Current Insights of Post-Infusion CAR T Expansion and Persistence for Large B-Cell Lymphoma
Simple Summary
Abstract
1. Introduction
Role of CAR T in Aggressive B-Cell Lymphoma
2. Methodologies to Measure CAR T
2.1. Flow Cytometry
Methodology | Trials Utilising Method | Methodology Description | Advantages | Disadvantages | |
---|---|---|---|---|---|
Flow cytometry—different staining agents/ methods | CAR staining agents targeting IgG-like fragments—polyclonal anti-IgG antibodies, and protein L |
|
|
| |
Antigen-Fc | Peinelt et al. [20] Badbharan et al. [21] |
|
|
| |
Anti-idiotype antibodies | Abadir et al. [22] Hamilton et al. [22] |
|
|
| |
Anti-linker antibodies | Used by Kite and Gilead sponsored studies involving axi-cel and tisa-cel | Rabbit monoclonal antibodies against 2 commonly used linkers in the CAR scFv that connect the heavy and light chains. |
| ||
Genomic methods | ddPCR | Fehse [23], Badbaran [21]—utilised in patients receiving axi-cel and tisa-cel Ayuk et al. [24] TRANSCEND | Duplex ddPCR assay—concomitantly probed for the anti-CD19 CAR (FMC63 scFv) and a reference gene. |
|
|
qPCR | JULIET [8] ZUMA 19 February 2025 2:19:00 PM [8] ZUMA7 | Primer and probe set used that were specific for the anti-CD19 CAR. | |||
Wang et al. [25] | Primers for vector are based on FMC63 scFV sequence, and compared with reference gene (singleplex setup where vector and reference gene are amplified separately). |
|
| ||
Kunz et al. [26] | Multiplex qPCR—FMC63 scFv and RNaseP (Rthe control) simultaneously qPCR amplified from the same gDNA sample using 2 independent fluorescent probes. |
|
| ||
ELIANA, ENSIGN (B-ALL studies)—Mueller et al. [27,28] | qPCR (no further detail). | ||||
Peinelt et al. [20] | Developed primers for a unique region after sequencing the axi-cel CAR from FMC63 IGHV to TCR. |
2.2. Genomic Methods
2.3. Quantitative PCR (qPCR)
2.4. Digital Droplet PCR (ddPCR)
2.5. Other Techniques
Current State of Post-Infusion CAR T Expansion
2.6. Timing and Method of Measurement
2.7. Peak Expansion and Efficacy
2.8. Peak Expansion and Toxicity
2.9. Persistence and Efficacy
Trial | Population and Methods Used | Peak Expansion Value (Cmax) and Timing (Tmax) | CAR T Persistence (Tlast) | Efficacy Correlation | Toxicity Correlation |
---|---|---|---|---|---|
JULIET [9,35,37] | Phase 2 Trial of tisa-cel in R/R DLBCL.
| Cmax and Tmax FC
| FC
| qPCR
|
|
BELINDA [12] | Phase 3 Trial. Tisa-cel in 2nd line treatment of DLBCL.
| No specific numbers given. | Transgene detectable in 53/54 at 4 months. |
| |
ZUMA 1 [8,14] | Phase 2. Axi-cel in R/R DLBCL.
| Tmax = 14 days. Cmax:
|
|
|
|
Locke et al. —ZUMA1 data [38] | Analysed biomarker data from ZUMA1.
| No specific numbers given. |
|
|
|
ZUMA 7 [6,11] | Phase 3. Axi-cel in 2nd line.
|
|
|
| |
TRANSCEND NHL 001 [5] | Phase 2. Liso-cel in R/R DLBCL.
|
|
| ||
TRANSFORM [13,39] | Phase 3. Liso-cel in 2nd line.
|
|
| ||
Abadir/Wayte [16] | Axi-cel or tisa-cel, after 2 or more lines of therapy.
