Factors Associated with the Detection of Actionable Genomic Alterations Using Liquid Biopsy in Biliary Tract Cancer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Database of the Center for Cancer Genomics and Advanced Cancers (C-CAT)
2.2. Genomic and Clinical Information of the Patients
2.3. Statistics
3. Results
3.1. Factors Associated with the Detection of Actionable Genomic Alterations in Liquid Biopsy
3.2. Detection Rate of Actionable Genomic Alterations After Propensity Score Matching
3.3. Detection by Liquid Versus Tissue Across Strata of Enrichment-Factor Count
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valle, J.W.; Kelley, R.K.; Nervi, B.; Oh, D.Y.; Zhu, A.X. Biliary tract cancer. Lancet 2021, 397, 428–444. [Google Scholar] [CrossRef]
- Lei, S.; Huang, G.; Li, X.; Xi, P.; Yao, Z.; Lin, X. Global Burden, Trends, and Inequalities of Gallbladder and Biliary Tract Cancer, 1990–2021: A Decomposition and Age-Period-Cohort Analysis. Liver Int. 2025, 45, e16199. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.Y.; Ruth He, A.; Qin, S.; Chen, L.T.; Okusaka, T.; Vogel, A.; Kim, J.W.; Suksombooncharoen, T.; Ah Lee, M.; Kitano, M.; et al. Durvalumab plus Gemcitabine and Cisplatin in Advanced Biliary Tract Cancer. NEJM Evid. 2022, 1, EVIDoa2200015. [Google Scholar] [CrossRef] [PubMed]
- Kelley, R.K.; Ueno, M.; Yoo, C.; Finn, R.S.; Furuse, J.; Ren, Z.; Yau, T.; Klumpen, H.J.; Chan, S.L.; Ozaka, M.; et al. Pembrolizumab in combination with gemcitabine and cisplatin compared with gemcitabine and cisplatin alone for patients with advanced biliary tract cancer (KEYNOTE-966): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2023, 401, 1853–1865. [Google Scholar] [CrossRef] [PubMed]
- Morizane, C.; Ueno, M.; Ikeda, M.; Okusaka, T.; Ishii, H.; Furuse, J. Update for: New developments in systemic therapy for advanced biliary tract cancer. Jpn. J. Clin. Oncol. 2025, 55, 210–218. [Google Scholar] [CrossRef]
- Benson, A.B.; D’Angelica, M.I.; Abrams, T.; Ahmed, A.; Akce, M. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Biliary Tract Cancers. 2025. Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1517 (accessed on 17 January 2025).
- Goyal, L.; Meric-Bernstam, F.; Hollebecque, A.; Valle, J.W.; Morizane, C.; Karasic, T.B.; Abrams, T.A.; Furuse, J.; Kelley, R.K.; Cassier, P.A.; et al. Futibatinib for FGFR2-Rearranged Intrahepatic Cholangiocarcinoma. N. Engl. J. Med. 2023, 388, 228–239. [Google Scholar] [CrossRef]
- Lowery, M.A.; Burris, H.A., 3rd; Janku, F.; Shroff, R.T.; Cleary, J.M.; Azad, N.S.; Goyal, L.; Maher, E.A.; Gore, L.; Hollebecque, A.; et al. Safety and activity of ivosidenib in patients with IDH1-mutant advanced cholangiocarcinoma: A phase 1 study. Lancet Gastroenterol. Hepatol. 2019, 4, 711–720. [Google Scholar] [CrossRef]
- Javle, M.; Borad, M.J.; Azad, N.S.; Kurzrock, R.; Abou-Alfa, G.K.; George, B.; Hainsworth, J.; Meric-Bernstam, F.; Swanton, C.; Sweeney, C.J.; et al. Pertuzumab and trastuzumab for HER2-positive, metastatic biliary tract cancer (MyPathway): A multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol. 2021, 22, 1290–1300. [Google Scholar] [CrossRef]
