Treatment-Related Adverse Events in Individuals with BRAF-Mutant Cutaneous Melanoma Treated with BRAF and MEK Inhibitors: A Systematic Review and Meta-Analysis
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Search Strategy and Data Sources
2.3. Article Selection and Data Extraction
2.4. Quality Appraisal
2.5. Data Synthesis
3. Results
3.1. Characteristics of the Studies
3.2. Pooled Prevalences of TRAEs
3.2.1. Vemurafenib Monotherapy
3.2.2. Dabrafenib Plus Trametinib
3.3. Case Report Summary
3.4. Risk of Bias Assessment
4. Discussion
4.1. Vemurafenib Monotherapy
4.2. Dabrafenib Plus Trametinib
4.3. Insights from Case Reports
4.4. Clinical Implications
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CM | Cutaneous Melanoma |
SMIs | Small-Molecule Kinase Inhibitors |
TRAEs | Treatment-Related Adverse Events |
RCTs | Randomized Controlled Trials |
PCSs | Prospective Cohort Studies |
MARP | Mitogen-Activated Protein Kinase |
ERK | Extracellular Signal-Regulated Kinase |
ASAT | Aspartate Aminotransferase |
ALP | Alkaline Phosphatase |
CTCAE | Common Terminology Criteria for Adverse Events |
EGFR | Epidermal Growth Factor Receptor |
References
- Sun, Y.; Shen, Y.; Liu, Q.; Zhang, H.; Jia, L.; Chai, Y.; Jiang, H.; Wu, M.; Li, Y. Global Trends in Melanoma Burden: A Comprehensive Analysis from the Global Burden of Disease Study, 1990–2021. J. Am. Acad. Dermatol. 2025, 92, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Lopes, J.; Rodrigues, C.M.P.; Gaspar, M.M.; Reis, C.P. Melanoma Management: From Epidemiology to Treatment and Latest Advances. Cancers 2022, 14, 4652. [Google Scholar] [CrossRef]
- Long, G.V.; Swetter, S.M.; Menzies, A.M.; Gershenwald, J.E.; Scolyer, R.A. Cutaneous Melanoma. Lancet 2023, 402, 485–502. [Google Scholar] [CrossRef]
- Strashilov, S.; Yordanov, A. Aetiology and Pathogenesis of Cutaneous Melanoma: Current Concepts and Advances. Int. J. Mol. Sci. 2021, 22, 6395. [Google Scholar] [CrossRef]
- The International Agency for Research on Cancer Global Cancer Observatory. Available online: https://gco.iarc.fr/ (accessed on 4 July 2025).
- Arnold, M.; Singh, D.; Laversanne, M.; Vignat, J.; Vaccarella, S.; Meheus, F.; Cust, A.E.; de Vries, E.; Whiteman, D.C.; Bray, F. Global Burden of Cutaneous Melanoma in 2020 and Projections to 2040. JAMA Dermatol. 2022, 158, 495–503. [Google Scholar] [CrossRef]
- Davis, L.E.; Shalin, S.C.; Tackett, A.J. Current State of Melanoma Diagnosis and Treatment. Cancer Biol. Ther. 2019, 20, 1366–1379. [Google Scholar] [CrossRef] [PubMed]
- Bollag, G.; Tsai, J.; Zhang, J.; Zhang, C.; Ibrahim, P.; Nolop, K.; Hirth, P. Vemurafenib: The First Drug Approved for BRAF-Mutant Cancer. Nat. Rev. Drug Discov. 2012, 11, 873–886. [Google Scholar] [CrossRef] [PubMed]
- Domingues, B.; Lopes, J.M.; Soares, P.; Pópulo, H. Melanoma Treatment in Review. Immunotargets Ther. 2018, 7, 35–49. [Google Scholar] [CrossRef]
- Menzies, A.M.; Long, G.V. Dabrafenib and Trametinib, Alone and in Combination for BRAF-Mutant Metastatic Melanoma. Clin. Cancer Res. 2014, 20, 2035–2043. [Google Scholar] [CrossRef]
- Signorelli, J.; Shah Gandhi, A. Cobimetinib. Ann. Pharmacother. 2017, 51, 146–153. [Google Scholar] [CrossRef]
- Davis, J.; Wayman, M. Encorafenib and Binimetinib Combination Therapy in Metastatic Melanoma. J. Adv. Pract. Oncol. 2022, 13, 450–455. [Google Scholar] [CrossRef]
- van Not, O.J.; van den Eertwegh, A.J.M.; Haanen, J.B.; Blank, C.U.; Aarts, M.J.B.; van Breeschoten, J.; van den Berkmortel, F.W.P.J.; de Groot, J.-W.B.; Hospers, G.A.P.; Ismail, R.K.; et al. Improving Survival in Advanced Melanoma Patients: A Trend Analysis from 2013 to 2021. eClinicalMedicine 2024, 69, 102485. [Google Scholar] [CrossRef]
- Saginala, K.; Barsouk, A.; Aluru, J.S.; Rawla, P.; Barsouk, A. Epidemiology of Melanoma. Med. Sci. 2021, 9, 63. [Google Scholar] [CrossRef]
- Amaral, T.; Ottaviano, M.; Arance, A.; Blank, C.; Chiarion-Sileni, V.; Donia, M.; Dummer, R.; Garbe, C.; Gershenwald, J.E.; Gogas, H.; et al. Cutaneous Melanoma: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2025, 36, 10–30. [Google Scholar] [CrossRef] [PubMed]
- Mervic, L. Time Course and Pattern of Metastasis of Cutaneous Melanoma Differ between Men and Women. PLoS ONE 2012, 7, e32955. [Google Scholar] [CrossRef] [PubMed]
- Flaherty, K.T. Targeting Metastatic Melanoma. Annu. Rev. Med. 2012, 63, 171–183. [Google Scholar] [CrossRef]
- Guo, W.; Wang, H.; Li, C. Signal Pathways of Melanoma and Targeted Therapy. Signal Transduct. Target. Ther. 2021, 6, 424. [Google Scholar] [CrossRef]
- Acosta, A.M.; Kadkol, S.S. Mitogen-Activated Protein Kinase Signaling Pathway in Cutaneous Melanoma: An Updated Review. Arch. Pathol. Lab. Med. 2016, 140, 1290–1296. [Google Scholar] [CrossRef] [PubMed]
- Czarnecka, A.M.; Bartnik, E.; Fiedorowicz, M.; Rutkowski, P. Targeted Therapy in Melanoma and Mechanisms of Resistance. Int. J. Mol. Sci. 2020, 21, 4576. [Google Scholar] [CrossRef]
- Amaral, T.; Sinnberg, T.; Meier, F.; Krepler, C.; Levesque, M.; Niessner, H.; Garbe, C. The Mitogen-Activated Protein Kinase Pathway in Melanoma Part I—Activation and Primary Resistance Mechanisms to BRAF Inhibition. Eur. J. Cancer 2017, 73, 85–92. [Google Scholar] [CrossRef]
- Algazi, A.P.; Othus, M.; Daud, A.I.; Lo, R.S.; Mehnert, J.M.; Truong, T.-G.; Conry, R.; Kendra, K.; Doolittle, G.C.; Clark, J.I.; et al. Continuous versus Intermittent BRAF and MEK Inhibition in Patients with BRAF-Mutated Melanoma: A Randomized Phase 2 Trial. Nat. Med. 2020, 26, 1564–1568. [Google Scholar] [CrossRef]
- Eroglu, Z.; Ribas, A. Combination Therapy with BRAF and MEK Inhibitors for Melanoma: Latest Evidence and Place in Therapy. Ther. Adv. Med. Oncol. 2016, 8, 48–56. [Google Scholar] [CrossRef]
- Welsh, S.J.; Corrie, P.G. Management of BRAF and MEK Inhibitor Toxicities in Patients with Metastatic Melanoma. Ther. Adv. Med. Oncol. 2015, 7, 122–136. [Google Scholar] [CrossRef]
- Malkhasyan, K.A.; Zakharia, Y.; Milhem, M. Quality-of-Life Outcomes in Patients with Advanced Melanoma: A Review of the Literature. Pigment. Cell Melanoma Res. 2017, 30, 511–520. [Google Scholar] [CrossRef]