|
|
|
| |
Ayuk et al. [24] | 21 patients receiving axi-cel for DLBCL or PMBCL—median 5 lines prior therapy.
|
|
| At median follow up:
|
|
Demaret [40] | 28 patients receiving axi-cel in French university hospital.
|
| No clinical correlation performed due to small numbers. | ||
Blumenberg [17] | Patients receiving third line tisa-cel or axi-cel.
|
|
| ||
Hamilton [22] | 188 lymphoma patients treated with CD19 directed CAR—majority DLBCL.
|
|
|
| |
Wittischlager [34] | 92 patients with R/R B-cell lymphoma (majority DLBCL) who received CD19 targeted CAR T.
|
|
|
|
|
Fehse [23] | 16 patients who received axi-cel.
| Median Cmax 11.2/µL. | Trend for association between Cmax above median and better D +30 clinical response (CR, PR, SD). |
3. Discussion
3.1. Comparison with ALL
3.2. Comparison with Alternatives and Future Directions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Philip, T.; Guglielmi, C.; Hagenbeek, A.; Somers, R.; Van Der Lelie, H.; Bron, D.; Sonneveld, P.; Gisselbrecht, C.; Cahn, J.-Y.; Harousseau, J.-L.; et al. Autologous Bone Marrow Transplantation as Compared with Salvage Chemotherapy in Relapses of Chemotherapy-Sensitive Non-Hodgkin’s Lymphoma. N. Engl. J. Med. 1995, 333, 1540–1545. [Google Scholar] [CrossRef]
- Gisselbrecht, C.; Glass, B.; Mounier, N.; Singh Gill, D.; Linch, D.C.; Trneny, M.; Bosly, A.; Ketterer, N.; Shpilberg, O.; Hagberg, H.; et al. Salvage Regimens With Autologous Transplantation for Relapsed Large B-Cell Lymphoma in the Rituximab Era. J. Clin. Oncol. 2010, 28, 4184–4190. [Google Scholar] [CrossRef]
- Crump, M.; Neelapu, S.S.; Farooq, U.; Van Den Neste, E.; Kuruvilla, J.; Westin, J.; Link, B.K.; Hay, A.; Cerhan, J.R.; Zhu, L.; et al. Outcomes in refractory diffuse large B-cell lymphoma: Results from the international SCHOLAR-1 study. Blood 2017, 130, 1800–1808. [Google Scholar] [CrossRef]
- Cappell, K.M.; Kochenderfer, J.N. A comparison of chimeric antigen receptors containing CD28 versus 4-1BB costimulatory domains. Nat. Rev. Clin. Oncol. 2021, 18, 715–727. [Google Scholar] [CrossRef]
- Abramson, J.S.; Palomba, M.L.; Gordon, L.I.; Lunning, M.; Wang, M.; Arnason, J.; Purev, E.; Maloney, D.G.; Andreadis, C.; Sehgal, A.; et al. Two-year follow-up of lisocabtagene maraleucel in relapsed or refractory large B-cell lymphoma in TRANSCEND NHL 001. Blood 2024, 143, 404–416. [Google Scholar] [CrossRef] [PubMed]
- Westin, J.R.; Oluwole, O.O.; Kersten, M.J.; Miklos, D.B.; Perales, M.-A.; Ghobadi, A.; Rapoport, A.P.; Sureda, A.; Jacobson, C.A.; Farooq, U.; et al. Survival with Axicabtagene Ciloleucel in Large B-Cell Lymphoma. N. Engl. J. Med. 2023, 389, 148–157. [Google Scholar] [CrossRef]
- Schuster, S.J.; Bishop, M.R.; Tam, C.; Borchmann, P.; Jaeger, U.; Waller, E.K.; Holte, H.; McGuirk, J.P.; Jaglowski, S.; Tobinai, K.; et al. Sustained Disease Control for Adult Patients with Relapsed or Refractory Diffuse Large B-Cell Lymphoma: An Updated Analysis of Juliet, a Global Pivotal Phase 2 Trial of Tisagenlecleucel. Blood 2018, 132, 1684. [Google Scholar] [CrossRef]
- Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; Lin, Y.; et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N. Engl. J. Med. 2017, 377, 2531–2544. [Google Scholar] [CrossRef]
- Schuster, S.J.; Bishop, M.R.; Tam, C.S.; Waller, E.K.; Borchmann, P.; McGuirk, J.P.; Jäger, U.; Jaglowski, S.; Andreadis, C.; Westin, J.R.; et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2019, 380, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Abramson, J.S.; Palomba, M.L.; Gordon, L.I.; Lunning, M.A.; Wang, M.; Arnason, J.; Mehta, A.; Purev, E.; Maloney, D.G.; Andreadis, C.; et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): A multicentre seamless design study. Lancet 2020, 396, 839–852. [Google Scholar] [CrossRef]
- Locke, F.L.; Miklos, D.B.; Jacobson, C.A.; Perales, M.-A.; Kersten, M.-J.; Oluwole, O.O.; Ghobadi, A.; Rapoport, A.P.; McGuirk, J.; Pagel, J.M.; et al. Axicabtagene Ciloleucel as Second-Line Therapy for Large B-Cell Lymphoma. N. Engl. J. Med. 2022, 386, 640–654. [Google Scholar] [CrossRef]
- Bishop, M.R.; Dickinson, M.; Purtill, D.; Barba, P.; Santoro, A.; Hamad, N.; Kato, K.; Sureda, A.; Greil, R.; Thieblemont, C.; et al. Second-Line Tisagenlecleucel or Standard Care in Aggressive B-Cell Lymphoma. N. Engl. J. Med. 2022, 386, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Abramson, J.S.; Solomon, S.R.; Arnason, J.; Johnston, P.B.; Glass, B.; Bachanova, V.; Ibrahimi, S.; Mielke, S.; Mutsaers, P.; Hernandez-Ilizaliturri, F.; et al. Lisocabtagene maraleucel as second-line therapy for large B-cell lymphoma: Primary analysis of the phase 3 TRANSFORM study. Blood 2023, 141, 1675–1684. [Google Scholar] [CrossRef] [PubMed]
- Neelapu, S.S.; Jacobson, C.A.; Ghobadi, A.; Miklos, D.B.; Lekakis, L.J.; Oluwole, O.O.; Lin, Y.; Braunschweig, I.; Hill, B.T.; Timmerman, J.M.; et al. 5-Year Follow-Up Supports Curative Potential of Axicabtagene Ciloleucel in Refractory Large B-Cell Lymphoma (ZUMA-1). Blood 2023, 141, 2307–2315. [Google Scholar] [CrossRef]
- Westin, J.; Sehn, L.H. CAR T cells as a second-line therapy for large B-cell lymphoma: A paradigm shift? Blood 2022, 139, 2737–2746. [Google Scholar] [CrossRef]
- Abadir, E.; Wayte, R.; Li, W.; Gupta, S.; Yang, S.; Reaiche, E.; Debosz, K.; Anderson, E.; Favaloro, J.; Aklilu, E.; et al. Reduced Chimeric Antigen Receptor T Cell Expansion Postinfusion Is Associated with Poor Survival in Patients with Large B Cell Lymphoma after Two or More Therapies. Transplant. Cell. Ther. 2025, 31, 159–165. [Google Scholar] [CrossRef]
- Blumenberg, V.; Busch, G.; Baumann, S.; Jitschin, R.; Iacoboni, G.; Gallur, L.; Iraola-Truchuelo, J.; Hoster, E.; Winkelmann, M.; Hellwig, K.; et al. Early quantification of anti-CD19 CAR T cells by flow cytometry predicts response in R/R DLBCL. Blood Adv. 2023, 7, 6844–6849. [Google Scholar] [CrossRef]