- De Scordilli, M.; Bortolot, M.; Torresan, S.; Noto, C.; Rota, S.; Di Nardo, P.; Fumagalli, A.; Guardascione, M.; Ongaro, E.; Foltran, L.; et al. Precision oncology in biliary tract cancer: The emerging role of liquid biopsy. ESMO Open 2025, 10, 105079. [Google Scholar] [CrossRef]
- Liu, R.; Song, Y.; Hua, R.; Ahmed, S.; Xie, Y.; Lai, C.; Xu, J.; Li, F.; Li, Y.; Li, Z.; et al. Cell-Free DNA in Plasma Reveals Genomic Similarity Between Biliary Tract Inflammatory Lesion and Biliary Tract Cancer. Phenomics 2024, 4, 339–351. [Google Scholar] [CrossRef]
- Caro, G.D.; Lam, E.T.; Bourdon, D.; Blankfard, M.; Dharajiya, N.; Slade, M.; Williams, E.; Zhang, D.; Wenstrup, R.; Schwartzberg, L. A novel liquid biopsy assay for detection of ERBB2 (HER2) amplification in circulating tumor cells (CTCs). J. Circ. Biomark. 2024, 13, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Van de Haar, J.; Roepman, P.; Andre, F.; Balmana, J.; Castro, E.; Chakravarty, D.; Curigliano, G.; Czarnecka, A.M.; Dienstmann, R.; Horak, P.; et al. ESMO Recommendations on clinical reporting of genomic test results for solid cancers. Ann. Oncol. 2024, 35, 954–967. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Wang, J.; Xiao, J.; Wang, L.; Hu, X.; Yu, W.; Song, G.; Lou, J.; Chen, J. Heterogeneous mutation pattern in tumor tissue and circulating tumor DNA warrants parallel NGS panel testing. Mol. Cancer 2018, 17, 131. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.; Woo, S.; Kang, B.; Kang, H.; Kim, J.S.; Lee, S.H.; Kwon, C.I.; Kyung, D.S.; Kim, H.P.; Kim, G.; et al. Concordance of ctDNA and tissue genomic profiling in advanced biliary tract cancer. J. Hepatol. 2025, 82, 649–657. [Google Scholar] [CrossRef]
- Mody, K.; Kasi, P.M.; Yang, J.; Surapaneni, P.K.; Bekaii-Saab, T.; Ahn, D.H.; Mahipal, A.; Sonbol, M.B.; Starr, J.S.; Roberts, A.; et al. Circulating Tumor DNA Profiling of Advanced Biliary Tract Cancers. JCO Precis. Oncol. 2019, 3, 1–9. [Google Scholar] [CrossRef]
- Zill, O.A.; Greene, C.; Sebisanovic, D.; Siew, L.M.; Leng, J.; Vu, M.; Hendifar, A.E.; Wang, Z.; Atreya, C.E.; Kelley, R.K.; et al. Cell-Free DNA Next-Generation Sequencing in Pancreatobiliary Carcinomas. Cancer Discov. 2015, 5, 1040–1048. [Google Scholar] [CrossRef]
- Ikushima, H.; Watanabe, K.; Shinozaki-Ushiku, A.; Oda, K.; Kage, H. A machine learning-based analysis of nationwide cancer comprehensive genomic profiling data across cancer types to identify features associated with recommendation of genome-matched therapy. ESMO Open 2024, 9, 103998. [Google Scholar] [CrossRef]
- Kohno, T.; Kato, M.; Kohsaka, S.; Sudo, T.; Tamai, I.; Shiraishi, Y.; Okuma, Y.; Ogasawara, D.; Suzuki, T.; Yoshida, T.; et al. C-CAT: The National Datacenter for Cancer Genomic Medicine in Japan. Cancer Discov. 2022, 12, 2509–2515. [Google Scholar] [CrossRef]