- Gogas, H.; Dummer, R.; Ascierto, P.A.; Arance, A.; Mandalà, M.; Liszkay, G.; Garbe, C.; Schadendorf, D.; Krajsová, I.; Gutzmer, R.; et al. Quality of Life in Patients with BRAF-Mutant Melanoma Receiving the Combination Encorafenib plus Binimetinib: Results from a Multicentre, Open-Label, Randomised, Phase III Study (COLUMBUS). Eur. J. Cancer 2021, 152, 116–128. [Google Scholar] [CrossRef]
- Lengyel, A.S.; Meznerics, F.A.; Galajda, N.Á.; Gede, N.; Kói, T.; Mohammed, A.A.; Péter, P.N.; Lakatos, A.I.; Krebs, M.; Csupor, D.; et al. Safety and Efficacy Analysis of Targeted and Immune Combination Therapy in Advanced Melanoma—A Systematic Review and Network Meta-Analysis. Int. J. Mol. Sci. 2024, 25, 12821. [Google Scholar] [CrossRef]
- Garutti, M.; Bergnach, M.; Polesel, J.; Palmero, L.; Pizzichetta, M.A.; Puglisi, F. BRAF and MEK Inhibitors and Their Toxicities: A Meta-Analysis. Cancers 2022, 15, 141. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Xie, J.; Li, J.; Lu, Y.; Liao, L. Clinical Outcomes of BRAF plus MEK Inhibition in Melanoma: A Meta-analysis and Systematic Review. Cancer Med. 2019, 8, 5414–5424. [Google Scholar] [CrossRef] [PubMed]
- Schiavo, J.H. PROSPERO: An International Register of Systematic Review Protocols. Med. Ref. Serv. Q. 2019, 38, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions Version 6.5 (Updated August 2024). Cochrane. 2024. Available online: https://www.cochrane.org/authors/handbooks-and-manuals/handbook/current (accessed on 30 June 2025).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Hosseini, M.-S.; Jahanshahlou, F.; Akbarzadeh, M.A.; Zarei, M.; Vaez-Gharamaleki, Y. Formulating Research Questions for Evidence-Based Studies. J. Med. Surg. Public. Health 2024, 2, 100046. [Google Scholar] [CrossRef]
- Nambiema, A.; Sembajwe, G.; Lam, J.; Woodruff, T.; Mandrioli, D.; Chartres, N.; Fadel, M.; Le Guillou, A.; Valter, R.; Deguigne, M.; et al. A Protocol for the Use of Case Reports/Studies and Case Series in Systematic Reviews for Clinical Toxicology. Front. Med. 2021, 8, 708380. [Google Scholar] [CrossRef]
- Brănișteanu, D.E.; Porumb-Andrese, E.; Stărică, A.; Munteanu, A.C.; Toader, M.P.; Zemba, M.; Porumb, V.; Cozmin, M.; Moraru, A.D.; Nicolescu, A.C.; et al. Differences and Similarities in Epidemiology and Risk Factors for Cutaneous and Uveal Melanoma. Medicina 2023, 59, 943. [Google Scholar] [CrossRef]
- Elder, D.E.; Bastian, B.C.; Cree, I.A.; Massi, D.; Scolyer, R.A. The 2018 World Health Organization Classification of Cutaneous, Mucosal, and Uveal Melanoma: Detailed Analysis of 9 Distinct Subtypes Defined by Their Evolutionary Pathway. Arch. Pathol. Lab. Med. 2020, 144, 500–522. [Google Scholar] [CrossRef] [PubMed]
- McGowan, J.; Sampson, M.; Salzwedel, D.M.; Cogo, E.; Foerster, V.; Lefebvre, C. PRESS Peer Review of Electronic Search Strategies: 2015 Guideline Statement. J. Clin. Epidemiol. 2016, 75, 40–46. [Google Scholar] [CrossRef]
- Chapman, P.B.; Hauschild, A.; Robert, C.; Haanen, J.B.; Ascierto, P.; Larkin, J.; Dummer, R.; Garbe, C.; Testori, A.; Maio, M.; et al. Improved Survival with Vemurafenib in Melanoma with BRAF V600E Mutation. N. Engl. J. Med. 2011, 364, 2507–2516. [Google Scholar] [CrossRef] [PubMed]
- Haddaway, N.R.; Collins, A.M.; Coughlin, D.; Kirk, S. The Role of Google Scholar in Evidence Reviews and Its Applicability to Grey Literature Searching. PLoS ONE 2015, 10, e0138237. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 Explanation and Elaboration: Updated Guidance and Exemplars for Reporting Systematic Reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A Tool for Assessing Risk of Bias in Non-Randomised Studies of Interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A Revised Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Nyaga, V.N.; Arbyn, M.; Aerts, M. Metaprop: A Stata Command to Perform Meta-Analysis of Binomial Data. Arch. Public Health 2014, 72, 39. [Google Scholar] [CrossRef]
- Deeks, J.J.; Higgins, J.; Altman, D.G.; McKenzie, J.E.; Veroniki, A.A. Chapter 10: Analysing Data and Undertaking Meta-Analyses. Available online: https://www.cochrane.org/authors/handbooks-and-manuals/handbook/current/chapter-10#section-10-15 (accessed on 30 June 2025).
- Migliavaca, C.B.; Stein, C.; Colpani, V.; Barker, T.H.; Ziegelmann, P.K.; Munn, Z.; Falavigna, M. Prevalence Estimates Reviews-Systematic Review Methodology Group (PERSyst) Meta-Analysis of Prevalence: I2 Statistic and How to Deal with Heterogeneity. Res. Synth. Methods 2022, 13, 363–367. [Google Scholar] [CrossRef]
- DerSimonian, R.; Kacker, R. Random-Effects Model for Meta-Analysis of Clinical Trials: An Update. Contemp. Clin. Trials 2007, 28, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Langan, D.; Higgins, J.P.T.; Jackson, D.; Bowden, J.; Veroniki, A.A.; Kontopantelis, E.; Viechtbauer, W.; Simmonds, M. A Comparison of Heterogeneity Variance Estimators in Simulated Random-Effects Meta-Analyses. Res. Synth. Methods 2019, 10, 83–98. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G. Quantifying Heterogeneity in a Meta-Analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Flaherty, K.T.; Robert, C.; Hersey, P.; Nathan, P.; Garbe, C.; Milhem, M.; Demidov, L.V.; Hassel, J.C.; Rutkowski, P.; Mohr, P.; et al. Improved Survival with MEK Inhibition in BRAF-Mutated Melanoma. N. Engl. J. Med. 2012, 367, 107–114. [Google Scholar] [CrossRef]
- Larkin, J.; Ascierto, P.A.; Dréno, B.; Atkinson, V.; Liszkay, G.; Maio, M.; Mandalà, M.; Demidov, L.; Stroyakovskiy, D.; Thomas, L.; et al. Combined Vemurafenib and Cobimetinib in BRAF-Mutated Melanoma. N. Engl. J. Med. 2014, 371, 1867–1876. [Google Scholar] [CrossRef]
- Ribas, A.; Gonzalez, R.; Pavlick, A.; Hamid, O.; Gajewski, T.F.; Daud, A.; Flaherty, L.; Logan, T.; Chmielowski, B.; Lewis, K.; et al. Combination of Vemurafenib and Cobimetinib in Patients with Advanced BRAF(V600)-Mutated Melanoma: A Phase 1b Study. Lancet Oncol. 2014, 15, 954–965. [Google Scholar] [CrossRef]