- Hu, Y.; Huang, J. The Chimeric Antigen Receptor Detection Toolkit. Front. Immunol. 2020, 11, 1770. [Google Scholar] [CrossRef]
- Selim, A.G.; Minson, A.; Blombery, P.; Dickinson, M.; Harrison, S.J.; Anderson, M.A. CAR-T cell therapy: Practical guide to routine laboratory monitoring. Pathology 2021, 53, 408–415. [Google Scholar] [CrossRef]
- Peinelt, A.; Bremm, M.; Kreyenberg, H.; Cappel, C.; Banisharif-Dehkordi, J.; Erben, S.; Rettinger, E.; Jarisch, A.; Meisel, R.; Schlegel, P.-G.; et al. Monitoring of Circulating CAR T Cells: Validation of a Flow Cytometric Assay, Cellular Kinetics, and Phenotype Analysis Following Tisagenlecleucel. Front. Immunol. 2022, 13, 830773. [Google Scholar] [CrossRef] [PubMed]
- Badbaran, A.; Berger, C.; Riecken, K.; Kruchen, A.; Geffken, M.; Müller, I.; Kröger, N.; Ayuk, F.A.; Fehse, B. Accurate In-Vivo Quantification of CD19 CAR-T Cells after Treatment with Axicabtagene Ciloleucel (Axi-Cel) and Tisagenlecleucel (Tisa-Cel) Using Digital PCR. Cancers 2020, 12, 1970. [Google Scholar] [CrossRef]
- Hamilton, M.P.; Craig, E.; Gentille Sanchez, C.; Mina, A.; Tamaresis, J.; Kirmani, N.; Ehlinger, Z.; Syal, S.; Good, Z.; Sworder, B.; et al. CAR19 monitoring by peripheral blood immunophenotyping reveals histology-specific expansion and toxicity. Blood Adv. 2024, 8, 3314–3326. [Google Scholar] [CrossRef]
- Fehse, B.; Badbaran, A.; Berger, C.; Sonntag, T.; Riecken, K.; Geffken, M.; Kröger, N.; Ayuk, F.A. Digital PCR Assays for Precise Quantification of CD19-CAR-T Cells after Treatment with Axicabtagene Ciloleucel. Mol. Ther.—Methods Clin. Dev. 2020, 16, 172–178. [Google Scholar] [CrossRef]
- Ayuk, F.A.; Berger, C.; Badbaran, A.; Zabelina, T.; Sonntag, T.; Riecken, K.; Geffken, M.; Wichmann, D.; Frenzel, C.; Thayssen, G.; et al. Axicabtagene ciloleucel in vivo expansion and treatment outcome in aggressive B-cell lymphoma in a real-world setting. Blood Adv. 2021, 5, 2523–2527. [Google Scholar] [CrossRef]
- Wang, H.; Du, X.; Chen, W.-H.; Lou, J.; Xiao, H.-L.; Pan, Y.-M.; Chen, H.; An, N.; Zhang, Q.-X. Establishment of a Quantitative Polymerase Chain Reaction Assay for Monitoring Chimeric Antigen Receptor T Cells in Peripheral Blood. Transplant. Proc. 2018, 50, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Kunz, A.; Gern, U.; Schmitt, A.; Neuber, B.; Wang, L.; Hückelhoven-Krauss, A.; Michels, B.; Hofmann, S.; Müller-Tidow, C.; Dreger, P.; et al. Optimized Assessment of qPCR-Based Vector Copy Numbers as a Safety Parameter for GMP-Grade CAR T Cells and Monitoring of Frequency in Patients. Mol. Ther.—Methods Clin. Dev. 2020, 17, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Mueller, K.T.; Waldron, E.; Grupp, S.A.; Levine, J.E.; Laetsch, T.W.; Pulsipher, M.A.; Boyer, M.W.; August, K.J.; Hamilton, J.; Awasthi, R.; et al. Clinical Pharmacology of Tisagenlecleucel in B-cell Acute Lymphoblastic Leukemia. Clin. Cancer Res. 2018, 24, 6175–6184. [Google Scholar] [CrossRef]