- Mukai, Y.; Ueno, H. Establishment and implementation of Cancer Genomic Medicine in Japan. Cancer Sci. 2021, 112, 970–977. [Google Scholar] [CrossRef]
- Nakamura, Y.; Taniguchi, H.; Ikeda, M.; Bando, H.; Kato, K.; Morizane, C.; Esaki, T.; Komatsu, Y.; Kawamoto, Y.; Takahashi, N.; et al. Clinical utility of circulating tumor DNA sequencing in advanced gastrointestinal cancer: SCRUM-Japan GI-SCREEN and GOZILA studies. Nat. Med. 2020, 26, 1859–1864. [Google Scholar] [CrossRef]
- Zhang, D.; Dorman, K.; Heinrich, K.; Weiss, L.; Boukovala, M.; Haas, M.; Greif, P.A.; Ziemann, F.; Beyer, G.; Roessler, D.; et al. A Retrospective Analysis of Biliary Tract Cancer Patients Presented to the Molecular Tumor Board at the Comprehensive Cancer Center Munich. Target. Oncol. 2023, 18, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Rolfo, C.D.; Madison, R.W.; Pasquina, L.W.; Brown, D.W.; Huang, Y.; Hughes, J.D.; Graf, R.P.; Oxnard, G.R.; Husain, H. Measurement of ctDNA Tumor Fraction Identifies Informative Negative Liquid Biopsy Results and Informs Value of Tissue Confirmation. Clin. Cancer Res. 2024, 30, 2452–2460. [Google Scholar] [CrossRef] [PubMed]
- Husain, H.; Pavlick, D.C.; Fendler, B.J.; Madison, R.W.; Decker, B.; Gjoerup, O.; Parachoniak, C.A.; McLaughlin-Drubin, M.; Erlich, R.L.; Schrock, A.B.; et al. Tumor Fraction Correlates with Detection of Actionable Variants Across > 23,000 Circulating Tumor DNA Samples. JCO Precis. Oncol. 2022, 6, e2200261. [Google Scholar] [CrossRef] [PubMed]
- Abbosh, C.; Birkbak, N.J.; Wilson, G.A.; Jamal-Hanjani, M.; Constantin, T.; Salari, R.; Le Quesne, J.; Moore, D.A.; Veeriah, S.; Rosenthal, R.; et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 2017, 545, 446–451. [Google Scholar] [CrossRef]
- Trujillo, B.; Wu, A.; Wetterskog, D.; Attard, G. Blood-based liquid biopsies for prostate cancer: Clinical opportunities and challenges. Br. J. Cancer 2022, 127, 1394–1402. [Google Scholar] [CrossRef]
- Umemoto, K.; Sunakawa, Y.; Ueno, M.; Furukawa, M.; Mizuno, N.; Sudo, K.; Kawamoto, Y.; Kajiwara, T.; Ohtsubo, K.; Okano, N.; et al. Clinical significance of circulating-tumour DNA analysis by metastatic sites in pancreatic cancer. Br. J. Cancer 2023, 128, 1603–1608. [Google Scholar] [CrossRef]
- Ciardiello, D.; Boscolo Bielo, L.; Napolitano, S.; Martinelli, E.; Troiani, T.; Nicastro, A.; Latiano, T.P.; Parente, P.; Maiello, E.; Avallone, A.; et al. Comprehensive genomic profiling by liquid biopsy captures tumor heterogeneity and identifies cancer vulnerabilities in patients with RAS/BRAF(V600E) wild-type metastatic colorectal cancer in the CAPRI 2-GOIM trial. Ann. Oncol. 2024, 35, 1105–1115. [Google Scholar] [CrossRef]
- Okawa, Y.; Ebata, N.; Kim, N.K.D.; Fujita, M.; Maejima, K.; Sasagawa, S.; Nakamura, T.; Park, W.Y.; Hirano, S.; Nakagawa, H. Actionability evaluation of biliary tract cancer by genome transcriptome analysis and Asian cancer knowledgebase. Oncotarget 2021, 12, 1540–1552. [Google Scholar] [CrossRef]