- Robert, C.; Flaherty, K.; Nathan, P.; Hersey, P.; Garbe, C.; Milhem, M.; Demidov, L.; Mohr, P.; Hassel, J.C.; Rutkowski, P.; et al. Five-Year Outcomes from a Phase 3 METRIC Study in Patients with BRAF V600 E/K-Mutant Advanced or Metastatic Melanoma. Eur. J. Cancer 2019, 109, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Dréno, B.; Ribas, A.; Larkin, J.; Ascierto, P.A.; Hauschild, A.; Thomas, L.; Grob, J.-J.; Koralek, D.O.; Rooney, I.; Hsu, J.J.; et al. Incidence, Course, and Management of Toxicities Associated with Cobimetinib in Combination with Vemurafenib in the coBRIM Study. Ann. Oncol. 2017, 28, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Dayimu, A.; Gupta, A.; Matin, R.N.; Nobes, J.; Board, R.; Payne, M.; Rao, A.; Fusi, A.; Danson, S.; Eccles, B.; et al. A Randomised Phase 2 Study of Intermittent versus Continuous Dosing of Dabrafenib plus Trametinib in Patients with BRAFV600 Mutant Advanced Melanoma (INTERIM). Eur. J. Cancer 2024, 196, 113455. [Google Scholar] [CrossRef]
- Dummer, R.; Ascierto, P.A.; Gogas, H.J.; Arance, A.; Mandala, M.; Liszkay, G.; Garbe, C.; Schadendorf, D.; Krajsova, I.; Gutzmer, R.; et al. Encorafenib plus Binimetinib versus Vemurafenib or Encorafenib in Patients with BRAF-Mutant Melanoma (COLUMBUS): A Multicentre, Open-Label, Randomised Phase 3 Trial. Lancet Oncol. 2018, 19, 603–615. [Google Scholar] [CrossRef]
- Gonzalez-Cao, M.; Mayo de Las Casas, C.; Oramas, J.; Berciano-Guerrero, M.A.; de la Cruz, L.; Cerezuela, P.; Arance, A.; Muñoz-Couselo, E.; Espinosa, E.; Puertolas, T.; et al. Intermittent BRAF Inhibition in Advanced BRAF Mutated Melanoma Results of a Phase II Randomized Trial. Nat. Commun. 2021, 12, 7008. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.B.; Flaherty, K.T.; Weber, J.S.; Infante, J.R.; Kim, K.B.; Kefford, R.F.; Hamid, O.; Schuchter, L.; Cebon, J.; Sharfman, W.H.; et al. Combined BRAF (Dabrafenib) and MEK Inhibition (Trametinib) in Patients with BRAFV600-Mutant Melanoma Experiencing Progression with Single-Agent BRAF Inhibitor. J. Clin. Oncol. 2014, 32, 3697–3704. [Google Scholar] [CrossRef]
- Long, G.V.; Hauschild, A.; Santinami, M.; Atkinson, V.; Mandalà, M.; Chiarion-Sileni, V.; Larkin, J.; Nyakas, M.; Dutriaux, C.; Haydon, A.; et al. Adjuvant Dabrafenib plus Trametinib in Stage III BRAF-Mutated Melanoma. N. Engl. J. Med. 2017, 377, 1813–1823. [Google Scholar] [CrossRef]
- Maio, M.; Lewis, K.; Demidov, L.; Mandalà, M.; Bondarenko, I.; Ascierto, P.A.; Herbert, C.; Mackiewicz, A.; Rutkowski, P.; Guminski, A.; et al. Adjuvant Vemurafenib in Resected, BRAFV600 Mutation-Positive Melanoma (BRIM8): A Randomised, Double-Blind, Placebo-Controlled, Multicentre, Phase 3 Trial. Lancet Oncol. 2018, 19, 510–520. [Google Scholar] [CrossRef]
- Robert, C.; Karaszewska, B.; Schachter, J.; Rutkowski, P.; Mackiewicz, A.; Stroiakovski, D.; Lichinitser, M.; Dummer, R.; Grange, F.; Mortier, L.; et al. Improved Overall Survival in Melanoma with Combined Dabrafenib and Trametinib. N. Engl. J. Med. 2015, 372, 30–39. [Google Scholar] [CrossRef]
- Ferrucci, P.F.; Di Giacomo, A.M.; Del Vecchio, M.; Atkinson, V.; Schmidt, H.; Schachter, J.; Queirolo, P.; Long, G.V.; Stephens, R.; Svane, I.M.; et al. KEYNOTE-022 Part 3: A Randomized, Double-Blind, Phase 2 Study of Pembrolizumab, Dabrafenib, and Trametinib in BRAF-Mutant Melanoma. J. Immunother. Cancer 2020, 8, e001806. [Google Scholar] [CrossRef] [PubMed]
- Anforth, R.; Carlos, G.; Clements, A.; Kefford, R.; Fernandez-Peñas, P. Cutaneous Adverse Events in Patients Treated with BRAF Inhibitor-Based Therapies for Metastatic Melanoma for Longer than 52 Weeks. Br. J. Dermatol. 2015, 172, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Awada, G.; Schwarze, J.K.; Tijtgat, J.; Fasolino, G.; Everaert, H.; Neyns, B. A Phase 2 Clinical Trial of Trametinib and Low-Dose Dabrafenib in Patients with Advanced Pretreated NRASQ61R/K/L Mutant Melanoma (TraMel-WT). Cancers 2021, 13, 2010. [Google Scholar] [CrossRef]
- Dika, E.; Patrizi, A.; Ribero, S.; Fanti, P.A.; Starace, M.; Melotti, B.; Sperandi, F.; Piraccini, B.M. Hair and Nail Adverse Events during Treatment with Targeted Therapies for Metastatic Melanoma. Eur. J. Dermatol. 2016, 26, 232–239. [Google Scholar] [CrossRef]
- Flaherty, K.T.; Infante, J.R.; Daud, A.; Gonzalez, R.; Kefford, R.F.; Sosman, J.; Hamid, O.; Schuchter, L.; Cebon, J.; Ibrahim, N.; et al. Combined BRAF and MEK Inhibition in Melanoma with BRAF V600 Mutations. N. Engl. J. Med. 2012, 367, 1694–1703. [Google Scholar] [CrossRef]
- Flaherty, L.; Hamid, O.; Linette, G.; Schuchter, L.; Hallmeyer, S.; Gonzalez, R.; Cowey, C.L.; Pavlick, A.; Kudrik, F.; Curti, B.; et al. A Single-Arm, Open-Label, Expanded Access Study of Vemurafenib in Patients with Metastatic Melanoma in the United States. Cancer J. 2014, 20, 18–24. [Google Scholar] [CrossRef]
- Márquez-Rodas, I.; Álvarez, A.; Arance, A.; Valduvieco, I.; Berciano-Guerrero, M.-Á.; Delgado, R.; Soria, A.; Lopez Campos, F.; Sánchez, P.; Romero, J.L.; et al. Encorafenib and Binimetinib Followed by Radiotherapy for Patients with BRAFV600-Mutant Melanoma and Brain Metastases (E-BRAIN/GEM1802 Phase II Study). Neuro Oncol. 2024, 26, 2074–2083. [Google Scholar] [CrossRef]
- Menzies, A.M.; Long, G.V.; Kohn, A.; Tawbi, H.; Weber, J.; Flaherty, K.; McArthur, G.A.; Ascierto, P.A.; Pfluger, Y.; Lewis, K.; et al. POLARIS: A Phase 2 Trial of Encorafenib plus Binimetinib Evaluating High-Dose and Standard-Dose Regimens in Patients with BRAF V600-Mutant Melanoma with Brain Metastasis. Neurooncol. Adv. 2024, 6, vdae033. [Google Scholar] [CrossRef]
- Nebhan, C.A.; Johnson, D.B.; Sullivan, R.J.; Amaria, R.N.; Flaherty, K.T.; Sosman, J.A.; Davies, M.A. Efficacy and Safety of Trametinib in Non-V600 BRAF Mutant Melanoma: A Phase II Study. Oncologist 2021, 26, 731-e1498. [Google Scholar] [CrossRef] [PubMed]
- Ribas, A.; Daud, A.; Pavlick, A.C.; Gonzalez, R.; Lewis, K.D.; Hamid, O.; Gajewski, T.F.; Puzanov, I.; Wongchenko, M.; Rooney, I.; et al. Extended 5-Year Follow-up Results of a Phase Ib Study (BRIM7) of Vemurafenib and Cobimetinib in BRAF-Mutant Melanoma. Clin. Cancer Res. 2020, 26, 46–53. [Google Scholar] [CrossRef]