- Mueller, K.T.; Maude, S.L.; Porter, D.L.; Frey, N.; Wood, P.; Han, X.; Waldron, E.; Chakraborty, A.; Awasthi, R.; Levine, B.L.; et al. Cellular kinetics of CTL019 in relapsed/refractory B-cell acute lymphoblastic leukemia and chronic lymphocytic leukemia. Blood 2017, 130, 2317–2325. [Google Scholar] [CrossRef] [PubMed]
- De La Iglesia-San Sebastián, I.; Carbonell, D.; Bastos-Oreiro, M.; Pérez-Corral, A.; Bailén, R.; Chicano, M.; Muñiz, P.; Monsalvo, S.; Escudero-Fernández, A.; Oarbeascoa, G.; et al. Digital PCR Improves Sensitivity and Quantification in Monitoring CAR-T Cells in B Cell Lymphoma Patients. Transplant. Cell. Ther. 2024, 30, e1–e306. [Google Scholar] [CrossRef]
- Cheng, J.; Mao, X.; Chen, C.; Long, X.; Chen, L.; Zhou, J.; Zhu, L. Monitoring anti--CD19 chimeric antigen receptor T cell population by flow cytometry and its consistency with digital droplet polymerase chain reaction. Cytometry A 2023, 103, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Wang, X.; Wang, Y.; Wang, Y.; Fang, C.; Wang, Y.; Chen, S.; Chen, R.; Lei, T.; Zhang, Y.; et al. Deciphering and advancing CAR T-cell therapy with single-cell sequencing technologies. Mol. Cancer 2023, 22, 80. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, L.; Haas, E.R.; Vyas, V.; Urak, R.; Forman, S.J.; Wang, X. Single-cell analysis by mass cytometry reveals CD19 CAR T cell spatiotemporal plasticity in patients. OncoImmunology 2022, 11, 2040772. [Google Scholar] [CrossRef]
- Schuster, S.J.; Tam, C.S.; Borchmann, P.; Worel, N.; McGuirk, J.P.; Holte, H.; Waller, E.K.; Jaglowski, S.; Bishop, M.R.; Damon, L.E.; et al. Long-term clinical outcomes of tisagenlecleucel in patients with relapsed or refractory aggressive B-cell lymphomas (JULIET): A multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2021, 22, 1403–1415. [Google Scholar] [CrossRef]
- Wittibschlager, V.; Bacher, U.; Seipel, K.; Porret, N.; Wiedemann, G.; Haslebacher, C.; Hoffmann, M.; Daskalakis, M.; Akhoundova, D.; Pabst, T. CAR T-Cell Persistence Correlates with Improved Outcome in Patients with B-Cell Lymphoma. Int. J. Mol. Sci. 2023, 24, 5688. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, R.; Pacaud, L.; Waldron, E.; Tam, C.S.; Jäger, U.; Borchmann, P.; Jaglowski, S.; Foley, S.R.; Van Besien, K.; Wagner-Johnston, N.D.; et al. Tisagenlecleucel cellular kinetics, dose, and immunogenicity in relation to clinical factors in relapsed/refractory DLBCL. Blood Adv. 2020, 4, 560–572. [Google Scholar] [CrossRef]
- Maude, S.L.; Frey, N.; Shaw, P.A.; Aplenc, R.; Barrett, D.M.; Bunin, N.J.; Chew, A.; Gonzalez, V.E.; Zheng, Z.; Lacey, S.F.; et al. Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia. N. Engl. J. Med. 2014, 371, 1507–1517. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, R. Clinical Pharmacology of CTL019 in Patients with Relapsed/Refractory (r/r) Diffuse Large B-Cell Lymphoma (DLBCL). Blood 2017, 130, 5211. [Google Scholar]