- Preston, W.A.; Drill, E.; Boerner, T.; Gelfer, R.; Harding, J.J.; O’Reilly, E.M.; Cercek, A.; Abou-Alfa, G.; Park, W.; Balachandran, V.P.; et al. Extrahepatic Cholangiocarcinoma: Genomic Variables Associated with Anatomic Location and Outcome. JCO Precis. Oncol. 2024, 8, e2400206. [Google Scholar] [CrossRef]
| Complete Case (n = 1001) | Imputed Cases (n = 1550) | SMD | |
|---|---|---|---|
| Age > 68 years old, n (%) | 56.9 | 61.6 | −0.09 |
| Gender, male, n (%) | 59.3 | 63.4 | −0.08 |
| Cancer type, Non-pCCA, n (%) | 78.1 | 79.6 | −0.04 |
| ECOG-PS > 2, n (%) | 3.0 | 3.1 | −0.02 |
| Smoking, yes, n (%) | 57.2 | 48.0 | 0.19 |
| Alcohol polydipsia, n (%) | 17.9 | 16.1 | 0.05 |
| Double cancer, n (%) | 11.4 | 10.5 | 0.03 |
| Family history of cancer, n (%) | 71.5 | 66.6 | 0.11 |
| Liver metastasis, n (%) | 36.4 | 37.0 | −0.01 |
| Bone metastasis, n (%) | 7.2 | 6.7 | 0.02 |
| Lymph nodes metastasis, n (%) | 47.2 | 41.8 | 0.11 |
| Lung metastasis, n (%) | 17.1 | 19 | −0.05 |
| Peritoneum dissemination, n (%) | 20 | 19.3 | 0.02 |
| 1st line chemotherapy regimen, combination, n (%) | 79.7 | 78 | 0.04 |
| Treatment line at CGP registration, 2nd or later, n (%) | 45.3 | 38.9 | 0.13 |
| Chemotherapy response at CGP, PD, n (%) | 17.4 | 17.1 | 0.01 |
| F1 (n = 5019) | F1L (n = 1550) | |
|---|---|---|
| Age > 68 years old, n (%) | 0 (0.0) | 0 (0.0) |
| Gender, male, n (%) | 0 (0.0) | 0 (0.0) |
| Cancer type, non-pCCA, n (%) | 0 (0.0) | 0 (0.0) |
| ECOG-PS > 2, n (%) | 147 (2.9) | 50 (3.2) |
| Smoking, yes, n (%) | 282 (5.6) | 97 (6.3) |
| Alcohol polydipsia, n (%) | 530 (10.5) | 184 (11.9) |
| Double cancer, n (%) | 171 (3.4) | 43 (2.8) |
| Family history of cancer, n (%) | 264 (5.3) | 73 (4.7) |
| Liver metastasis, n (%) | 107 (2.1) | 31 (2.0) |
| Bone metastasis, n (%) | 107 (2.1) | 31 (2.0) |
| Lymph nodes metastasis, n (%) | 107 (2.1) | 31 (2.0) |
| Lung metastasis, n (%) | 107 (2.1) | 31 (2.0) |
| Peritoneum dissemination, n (%) | 107 (2.1) | 31 (2.0) |
| 1st line chemotherapy regimen, combination, n (%) | 877 (17.5) | 208 (13.4) |
| Treatment line at CGP registration, 2nd or later, n (%) | 351 (6.9) | 99 (6.3) |
| Chemotherapy response at CGP, PD, n (%) | 365 (7.3) | 105 (6.7) |
| Unmatched | Matched | |||||
|---|---|---|---|---|---|---|
| F1L (n = 1550) | F1 (n = 5019) | SMD | F1L (n = 1549) | F1L (n = 1549) | SMD | |
| Age > 68 years old | 58.6 | 55.4 | 0.06 | 58.6 | 57.5 | 0.02 |
| Gender, male | 60.8 | 61.7 | −0.02 | 60.8 | 60.7 | 0.00 |
| Cancer type, non-pCCA | 78.6 | 88.5 | −0.27 | 78.7 | 78.9 | −0.01 |
| ECOG-PS > 2 | 3.0 | 2.4 | 0.04 | 3.0 | 2.5 | 0.03 |
| Smoking | 54.4 | 53.0 | 0.03 | 54.3 | 54.2 | 0.00 |
| Alcohol polydipsia | 17.3 | 16.6 | 0.02 | 17.3 | 16.6 | 0.02 |
| Double cancer | 11.1 | 12.6 | −0.05 | 11.1 | 9.5 | 0.05 |
| Family history of cancer | 70.0 | 71.2 | −0.03 | 70.0 | 70.0 | 0.00 |
| Liver metastasis | 36.5 | 38.9 | −0.05 | 36.6 | 36.0 | 0.01 |
| Bone metastasis | 7.0 | 8.5 | −0.05 | 7.0 | 6.1 | 0.04 |
| Lymph nodes metastasis | 45.3 | 45.6 | −0.01 | 45.3 | 45.5 | 0.00 |
| Lung metastasis | 17.4 | 19.4 | −0.05 | 17.4 | 16.2 | 0.03 |