- Schreuer, M.; Jansen, Y.; Planken, S.; Chevolet, I.; Seremet, T.; Kruse, V.; Neyns, B. Combination of Dabrafenib plus Trametinib for BRAF and MEK Inhibitor Pretreated Patients with Advanced BRAFV600-Mutant Melanoma: An Open-Label, Single Arm, Dual-Centre, Phase 2 Clinical Trial. Lancet Oncol. 2017, 18, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Si, L.; Zhang, X.; Shin, S.J.; Fan, Y.; Lin, C.-C.; Kim, T.M.; Dechaphunkul, A.; Maneechavakajorn, J.; Wong, C.S.; Ilankumaran, P.; et al. Open-Label, Phase IIa Study of Dabrafenib plus Trametinib in East Asian Patients with Advanced BRAF V600-Mutant Cutaneous Melanoma. Eur. J. Cancer 2020, 135, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, N.; Kiyohara, Y.; Sugaya, N.; Uhara, H. Phase I/II Study of Vemurafenib in Patients with Unresectable or Recurrent Melanoma with BRAF(V) (600) Mutations. J. Dermatol. 2015, 42, 661–666. [Google Scholar] [CrossRef]
- Kim, K.B.; Kefford, R.; Pavlick, A.C.; Infante, J.R.; Ribas, A.; Sosman, J.A.; Fecher, L.A.; Millward, M.; McArthur, G.A.; Hwu, P.; et al. Phase II Study of the MEK1/MEK2 Inhibitor Trametinib in Patients with Metastatic BRAF-Mutant Cutaneous Melanoma Previously Treated with or without a BRAF Inhibitor. J. Clin. Oncol. 2013, 31, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, L.; Livingstone, E.; Hillen, U.; Dömkes, S.; Becker, A.; Schadendorf, D. Panniculitis with Arthralgia in Patients with Melanoma Treated with Selective BRAF Inhibitors and Its Management. Arch. Dermatol. 2012, 148, 357–361. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.W.; Tseng, D.; Reddy, S.; Daud, A.I.; Swetter, S.M. Involution of Eruptive Melanocytic Nevi on Combination BRAF and MEK Inhibitor Therapy. JAMA Dermatol. 2014, 150, 1209–1212. [Google Scholar] [CrossRef]
- Orouji, E.; Ziegler, B.; Umansky, V.; Gebhardt, C.; Utikal, J. Leukocyte Count Restoration Under Dabrafenib Treatment in a Melanoma Patient with Vemurafenib-Induced Leukopenia. Medicine 2014, 93, e161. [Google Scholar] [CrossRef] [PubMed]
- Park, J.J.; Hawryluk, E.B.; Tahan, S.R.; Flaherty, K.; Kim, C.C. Cutaneous Granulomatous Eruption and Successful Response to Potent Topical Steroids in Patients Undergoing Targeted BRAF Inhibitor Treatment for Metastatic Melanoma. JAMA Dermatol. 2014, 150, 307–311. [Google Scholar] [CrossRef]
- Jansen, Y.J.; Janssens, P.; Hoorens, A.; Schreuer, M.S.; Seremet, T.; Wilgenhof, S.; Neyns, B. Granulomatous Nephritis and Dermatitis in a Patient with BRAF V600E Mutant Metastatic Melanoma Treated with Dabrafenib and Trametinib. Melanoma Res. 2015, 25, 550–554. [Google Scholar] [CrossRef]
- Carrera, C.; Puig-Butillè, J.A.; Tell-Marti, G.; García, A.; Badenas, C.; Alós, L.; Puig, S.; Malvehy, J. Multiple BRAF Wild-Type Melanomas During Dabrafenib Treatment for Metastatic BRAF-Mutant Melanoma. JAMA Dermatol. 2015, 151, 544–548. [Google Scholar] [CrossRef]
- Keating, M.; Dasanu, C.A. Late-Onset Robust Curly Hair Growth in a Patient with BRAF-Mutated Metastatic Melanoma Responding to Dabrafenib. J. Oncol. Pharm. Pract. 2017, 23, 309–312. [Google Scholar] [CrossRef]
- Loyson, T.; Werbrouck, E.; Punie, K.; Bonne, L.; Vandecaveye, V.; Bechter, O. Hemorrhage of Liver and Bone Metastases as a Result of Rapid Response to Dual BRAF/MEK Inhibition in Metastatic Melanoma: A Case Report. Melanoma Res. 2018, 28, 147–150. [Google Scholar] [CrossRef]
- Babacan, N.A.; Peguero, E.; Forsyth, P.; Eroglu, Z. BRAF Inhibitor Therapy-Related Encephalitis in a Patient with Metastatic Melanoma. Oncologist 2021, 26, e1887–e1889. [Google Scholar] [CrossRef]
- De Ryck, L.; Delanghe, S.; Jacobs, C.; Fadaei, S.; Brochez, L.; Saerens, M. Truth or Dare: Switching BRAF/MEK Inhibitors after Acute Interstitial Nephritis in a Patient with Metastatic Melanoma—A Case Report and Review of the Literature. Acta Clin. Belg. 2023, 78, 215–222. [Google Scholar] [CrossRef]
- Kim, G.; McKee, A.E.; Ning, Y.-M.; Hazarika, M.; Theoret, M.; Johnson, J.R.; Xu, Q.C.; Tang, S.; Sridhara, R.; Jiang, X.; et al. FDA Approval Summary: Vemurafenib for Treatment of Unresectable or Metastatic Melanoma with the BRAFV600E Mutation. Clin. Cancer Res. 2014, 20, 4994–5000. [Google Scholar] [CrossRef]
- Tsai, J.; Lee, J.T.; Wang, W.; Zhang, J.; Cho, H.; Mamo, S.; Bremer, R.; Gillette, S.; Kong, J.; Haass, N.K.; et al. Discovery of a Selective Inhibitor of Oncogenic B-Raf Kinase with Potent Antimelanoma Activity. Proc. Natl. Acad. Sci. USA 2008, 105, 3041–3046. [Google Scholar] [CrossRef]
- Salzmann, M.; Benesova, K.; Buder-Bakhaya, K.; Papamichail, D.; Dimitrakopoulou-Strauss, A.; Lorenz, H.-M.; Enk, A.H.; Hassel, J.C. Arthralgia Induced by BRAF Inhibitor Therapy in Melanoma Patients. Cancers 2020, 12, 3004. [Google Scholar] [CrossRef] [PubMed]
- Anforth, R.; Menzies, A.; Byth, K.; Carlos, G.; Chou, S.; Sharma, R.; Scolyer, R.A.; Kefford, R.; Long, G.V.; Fernandez-Peñas, P. Factors Influencing the Development of Cutaneous Squamous Cell Carcinoma in Patients on BRAF Inhibitor Therapy. J. Am. Acad. Dermatol. 2015, 72, 809–815.e1. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.H.; Cohen, D.N.; Rady, P.L.; Tyring, S.K. BRAF Inhibitor-Associated Cutaneous Squamous Cell Carcinoma: New Mechanistic Insight, Emerging Evidence for Viral Involvement and Perspectives on Clinical Management. Br. J. Dermatol. 2017, 177, 914–923. [Google Scholar] [CrossRef]
- Su, F.; Viros, A.; Milagre, C.; Trunzer, K.; Bollag, G.; Spleiss, O.; Reis-Filho, J.S.; Kong, X.; Koya, R.C.; Flaherty, K.T.; et al. RAS Mutations in Cutaneous Squamous-Cell Carcinomas in Patients Treated with BRAF Inhibitors. N. Engl. J. Med. 2012, 366, 207–215. [Google Scholar] [CrossRef]
- Hopkins, A.M.; Rathod, A.D.; Rowland, A.; Kichenadasse, G.; Sorich, M.J. Risk Factors for Severe Rash with Use of Vemurafenib Alone or in Combination with Cobimetinib for Advanced Melanoma: Pooled Analysis of Clinical Trials. BMC Cancer 2020, 20, 157. [Google Scholar] [CrossRef]
- Food and Drug Administration (FDA). FDA Approves Dabrafenib Plus Trametinib for Adjuvant Treatment of Melanoma with BRAF V600E or V600K Mutations. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-dabrafenib-plus-trametinib-adjuvant-treatment-melanoma-braf-v600e-or-v600k-mutations (accessed on 4 July 2025).