- Locke, F.L.; Rossi, J.M.; Neelapu, S.S.; Jacobson, C.A.; Miklos, D.B.; Ghobadi, A.; Oluwole, O.O.; Reagan, P.M.; Lekakis, L.J.; Lin, Y.; et al. Tumor burden, inflammation, and product attributes determine outcomes of axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv. 2020, 4, 4898–4911. [Google Scholar] [CrossRef]
- Kamdar, M.; Solomon, S.R.; Arnason, J.; Johnston, P.B.; Glass, B.; Bachanova, V.; Ibrahimi, S.; Mielke, S.; Mutsaers, P.; Hernandez-Ilizaliturri, F.; et al. Lisocabtagene Maraleucel Versus Standard of Care for Second-Line Relapsed/Refractory Large B-Cell Lymphoma: 3-Year Follow-Up From the Randomized, Phase III TRANSFORM Study. J. Clin. Oncol. 2025, 43, 2671–2678. [Google Scholar] [CrossRef]
- Demaret, J.; Varlet, P.; Trauet, J.; Beauvais, D.; Grossemy, A.; Hégo, F.; Yakoub--Agha, I.; Labalette, M. Monitoring CAR T--cells using flow cytometry. Cytometry B Clin. Cytom. 2021, 100, 218–224. [Google Scholar] [CrossRef]
- Frank, M.J.; Hossain, N.M.; Bukhari, A.; Dean, E.; Spiegel, J.Y.; Claire, G.K.; Kirsch, I.; Jacob, A.P.; Mullins, C.D.; Lee, L.W.; et al. Monitoring of Circulating Tumor DNA Improves Early Relapse Detection After Axicabtagene Ciloleucel Infusion in Large B-Cell Lymphoma: Results of a Prospective Multi-Institutional Trial. J. Clin. Oncol. 2021, 39, 3034–3043. [Google Scholar] [CrossRef]
- Herrera, A.F.; Tracy, S.; Croft, B.; Opat, S.; Ray, J.; Lovejoy, A.F.; Musick, L.; Paulson, J.N.; Sehn, L.H.; Jiang, Y. Risk profiling of patients with relapsed/refractory diffuse large B-cell lymphoma by measuring circulating tumor DNA. Blood Adv. 2022, 6, 1651–1660. [Google Scholar] [CrossRef] [PubMed]
- Atout, M.; Elwaheidi, H.; Maarouf, R.; Albabtain, A.A.; Alhayli, S.; Alshaibani, A.; Aljurf, M.; El Fakih, R. Minimal Residual Disease Testing for Diffuse Large B Cell Lymphoma. Clin. Lymphoma Myeloma Leuk. 2025, 25, 750–755. [Google Scholar] [CrossRef]
- Haradhvala, N.J.; Leick, M.B.; Maurer, K.; Gohil, S.H.; Larson, R.C.; Yao, N.; Gallagher, K.M.E.; Katsis, K.; Frigault, M.J.; Southard, J.; et al. Distinct cellular dynamics associated with response to CAR-T therapy for refractory B cell lymphoma. Nat. Med. 2022, 28, 1848–1859. [Google Scholar] [CrossRef] [PubMed]
- Dean, E.A.; Kimmel, G.J.; Frank, M.J.; Bukhari, A.; Hossain, N.M.; Jain, M.D.; Dahiya, S.; Miklos, D.B.; Altrock, P.M.; Locke, F.L. Circulating tumor DNA adds specificity to PET after axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv. 2023, 7, 4608–4618. [Google Scholar] [CrossRef]
