Clinical Effectiveness of Single-Dose Human Papillomavirus Vaccination. Vaccines 2024, 12, 956. [Google Scholar] [CrossRef]
- Portnoy, A.; Pedersen, K.; Kim, J.J.; Burger, E.A. Vaccination and screening strategies to accelerate cervical cancer elimination in Norway: A model-based analysis. Br. J. Cancer 2024, 130, 1951–1959. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.C.W.; Leung, K.; Chan, K.K.L.; Bai, Y.; Jit, M.; Wu, J.T. Maximizing the cost-effectiveness of cervical screening in the context of routine HPV vaccination by optimizing screening strategies with respect to vaccine uptake: A modeling analysis. BMC Med. 2023, 21, 48. [Google Scholar] [CrossRef]
- Mortaki, A.; Douligeris, A.; Daskalaki, M.A.; Bikouvaraki, E.S.; Louizou, E.; Daskalakis, G.; Rodolakis, A.; Grigoriadis, T.; Pappa, K.I. The Role of HPV Genotyping, Cytology, and Methylation in the Triage of High-Risk HPV-Positive Patients. Biomedicines 2025, 13, 1139. [Google Scholar] [CrossRef]
- Carini, C.; Seyhan, A.A. Tribulations and future opportunities for artificial intelligence in precision medicine. J. Transl. Med. 2024, 22, 411. [Google Scholar] [CrossRef]
- Ennab, M.; Mcheick, H. Enhancing interpretability and accuracy of AI models in healthcare: A comprehensive review on challenges and future directions. Front. Robot. AI 2024, 11, 1444763. [Google Scholar] [CrossRef]
- Goktas, P.; Grzybowski, A. Shaping the Future of Healthcare: Ethical Clinical Challenges and Pathways to Trustworthy AI. J. Clin. Med. 2025, 14, 1605. [Google Scholar] [CrossRef]
- Olakotan, O.; Samuriwo, R.; Ismaila, H.; Atiku, S. Usability Challenges in Electronic Health Records: Impact on Documentation Burden and Clinical Workflow: A Scoping Review. J. Eval. Clin. Pract. 2025, 31, e70189. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Meng, S. Impacts of the Internet on Health Inequality and Healthcare Access: A Cross-Country Study. Front. Public Health 2022, 10, 935608. [Google Scholar] [CrossRef] [PubMed]
- Li, J.P.O.; Liu, H.; Ting, D.S.J.; Jeon, S.; Chan, R.V.P.; Kim, J.E.; Sim, D.A.; Thomas, P.B.M.; Lin, H.; Chen, Y.; et al. Digital technology, tele-medicine and artificial intelligence in ophthalmology: A global perspective. Prog. Retin. Eye Res. 2021, 82, 100900. [Google Scholar] [CrossRef] [PubMed]
Tool/Application | Primary Function | Evidence Strength | Readiness for Adoption | Key Limitations |
---|---|---|---|---|
AI-assisted Cytology | Automated detection of abnormal cells | Multiple large retrospective studies, with some prospective validation | Moderate–High (available in some labs) | Dataset bias, need for human oversight |
AI-supported Colposcopy | Real-time image classification and biopsy guidance | Early feasibility and pilot studies | Low–Moderate (mostly research stage) | Requires high-quality imaging, training data generalizability |
Risk-stratification Algorithms | Integrate HPV genotype + history to guide follow-up | Modelling studies, some pilot implementations | Moderate (implemented in select programs) | Need for EHR integration, data privacy concerns |
Digital Registries & EHR | Tracking vaccination, results, follow-up | Extensive real-world evidence in high-income settings | High (standard in many countries) | Infrastructure and cost barriers in LMICs |
Telemedicine & Digital Colposcopy | Remote interpretation, quality control | Demonstrated feasibility in multiple LMIC pilots | Moderate | Internet connectivity, secure transmission, training |
Tool | Key Functions | Evidence | Relevance for LMICs | Limitations |
---|---|---|---|---|
mHealth (SMS, apps) |
| SMS reminders increased uptake, reduced loss to follow-up; apps doubled participation in some populations [99,105] | Widespread mobile access enables cost-effective scale-up (Kenya, India, Peru) [102,103] |
|
Telemedicine & Digital Colposcopy |
| Maintains diagnostic quality with nurse-led/community screening; supports second opinions in HICs [106,109] | Compensates for scarcity of specialists; facilitates decentralized screening [107,108] |
|
Digital Registries & EHRs |
| Supported risk-based strategies in Sweden, Denmark, Australia [110,111,112]; improved guideline adherence [113] | Facilitates monitoring and continuity, though adoption is limited by infrastructure |
|
Decision-Support Tools |
| Pilots show enhanced workflow and decision-making [114] | May guide non-specialist providers in LMICs | |
Cross-cutting barriers | — | — | May exacerbate inequalities without inclusive design [118] |
|
Research Area | Key Questions | Expected Impact |
---|---|---|
Long-term HPV vaccination impact | What is the durability of immunity? Is there genotype replacement? How effective is single-dose vaccination in LMICs? | Inform vaccine policy and optimize global coverage |
Screening in vaccinated cohorts | What is the safe starting age and interval? How should vaccination history be integrated? | Ensure effective, cost-efficient, risk-adapted screening |
AI and digital tools | How do AI models perform in diverse populations? What regulatory and ethical safeguards are needed? | Enhance diagnostic accuracy, standardization, and scalability |
Self-sampling and equity | How can self-sampling be scaled with digital support? What are its effects on underserved populations? | Improve participation and reduce disparities |
Cost-effectiveness and systems integration | How do new strategies compare to traditional methods across settings? | Guide resource allocation and sustainable implementation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galani, A.; Zikopoulos, A.; Moustakli, E.; Potiris, A.; Paraskevaidi, M.; Arkoulis, I.; Machairoudias, P.; Stavrakaki, S.M.; Kyrgiou, M.; Stavros, S. Cervical Cancer Screening in the HPV-Vaccinated and Digital Era: Reassessing Strategies in Light of Artificial Intelligence and Evolving Risk. Cancers 2025, 17, 3179. https://doi.org/10.3390/cancers17193179
Galani A, Zikopoulos A, Moustakli E, Potiris A, Paraskevaidi M, Arkoulis I, Machairoudias P, Stavrakaki SM, Kyrgiou M, Stavros S. Cervical Cancer Screening in the HPV-Vaccinated and Digital Era: Reassessing Strategies in Light of Artificial Intelligence and Evolving Risk. Cancers. 2025; 17(19):3179. https://doi.org/10.3390/cancers17193179
Chicago/Turabian StyleGalani, Apostolia, Athanasios Zikopoulos, Efthalia Moustakli, Anastasios Potiris, Maria Paraskevaidi, Ioannis Arkoulis, Pavlos Machairoudias, Stefania Maneta Stavrakaki, Maria Kyrgiou, and Sofoklis Stavros. 2025. "Cervical Cancer Screening in the HPV-Vaccinated and Digital Era: Reassessing Strategies in Light of Artificial Intelligence and Evolving Risk" Cancers 17, no. 19: 3179. https://doi.org/10.3390/cancers17193179
APA StyleGalani, A., Zikopoulos, A., Moustakli, E., Potiris, A., Paraskevaidi, M., Arkoulis, I., Machairoudias, P., Stavrakaki, S. M., Kyrgiou, M., & Stavros, S. (2025). Cervical Cancer Screening in the HPV-Vaccinated and Digital Era: Reassessing Strategies in Light of Artificial Intelligence and Evolving Risk. Cancers, 17(19), 3179. https://doi.org/10.3390/cancers17193179