- Bowyer, S.; Lee, R.; Fusi, A.; Lorigan, P. Dabrafenib and Its Use in the Treatment of Metastatic Melanoma. Melanoma Manag. 2015, 2, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Thota, R.; Johnson, D.B.; Sosman, J.A. Trametinib in the Treatment of Melanoma. Expert. Opin. Biol. Ther. 2015, 15, 735–747. [Google Scholar] [CrossRef]
- Spain, L.; Julve, M.; Larkin, J. Combination Dabrafenib and Trametinib in the Management of Advanced Melanoma with BRAFV600 Mutations. Expert. Opin. Pharmacother. 2016, 17, 1031–1038. [Google Scholar] [CrossRef]
- Grob, J.J.; Amonkar, M.M.; Karaszewska, B.; Schachter, J.; Dummer, R.; Mackiewicz, A.; Stroyakovskiy, D.; Drucis, K.; Grange, F.; Chiarion-Sileni, V.; et al. Comparison of Dabrafenib and Trametinib Combination Therapy with Vemurafenib Monotherapy on Health-Related Quality of Life in Patients with Unresectable or Metastatic Cutaneous BRAF Val600-Mutation-Positive Melanoma (COMBI-v): Results of a Phase 3, Open-Label, Randomised Trial. Lancet Oncol. 2015, 16, 1389–1398. [Google Scholar] [CrossRef]
- Ouellet, D.; Gibiansky, E.; Leonowens, C.; O’Hagan, A.; Haney, P.; Switzky, J.; Goodman, V.L. Population Pharmacokinetics of Dabrafenib, a BRAF Inhibitor: Effect of Dose, Time, Covariates, and Relationship with Its Metabolites. J. Clin. Pharmacol. 2014, 54, 696–706. [Google Scholar] [CrossRef]
- Hajek, E.; Krebs, F.; Bent, R.; Haas, K.; Bast, A.; Steinmetz, I.; Tuettenberg, A.; Grabbe, S.; Bros, M. BRAF Inhibitors Stimulate Inflammasome Activation and Interleukin 1 Beta Production in Dendritic Cells. Oncotarget 2018, 9, 28294–28308. [Google Scholar] [CrossRef] [PubMed]
- Thawer, A.; Miller, W.H.; Gregorio, N.; Claveau, J.; Rajagopal, S.; Savage, K.J.; Song, X.; Petrella, T.M. Management of Pyrexia Associated with the Combination of Dabrafenib and Trametinib: Canadian Consensus Statements. Curr. Oncol. 2021, 28, 3537–3553. [Google Scholar] [CrossRef] [PubMed]
- Bower, J.E.; Lamkin, D.M. Inflammation and Cancer-Related Fatigue: Mechanisms, Contributing Factors, and Treatment Implications. Brain Behav. Immun. 2013, 30, S48–S57. [Google Scholar] [CrossRef] [PubMed]
- Cohen, C.; Zavala-Pompa, A.; Sequeira, J.H.; Shoji, M.; Sexton, D.G.; Cotsonis, G.; Cerimele, F.; Govindarajan, B.; Macaron, N.; Arbiser, J.L. Mitogen-Actived Protein Kinase Activation Is an Early Event in Melanoma Progression. Clin. Cancer Res. 2002, 8, 3728–3733. [Google Scholar]
- Carlino, M.S.; Long, G.V.; Kefford, R.F.; Rizos, H. Targeting Oncogenic BRAF and Aberrant MAPK Activation in the Treatment of Cutaneous Melanoma. Crit. Rev. Oncol. Hematol. 2015, 96, 385–398. [Google Scholar] [CrossRef]
- Schneider, S.; Potthast, S.; Komminoth, P.; Schwegler, G.; Böhm, S. PD-1 Checkpoint Inhibitor Associated Autoimmune Encephalitis. Case Rep. Oncol. 2017, 10, 473–478. [Google Scholar] [CrossRef]
- Chen, X.; Ye, M.; Ai, R.; Shan, C.; Lai, M.; Hong, W.; Yang, Y.; Wang, H.; Li, J.; Zhen, J.; et al. PD-1-Induced Encephalopathy: A Report of 2 Cases on Neurological Toxicities with Immune Checkpoint Inhibitors. Transl. Cancer Res. 2024, 13, 1196–1207. [Google Scholar] [CrossRef]
- Kuske, M.; Westphal, D.; Wehner, R.; Schmitz, M.; Beissert, S.; Praetorius, C.; Meier, F. Immunomodulatory Effects of BRAF and MEK Inhibitors: Implications for Melanoma Therapy. Pharmacol. Res. 2018, 136, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Barker, T.H.; Migliavaca, C.B.; Stein, C.; Colpani, V.; Falavigna, M.; Aromataris, E.; Munn, Z. Conducting Proportional Meta-Analysis in Different Types of Systematic Reviews: A Guide for Synthesisers of Evidence. BMC Med. Res. Methodol. 2021, 21, 189. [Google Scholar] [CrossRef]
- Belloni, S.; Arrigoni, C.; Magon, A.; Giacon, C.; Ceruso, M.H.; Arcidiacono, M.A.; Conte, G.; Caruso, R. Symptomatologic Outcomes of Gut Microbiota Modifiers (Probiotics, Prebiotics and Synbiotics) in Cancer Care: A Scoping Review of Randomized Controlled Trials. Crit. Rev. Oncol. Hematol. 2025, 212, 104779. [Google Scholar] [CrossRef] [PubMed]
- Belloni, S.; Arrigoni, C.; De Sanctis, R.; Arcidiacono, M.A.; Dellafiore, F.; Caruso, R. A Systematic Review of Systematic Reviews and Pooled Meta-Analysis on Pharmacological Interventions to Improve Cancer-Related Fatigue. Crit. Rev. Oncol. Hematol. 2021, 166, 103373. [Google Scholar] [CrossRef] [PubMed]
First Author, Year | Country | Trial Phase and Name | Trial ID | Design | Sample | Treatment | Stage | AEs Assessment Scale and Coding |
---|---|---|---|---|---|---|---|---|
Chapman, 2011 [38] | Worldwide | Phase III | NCT01006980 | RCT | 675 | Vemurafenib (n = 336) | IIIC–IV | CTCAE version 4 |
Flaherty, 2012 [65] | n.i. | Phase I/II | NCT01072175 | PCS | 247 | Dabrafenib + Trametinib or Dabrafenib (n = 162) | IIIC–IV | CTCAE version 4 |
Kim, 2013 [74] | USA | Phase II | NCT01037127 | PCS | 97 | Trametinib (n = 40) | IIIC | CTCAE version 3 |
Flaherty, 2014 [66] | USA | n.i. | n.i. | PCS | 371 | Vemurafenib (n = 371) | n.i. | CTCAE version 4 |
Johnson, 2014 [57] | Worldwide | Phase III | NCT01072175 | RCT | 383 | Dabrafenib + Trametinib (n = 26) Dabrafenib (n = 45) | Stage III–IV | CTCAE version 4 |