- Samara, J.A.; Baron, M.; Gazzano, M.; Parizot, C.; Kirupaharan, M.; Guihot, A.; Miyara, M.; Gorochov, G.; Choquet, S.; Sterlin, D. CD8 and CD4 CAR-T cells are associated with outcome and toxicity of tisagenlecleucel in central nervous system lymphoma. Cytotherapy 2025, 27, 933–937. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Hu, Y.; Pan, T.; Tang, E.; Asby, N.; Althaus, T.; Wan, J.; Riedell, P.A.; Bishop, M.R.; Kline, J.P.; et al. Two-Stage CD8+ CAR T-Cell Differentiation in Patients with Large B-Cell Lymphoma. Nat. Commun. 2025, 16, 4205. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, K.; Wang, Y. Tumor microenvironment in CAR-T cell therapy for lymphoma. Best Pract. Res. Clin. Haematol. 2025, 38, 101635. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, M.; Ramos, C.A.; Durett, A.; Liu, E.; Dakhova, O.; Liu, H.; Creighton, C.J.; Gee, A.P.; Heslop, H.E.; et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood 2014, 123, 3750–3759. [Google Scholar] [CrossRef]
- Lionel, A.C.; Neelapu, S.S. CAR T-cell expansion: Harmful or helpful? Blood Adv. 2024, 8, 3311–3313. [Google Scholar] [CrossRef]
- Cappell, K.M.; Kochenderfer, J.N. Long-term outcomes following CAR T cell therapy: What we know so far. Nat. Rev. Clin. Oncol. 2023, 20, 359–371. [Google Scholar] [CrossRef]
- Baur, K.; Buser, A.; Jeker, L.T.; Khanna, N.; Läubli, H.; Heim, D.; Dirks, J.C.; Widmer, C.C.; Volken, T.; Passweg, J.R.; et al. CD4+ CAR T-cell expansion is associated with response and therapy related toxicities in patients with B-cell lymphomas. Bone Marrow Transplant. 2023, 58, 1048–1050. [Google Scholar] [CrossRef]
- Shiqi, L.; Jiasi, Z.; Lvzhe, C.; Huailong, X.; Liping, H.; Lin, L.; Qianzhen, Z.; Zhongtao, Y.; Junjie, S.; Zucong, C.; et al. Durable remission related to CAR-T persistence in R/R B-ALL and long-term persistence potential of prime CAR-T. Mol. Ther.—Oncolytics 2023, 29, 107–117. [Google Scholar] [CrossRef]
- Yamauchi, N.; Maruyama, D. Current development of chimeric antigen receptor T--cell therapy for diffuse large B--cell lymphoma and high--grade B--cell lymphoma. Eur. J. Haematol. 2024, 112, 662–677. [Google Scholar] [CrossRef]
- Van Den Neste, E.; Schmitz, N.; Mounier, N.; Gill, D.; Linch, D.; Trneny, M.; Milpied, N.; Radford, J.; Ketterer, N.; Shpilberg, O.; et al. Outcome of patients with relapsed diffuse large B-cell lymphoma who fail second-line salvage regimens in the International CORAL study. Bone Marrow Transplant. 2016, 51, 51–57. [Google Scholar] [CrossRef]
- Turicek, D.P.; Giordani, V.M.; Moraly, J.; Taylor, N.; Shah, N.N. CAR T-cell detection scoping review: An essential biomarker in critical need of standardization. J. Immunother. Cancer 2023, 11, e006596. [Google Scholar] [CrossRef]
- Maryamchik, E.; Gallagher, K.M.E.; Preffer, F.I.; Kadauke, S.; Maus, M.V. New directions in chimeric antigen receptor T cell [CAR--T] therapy and related flow cytometry. Cytometry B Clin. Cytom. 2020, 98, 299–327. [Google Scholar] [CrossRef]
- Zheng, Z.; Chinnasamy, N.; Morgan, R.A. Protein L: A novel reagent for the detection of Chimeric Antigen Receptor (CAR) expression by flow cytometry. J. Transl. Med. 2012, 10, 29. [Google Scholar] [CrossRef] [PubMed]