| Peritoneum dissemination | 19.8 | 20.3 | −0.01 | 19.7 | 19.1 | 0.02 |
| 1st line chemotherapy regimen, combination | 73.2 | 68.0 | 0.11 | 73.2 | 73.9 | −0.01 |
| Treatment line at CGP registration, 2nd or later | 43.6 | 49.3 | −0.11 | 43.7 | 43.8 | 0.00 |
| Chemotherapy response at CGP, PD | 17.4 | 18.5 | −0.03 | 17.4 | 16.0 | 0.04 |
| Unmatched | Matched | |||||||
|---|---|---|---|---|---|---|---|---|
| Outcome | F1L (%) | F1 (%) | OR (95% CI) | p | F1L (%) | F1 (%) | OR (95% CI) | p |
| Actionable genomic alterations | 16.8 | 24.7 | 0.61 (0.53–0.71) | <0.001 | 16.8 | 24.8 | 0.61 (0.49–0.75) | <0.001 |
| TMB-H | 4.4 | 6.7 | 0.64 (0.49–0.84) | 0.001 | 4.4 | 6.9 | 0.62 (0.43–0.90) | 0.01 |
| MSI-H | 1.5 | 2.2 | 0.69 (0.44–1.09) | 0.11 | 1.5 | 2.4 | 0.66 (0.35–1.21) | 0.17 |
| ERBB amplification | 4.6 | 10.6 | 0.40 (0.31–0.52) | <0.001 | 4.6 | 10.3 | 0.42 (0.31–0.57) | <0.001 |
| BRAF V600E | 0.5 | 0.7 | 0.74 (0.34–1.59) | 0.44 | 0.5 | 0.7 | 0.74 (0.26–2.08) | 0.56 |
| IDH1 | 5.5 | 5.5 | 1.01 (0.78–1.29) | 0.96 | 5.6 | 5.7 | 0.97 (0.69–1.36) | 0.86 |
| KRAS G12C | 1.2 | 1.3 | 0.91 (0.54–1.54) | 0.72 | 1.2 | 1.4 | 0.81 (0.41–1.59) | 0.54 |
| FGFR2 fusion or rearrangement | 1.6 | 2.6 | 0.61 (0.39–0.94) | 0.02 | 1.6 | 2.6 | 0.61 (0.34–1.08) | 0.09 |
| NTRK fusion | 0.2 | 0.1 | 1.95 (0.46–8.15) | 0.36 | 0.2 | 0.1 | 21.1 (95% CI: NE) | 0.99 |
| RET fusion | 0 | 0 | 0 (95% CI: NE) | 0.99 | 0 | 0 | 0 (95% CI: NE) | 1.00 |
| Number of Items | F1L (%) | F1 (%) | OR | p |
|---|---|---|---|---|
| 0 | 5.8 | 24.2 | 0.19 (0.08–0.44) | <0.001 |
| 1 | 10.5 | 25.1 | 0.35 (0.22–0.55) | <0.001 |
| 2 | 18.5 | 24.9 | 0.68 (0.50–0.93) | 0.020 |
| 3 | 25.2 | 24.6 | 1.04 (0.66–1.65) | 0.870 |
| 4 | 32.8 | 23.6 | 1.62 (0.48–5.39) | 0.430 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimizu, H.; Suzuki, R.; Asama, H.; Sato, K.; Osawa, K.; Ohira, R.; Kudo, K.; Sugimoto, M.; Ohira, H. Factors Associated with the Detection of Actionable Genomic Alterations Using Liquid Biopsy in Biliary Tract Cancer. Cancers 2025, 17, 3071. https://doi.org/10.3390/cancers17183071
Shimizu H, Suzuki R, Asama H, Sato K, Osawa K, Ohira R, Kudo K, Sugimoto M, Ohira H. Factors Associated with the Detection of Actionable Genomic Alterations Using Liquid Biopsy in Biliary Tract Cancer. Cancers. 2025; 17(18):3071. https://doi.org/10.3390/cancers17183071
Chicago/Turabian StyleShimizu, Hiroshi, Rei Suzuki, Hiroyuki Asama, Kentaro Sato, Kento Osawa, Rei Ohira, Keisuke Kudo, Mitsuru Sugimoto, and Hiromasa Ohira. 2025. "Factors Associated with the Detection of Actionable Genomic Alterations Using Liquid Biopsy in Biliary Tract Cancer" Cancers 17, no. 18: 3071. https://doi.org/10.3390/cancers17183071
APA StyleShimizu, H., Suzuki, R., Asama, H., Sato, K., Osawa, K., Ohira, R., Kudo, K., Sugimoto, M., & Ohira, H. (2025). Factors Associated with the Detection of Actionable Genomic Alterations Using Liquid Biopsy in Biliary Tract Cancer. Cancers, 17(18), 3071. https://doi.org/10.3390/cancers17183071