Anforth, 2015 [62] | Australia | n.i. | n.i. | PCS | 64 | Vemurafenib (n = 11) Dabrafenib (n = 43) Dabrafenib + Trametinib (n = 10) | n.i. | n.i. |
Yamazaki, 2015 [73] | Japan | Phase I/II | n.i. | PCS | 11 | Vemurafenib (n = 11) | Stage IIIC–IV | CTCAE version 4 |
Robert, 2015 [60] | Worldwide | Phase III | NCT01597908 | RCT | 704 | Vemurafenib (n = 349) | Stage IIIC–IV | CTCAE version 4 |
Dika, 2016 [64] | Italy | n.i. | n.i. | PCS | 24 | Vemurafenib (n = 9) Dabrafenib (n = 5) Dabrafenib + Trametinib (n = 10) | n.i. | CTCAE version 4 |
Dréno, 2017 [53] | Worldwide | Phase III (coBRIM) | NCT01689519 | RCT | 493 | Vemurafenib (n = 246) | n.i. | CTCAE version 4 |
Long, 2017 [58] | Worldwide | Phase III | NCT01682083 | RCT | 870 | Dabrafenib + Trametinib (n = 438) | IIIA–IIIB–IIIC | n.i. |
Schreuer, 2017 [71] | Belgium | Phase II | NCT02296996 | PCS | 25 | Dabrafenib + Trametinib (n = 25) | IIIC–IV | CTCAE version 4 |
Maio, 2018 [59] | Worldwide | Phase III (BRIM8) | NCT01667419 | RCT | 498 | Vemurafenib (n = 157) Vemurafenib (n = 93) | IIC–IIIA–IIIB | CTCAE version 4 |
Dummer, 2018 [55] | Worldwide | Phase III (COLUMBUS) | NCT01909453 | RCT | 577 | Encorafenib + Binimetinib (n = 192) Encorafenib (n = 194) Vemurafenib (n = 191) | IIIB–IIIC–IV | CTCAE version 4.03 |
Robert, 2019 [52] | n.i. | Phase III (METRIC) | NCT01245062 | RCT | 322 | Trametinib (n = 211) | IIIC–IV | n.i. |
Algazi, 2020 [22] | USA | Phase II | NCT02196181 | RCT | 206 | Dabrafenib + Trametinib (Intermittently) (n = 105) Dabrafenib +Trametinib (Continuously) (n = 101) | III–IV | CTCAE version 4 |
Ferrucci 2020 [61] | Worldwide | Phase II (KEYNOTE-022) | NCT02130466 | RCT | 120 | Dabrafenib + Trametinib (n = 60) | III–IV | CTCAE version 4 |
Si, 2020 [72] | East Asia | Phase IIa | NCT02083354 | PCS | 77 | Dabrafenib + Trametinib (n = 77) | IIIC–IV | CTCAE version 4.03 |
Ribas, 2020 [70] | USA | Phase Ib (BRIM7) | n.i. | PCS | 129 | Vemurafenib + Cobimetinib (n = 129) | IIIC–IV | CTCAE version 4 |
Nebhan, 2021 [69] | USA | Phase II | NCT02296112 | PCS | 9 | Trametinib (n = 9) | III–IV | n.i. |
Gonzalez-Cao, 2021 [56] | Spain | Phase II | NCT02583516 | RCT | 70 | Vemurafenib (n = 35) Vemurafenib + Cobimetinib (n = 35) | IIIC–IV | CTCAE version 4.03 |
Awada, 2021 [63] | Belgium | Phase II | NCT04059224 | PCS | 16 | Trametinib (n = 6) | IV-M1c | CTCAE version 4.03 |
Daymu, 2024 [54] | UK | Phase II (INTERIM) | n.i. | RCT | 79 | Dabrafenib + Trametinib (Intermittently) (n = 39) Dabrafenib + Trametinib (Continuously) (n = 40) | III–IV | CTCAE version 4.03 |
Màrquez-Rodas, 2024 [67] | Spain | Phase II (E-BRAIN/GEM1802) | NCT03898908 | PCS | 48 | Encorafenib + Binimetinib (n = 48) | n.i. | CTCAE version 4 |
Menzies, 2024 [68] | n.i. | Phase II (POLARIS) | NCT03911869 | PCS | 13 | Encorafenib + Binimetib (n = 13) | n.i. | n.i. |
Vemurafenib 960 mg | Vemurafenib 960 mg | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
n RCTs | 5 | 5 | ||||||||
Total Sample | 1364 | 1364 | ||||||||
All grades | Grade ≥ 3 | |||||||||
ES. CI (95%) | p | I2 (%) | n Studies | Sample Size | ES. CI (95%) | p | I2 (%) | n Studies | Sample Size | |
TRAEs | ||||||||||
Gastrointestinal disorders | ||||||||||
Nausea [38,53,55,59,60] | 0.28 (0.15–0.41) | <0.001 | 61.55 * | 5 | 1364 | 0.01 (0.00–0.01) | <0.001 | 0.00 | 5 | 1364 |
Diarrhea [53,55,59,60] | 0.33 (0.28–0.38) | <0.001 | 65.98 * | 4 | 1028 | 0.01 (0.00–0.02) | 0.03 | 49.92 | 4 | 1028 |
Vomiting [53,55,59,60] | 0.14 (0.12–0.17) | <0.001 | 0.00 | 4 | 1028 | 0.01 (0.00–0.02) | 0.01 | 0.00 | 4 | 1028 |
Decreased appetite [53,55,59] | 0.17 (0.13–0.22) | <0.001 | 61.29 | 3 | 679 | 0.01 (0.00–0.01) | 0.12 | 0.00 * | 3 | 679 |
Total | 0.22 (0.13–0.33) | <0.001 | 93.28 * | |||||||
General disorders | ||||||||||
Fatigue [38,53,55,59] | 0.27 (0.16–0.38) | <0.001 | 94.47 * | 4 | 1015 | 0.02 (0.01–0.03) | <0.001 | 0.00 | 4 | 1015 |
Asthenia [55,59] | 0.17 (0.14–0.21) | <0.001 | 0.00 * | 2 | 433 | 0.02 (0.01–0.04) | 0.01 | 0.00 * | 2 | 433 |
Pyrexia [53,55,59,60] | 0.22 (0.18–0.26) | <0.001 | 57.08 | 4 | 1028 | N.a. | / | / | / | / |
Headache [55,59] | 0.19 (0.16–0.23) | <0.001 | 0.00 * | 2 | 433 | N.a. | / | / | / | / |
Total | 0.20 (0.17–0.22) | <0.001 | 38.89 | |||||||
Metabolic disorders | ||||||||||
Increased ALT [53,55,59] | 0.14 (0.07–0.21) | <0.001 | 86.49 * | 3 | 679 | 0.04 (0.01–0.07) | 0.01 | 78.35 * | 3 | 679 |
Increased ASAT [53,59] | 0.12 (0.09–0.15) | <0.001 | 0.00 * | 2 | 493 | 0.03 (0.01–0.04) | <0.001 | 0.00 * | 2 | 493 |
Increased GGT [53,55,59] | 0.11 (0.02–0.19) | 0.02 | 93.58 * | 3 | 679 | 0.05 (0.02–0.09) | 0.01 | 81.53 * | 3 | 679 |
Total | 0.12 (0.10–0.15) | <0.001 | 0.01 | |||||||
Skin tissue and immune-related disorders | ||||||||||
Alopecia [38,53,55,59,60] | 0.30 (0.15–0.46) | <0.001 | 97.91 * | 5 | 1364 | N.a. | / | / | / | / |
Rash [38,53,55,59,60] | 0.39 (0.22–0.56) | <0.001 | 97.94 * | 5 | 1364 | 0.08 (0.05–0.12) | <0.001 | 85.02 * | 5 | 1364 |
Maculopapular rash [55,59] | 0.10 (0.08–0.13) | <0.001 | 0.00 * | 2 | 433 | 0.03 (0.01–0.04) | <0.001 | 0.00 * | 2 | 433 |
Erythema [55,59] | 0.16 (0.12–0.19) | <0.001 | 0.00 * | 2 | 433 | N.a. | / | / | / | / |