- Sworder, B.J.; Kurtz, D.M.; Alig, S.K.; Frank, M.J.; Shukla, N.; Garofalo, A.; Macaulay, C.W.; Shahrokh Esfahani, M.; Olsen, M.N.; Hamilton, J.; et al. Determinants of resistance to engineered T cell therapies targeting CD19 in large B cell lymphomas. Cancer Cell 2023, 41, 210–225.e5. [Google Scholar] [CrossRef] [PubMed]
- Good, Z.; Spiegel, J.Y.; Sahaf, B.; Malipatlolla, M.B.; Ehlinger, Z.J.; Kurra, S.; Desai, M.H.; Reynolds, W.D.; Wong Lin, A.; Vandris, P.; et al. Post-infusion CAR TReg cells identify patients resistant to CD19-CAR therapy. Nat. Med. 2022, 28, 1860–1871. [Google Scholar] [CrossRef] [PubMed]
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef]
- Frank, M.J.; Hossain, N.; Bukhari, A.; Dean, E.; Spiegel, J.Y.; Claire, G.K.; Kirsch, I.M.; Jacob, A.P.; Mullins, C.D.; Lee, L.W.; et al. Detectable Circulating Tumor DNA 28 Days after the CD19 CAR T-Cell Therapy, Axicabtagene Ciloleucel, Is Associated with Poor Outcomes in Patients with Diffuse Large B-Cell Lymphoma. Blood 2019, 134, 884. [Google Scholar] [CrossRef]
- Kurtz, D.M.; Scherer, F.; Jin, M.C.; Soo, J.; Craig, A.F.M.; Esfahani, M.S.; Chabon, J.J.; Stehr, H.; Liu, C.L.; Tibshirani, R.; et al. Circulating Tumor DNA Measurements As Early Outcome Predictors in Diffuse Large B-Cell Lymphoma. J. Clin. Oncol. 2018, 36, 2845–2853. [Google Scholar] [CrossRef] [PubMed]
- Schanda, N.; Sauer, T.; Kunz, A.; Hückelhoven-Krauss, A.; Neuber, B.; Wang, L.; Hinkelbein, M.; Sedloev, D.; He, B.; Schubert, M.-L.; et al. Sensitivity and Specificity of CD19.CAR-T Cell Detection by Flow Cytometry and PCR. Cells 2021, 10, 3208. [Google Scholar] [CrossRef] [PubMed]
- García-Calderón, C.B.; Sierro-Martínez, B.; García-Guerrero, E.; Sanoja-Flores, L.; Muñoz-García, R.; Ruiz-Maldonado, V.; Jimenez-Leon, M.R.; Delgado-Serrano, J.; Molinos-Quintana, Á.; Guijarro-Albaladejo, B.; et al. Monitoring of kinetics and exhaustion markers of circulating CAR-T cells as early predictive factors in patients with B-cell malignancies. Front. Immunol. 2023, 14, 1152498. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolyncewicz, G.; Wayte, R.; Abadir, E. Current Insights of Post-Infusion CAR T Expansion and Persistence for Large B-Cell Lymphoma. Cancers 2025, 17, 3167. https://doi.org/10.3390/cancers17193167
Wolyncewicz G, Wayte R, Abadir E. Current Insights of Post-Infusion CAR T Expansion and Persistence for Large B-Cell Lymphoma. Cancers. 2025; 17(19):3167. https://doi.org/10.3390/cancers17193167
Chicago/Turabian StyleWolyncewicz, Grace, Rebecca Wayte, and Edward Abadir. 2025. "Current Insights of Post-Infusion CAR T Expansion and Persistence for Large B-Cell Lymphoma" Cancers 17, no. 19: 3167. https://doi.org/10.3390/cancers17193167
APA StyleWolyncewicz, G., Wayte, R., & Abadir, E. (2025). Current Insights of Post-Infusion CAR T Expansion and Persistence for Large B-Cell Lymphoma. Cancers, 17(19), 3167. https://doi.org/10.3390/cancers17193167