Pruritus [38,55,59] | 0.15 (0.04–0.27) | <0.001 | 95.74 * | 3 | 769 | 0.01 (0.00–0.02) | 0.01 | 0.00 * | 2 [37,59] | 583 |
Dry skin [55,59] | 0.21 (0.17–0.25) | <0.001 | 0.00 * | 2 | 433 | N.a. | / | / | / | / |
Hyperkeratosis [53,55,59,60] | 0.29 (0.24–0.33) | <0.001 | 61.99 * | 4 | 1028 | 0.01 (0.00–0.02) | 0.02 | 0.00 * | 4 | 1028 |
Skin papilloma [55,59,60] | 0.19 (0.14–0.23) | <0.001 | 61.51 | 3 | 782 | N.a. | / | / | / | / |
Keratoacanthoma [38,53,55,59] | 0.09 (0.07–0.11) | <0.001 | 0.00 | 4 | 1178 | 0.06 (0.02–0.09) | <0.001 | 86.35 * | 4 | 1015 |
Squamous cell carcinoma [53,59,60] | 0.12 (0.08–0.17) | <0.001 | 82.15 * | 4 | 1178 | 0.12 (0.08–0.16) | <0.001 | 81.80 * | 4 | 1178 |
Total | 0.18 (0.13–0.23) | <0.001 | 93.09 * | |||||||
Ocular toxicity | ||||||||||
Photosensitivity reaction [53,55,59,60] | 0.29 (0.22–0.37) | <0.001 | 86.28 * | 4 | 1028 | 0.01 (0.00–0.02) | 0.08 | 35.00 | 4 | 1028 |
Musculoskeletal and connective-tissue disorders | ||||||||||
Pain in the extremities [55,59] | 0.16 (0.13–0.20) | <0.001 | 0.00 * | 2 | 433 | N.a. | / | / | / | / |
Arthralgia [37,53,55,59,60] | 0.44 (0.29–0.59) | <0.001 | 97.07 * | 5 | 1364 | 0.05 (0.03–0.06) | <0.001 | 12.23 | 5 | 1364 |
Myalgia [55,59] | 0.15 (0.12–0.18) | <0.001 | 0.00 * | 2 | 433 | 0.01 (0.00–0.02) | 0.06 | 0.00 * | 2 | 433 |
Total | 0.24 (0.06–0.41) | 0.01 | 97.59 * | |||||||
Cardiac disorders | ||||||||||
Increased CPK [53,55] | 0.02 (0.01–0.04) | <0.001 | 0.00 * | 2 | 432 | 0.01 (0.00–0.01) | 0.08 | 0.00 * | 2 | 432 |
Hypertension [55,59] | 0.09 (0.07–0.12) | <0.001 | 0.00 * | 2 | 433 | 0.03 (0.01–0.04) | <0.001 | 0.00 * | 2 | 433 |
Total | 0.05 (0.01–0.12) | 0.12 | 95.48 * | |||||||
TOTAL | 0.18 (0.15–0.22) | <0.001 | 94.87 * |
Dabrafenib 150 mg Twice Daily Plus Trametinib 1–2 mg Daily | Dabrafenib 150 mg Twice Daily Plus Trametinib 1–2 mg Daily | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
n RCTs | 6 | 7 | ||||||||
Total sample | 1140 | 1238 | ||||||||
All grades | Grade ≥ 3 | |||||||||
ES. CI (95%) | p | I2 (%) | n studies | Sample size | ES. CI (95%) | p | I2 (%) | n studies | Sample size | |
TRAEs | ||||||||||
Gastrointestinal disorders | ||||||||||
Nausea [56,65] | 0.25 (0.05–0.43) | 0.01 | 86.59 * | 2 | 125 | 0.01 (0.00–0.01) | 0.02 | 0.00 | 6 | 1026 |
Diarrhea [22,56,57,58,60,65] | 0.27 (0.22–0.33) | <0.001 | 70.44 * | 6 | 1160 | 0.01 (0.01–0.02) | <0.001 | 0.00 | 5 [22,54,56,58,60] | 964 |
Vomiting [56,57,58,60,65] | 0.26 (0.20–0.32) | <0.001 | 67.81 * | 5 | 955 | 0.01 (0.00–0.02) | <0.001 | 0.00 | 5 [54,56,58,60,65] | 998 |
Decreased appetite [56,57,58,65] | 0.12 (0.09–0.15) | <0.001 | 0.00 | 3 | 570 | N.a. | / | / | / | / |
Constipation [56,57,58,65] | 0.12 (0.05–0.19) | <0.001 | 78.14 * | 4 | 570 | N.a. | / | / | / | / |
Total | 0.20 (0.12–0.27) | <0.001 | 86.27 * | |||||||
General disorders | ||||||||||
Fatigue [22,57,58,65] | 0.47 (0.38–0.56) | <0.001 | 77.15 * | 4 | 740 | 0.04 (0.03–0.05) | <0.001 | 0.00 | 5 [22,54,57,58,65] | 818 |
Asthenia [56,58] | 0.39 (0.09–0.51) | 0.01 | 89.72 * | 2 | 505 | N.a. | / | / | / | / |
Pyrexia [22,56,57,58,60,65] | 0.40 (0.26–0.54) | <0.001 | 96.04 * | 6 | 1160 | 0.04 (0.02–0.06) | <0.001 | 48.72 | 6 | 1168 |
Headache [56,57,58,65] | 0.20 (0.03–0.37) | 0.02 | 96.19 * | 4 | 605 | N.a. | / | / | / | / |
Chills [22,57,58,60,65] | 0.324(0.28–0.41) | <0.001 | 77.73 * | 5 | 1090 | 0.01 (0.01–0.02) | <0.001 | 0.00 | 5 [22,54,58,60,65] | 1123 |
Dizziness [56,57] | 0.09 (0.03–0.15) | <0.001 | 0.00 * | 2 | 115 | N.a. | / | / | / | / |
Influenza-like illness [22,58] | 0.10 (0.02–0.18) | 0.01 | 89.67 * | 2 | 640 | N.a. | / | / | / | / |
Peripheral edema [22,56,57,58,65] | 0.09 (0.04–0.14) | 0.01 | 88.54 * | 5 | 810 | N.a. | / | / | / | / |
Total | 0.25 (0.14–0.37) | <0.001 | 92.98 * | |||||||
Metabolic disorders | ||||||||||
Increased ALT [22,56,58] | 0.18 (0.12–0.24) | <0.001 | 69.02 * | 3 | 675 | 0.03 (0.02–0.05) | <0.001 | 0.00 | 2 [22,58] | 640 |
Increased ASAT [22,58] | 0.15 (0.12–0.19) | <0.001 | 30.15 | 2 | 640 | 0.02 (0.01–0.04) | 0.01 | 52.06 | 2 [22,58] | 640 |
Increased ALP [22,58,65] | 0.15 (0.06–0.23) | <0.001 | 79.01 * | 3 | 295 | N.a. | / | / | / | / |
Increased lipase [22,56] | 0.09 (0.02–0.15) | 0.01 | 70.62 * | 2 | 240 | 0.03 (0.01–0.06) | <0.001 | 0.00 | 2 [22,56] | 239 |
Increased amylase [22,56] | 0.05 (0.02–0.08) | <0.001 | 0.00 | 2 | 240 | N.a. | / | / | / | / |
Total | 0.12 (0.07–0.17) | <0.001 | 80.88 * | |||||||
Skin tissue and immune-related disorders | ||||||||||
Alopecia [56,60,65] | 0.06 (0.04–0.08) | <0.001 | 0.00 | 3 | 440 | N.a. | / | / | / | / |
Rash [56,57,58,60,65] | 0.23 (0.20–0.26) | <0.001 | 0.00 | 5 | 955 | 0.01 (0.00–0.02) | 0.02 | 0 * | 2 [56,60] | 385 |
Maculopapular rash [22,56] | 0.13 (0.06–0.20) | <0.001 | 68.79 * | 2 | 275 | N.a. | / | / | / | / |
Erythema [56,58] | 0.08 (0.02–0.14) | <0.001 | 70.25 * | 2 | 505 | N.a. | / | / | / | / |
Dry skin [22,56,58] | 0.07 (0.03–0.12) | <0.001 | 73.81 * | 3 | 710 | N.a. | / | / | / | / |
Dermatitis acneiform [56,60,65] | 0.09 (0.04–0.14) | <0.001 | 77.73 * | 3 | 855 | N.a. | / | / | / | / |
Hyperkeratosis [56,60,65] | 0.04 (0.03–0.06) | <0.001 | 0.00 | 3 | 440 | N.a. | / | / | / | / |
Skin papilloma [56,60,65] | 0.02 (0.01–0.03) | <0.001 | 0.00 | 3 | 440 | N.a. | / | / | / | / |
Squamous cell carcinoma [56,57,60,65] | 0.04 (0.00–0.07) | 0.03 | 45.53 | 4 | 485 | N.a. | / | / | / | / |
Total | 0.08 (0.04–0.13) | <0.001 | 96.34 * | |||||||
Ocular toxicity | ||||||||||
Photosensitivity reaction [56,60] | 0.09 (0.00–0.18) | 0.05 | 77.43 * | 2 | 420 | N.a. | / | / | / | / |
Musculoskeletal and connective-tissue disorders | ||||||||||
Back pain [22,57] | 0.05 (0.02–0.09) | <0.001 | 0.00 * | 2 | 149 | N.a. | / | / | / | / |
Arthralgia [22,56,58,60,65] | 0.20 (0.15–0.26) | <0.001 | 76.06 * | 5 | 1115 | 0.01 (0.00–0.02) | <0.001 | 0.00 | 4 [22,56,58,60] | 1025 |
Myalgia [22,56,58,65] | 0.12 (0.08–0.17) | <0.001 | 63.02 * | 4 | 730 | N.a. | / | / | / | / |
Muscle weakness [22,56] | 0.05 (0.02–0.07) | <0.001 | 0.00 | 2 | 240 | 0.02 (0.00–0.04) | 0.03 | 0.00 | 2 [22,56] | 240 |
Total | 0.10 (0.03–0.17) | <0.001 | 92.36 * | |||||||
Cardiac disorders | ||||||||||
Hypertension [22,56,57,58,65] | 0.11 (0.09–0.13) | <0.001 | 5.57 | 5 | 810 | 0.04 (0.02–0.06) | <0.001 | 10.72 | 4 [56,57,58,65] | 605 |
QT prolongation [22,56] | 0.03 (0.01–0.05) | 0.01 | 0.00 | 2 | 240 | N.a. | / | / | / | / |
Decreased LVEF [22,57,60,65] | 0.09 (0.07–0.11) | <0.001 | 0.00 | 4 | 655 | 0.04 (0.02–0.05) | <0.001 | 0.00 | 3 [22,57,60] | 600 |
Total | 0.08 (0.03–0.12) | <0.001 | 93.99 * | |||||||
Blood and lymphatic system disorders | ||||||||||
Anaemia [22,56,57] | 0.22 (0.15–0.29) | <0.001 | 51.40 | 3 | 285 | 0.02 (0.00–0.04) | 0.01 | 0.00 | 2 [22,57] | 250 |
Neutropenia [22,54] | N.a. | / | / | / | / | 0.02 (0.00–0.04) | 0.03 | 22.74 | 2 | 283 |
Lymphopenia [22,56] | 0.10 (0.02–0.17) | 0.01 | 75.44 * | 2 | 240 | N.a. | / | / | / | / |
Total | 0.16 (0.04–0.28) | 0.01 | 80.97 * | |||||||
Infections | ||||||||||
Sepsis [22,54] | N.a. | / | / | / | / | 0.02 (0.00–0.04) | 0.05 | 0.00 | 2 | 182 |
TOTAL | 0.14 (0.11–0.17) | <0.001 | 96.99 * |
First Author, Year | Disease | Melanoma Stage | Metastatic | Treatment | Patient Age | Patient Sex | AEs |
---|---|---|---|---|---|---|---|
Zimmer, 2012 [75] | BRAF mutant melanoma | IV | Yes | Vemurafenib (960 mg, orally twice daily) Dabrafenib (150 mg, orally twice daily) | 44 59 | Female Female | Panniculitis with arthralgia Panniculitis with arthralgia |
Chen, 2014 [76] | n.i. | n.i. | Yes | Vemurafenib + cobimetinib | 20 | Female | Involution of eruptive melanocytic nevi |
Orouji, 2014 [77] | BRAF mutant melanoma | n.i. | Yes | Vemurafenib (960 mg, orally twice daily) | 64 | Female | Leukopenia and neutropenia |
Park, 2014 [78] | BRAF mutant melanoma | IV | Yes | Dabrafenib (75 mg, orally twice daily) Vemurafenib (960 mg, orally twice daily) | 80 70 | Female Male | Perifollicular granulomatous inflammation Erythematous and violaceous papules |
Jansen, 2015 [79] | BRAF mutant melanoma | IIIa | Yes | Dabrafenib (150 mg, orally twice daily) + trametinib (2 mg once daily) | 61 | Male | Granulomatous nephritis and dermatitis |
Carrera, 2015 [80] | BRAF mutant melanoma | IIIc | n.i. | Dabrafenib | 30 | Female | Multiple BRAF Wild-Type melanomas |
Keating, 2016 [81] | BRAF mutant melanoma | n.i. | Yes | Dabrafenib (150 mg, orally twice daily) + trametinib (2 mg once daily) | 64 | Male | Robust and curly hair growth |
Loyson, 2018 [82] | BRAF mutant melanoma | IIIc | Yes | Dabrafenib (150 mg, orally twice daily) + trametinib (2 mg once daily) | 45 | Female | Hemorrhage in the liver and bone metastasis |
Babacan, 2021 [83] | BRAF mutant melanoma | IIIa | Yes | Vemurafenib + trametinib and later encorafenib | 60 | Male | Encephalitis |
De Rick, 2022 [84] | n.i. | n.i. | Yes | Dabrafenib + trametinib | 50 | Male | Interstitial nephritis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belloni, S.; Virgili, R.; Caruso, R.; Arrigoni, C.; Magon, A.; Rocco, G.; De Maria, M. Treatment-Related Adverse Events in Individuals with BRAF-Mutant Cutaneous Melanoma Treated with BRAF and MEK Inhibitors: A Systematic Review and Meta-Analysis. Cancers 2025, 17, 3152. https://doi.org/10.3390/cancers17193152
Belloni S, Virgili R, Caruso R, Arrigoni C, Magon A, Rocco G, De Maria M. Treatment-Related Adverse Events in Individuals with BRAF-Mutant Cutaneous Melanoma Treated with BRAF and MEK Inhibitors: A Systematic Review and Meta-Analysis. Cancers. 2025; 17(19):3152. https://doi.org/10.3390/cancers17193152
Chicago/Turabian StyleBelloni, Silvia, Rosamaria Virgili, Rosario Caruso, Cristina Arrigoni, Arianna Magon, Gennaro Rocco, and Maddalena De Maria. 2025. "Treatment-Related Adverse Events in Individuals with BRAF-Mutant Cutaneous Melanoma Treated with BRAF and MEK Inhibitors: A Systematic Review and Meta-Analysis" Cancers 17, no. 19: 3152. https://doi.org/10.3390/cancers17193152
APA StyleBelloni, S., Virgili, R., Caruso, R., Arrigoni, C., Magon, A., Rocco, G., & De Maria, M. (2025). Treatment-Related Adverse Events in Individuals with BRAF-Mutant Cutaneous Melanoma Treated with BRAF and MEK Inhibitors: A Systematic Review and Meta-Analysis. Cancers, 17(19), 3152. https://doi.org/10.3390/cancers17193152