Actinium-225/Bismuth-213 as Potential Leaders for Targeted Alpha Therapy: Current Supply, Application Barriers, and Future Prospects
Simple Summary
Abstract
1. Introduction
2. Chemistry and Radiochemistry of [225Ac]Ac and [213Bi]Bi
3. Production Techniques of [225Ac]Ac
3.1. Current [225Ac]Ac Sources from Thorium Generators
- The US Department of Energy, Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN, USA: 704 mg of [229Th]Th with a radioactivity level of 5.55 GBq (150 mCi) [28].
- Lipinski Institute for Physics and Power Engineering (IPPE) in Obninsk, Russia: this site contains 704 mg of [229Th]Th, which has a radioactivity level of 5.55 GBq (150 mCi).
- At the Belgian Nuclear Research Centre (SCK CEN) in Mol, Belgium, very pure sources of [229Th]Th were identified, processed, and used for pre-clinical studies [30].
3.2. Developed [225Ac]Ac Production Methods
3.2.1. [225Ac]Ac Production from [226Ra]Ra Targets
[225Ac]Ac Production via Electron Accelerators
[225Ac]Ac Production via Proton Accelerators
[225Ac]Ac Production via Nuclear Reactors
Challenges Encountered in the Use of Radium Targets
3.2.2. [225Ac]Ac Production Using High Energy Proton Spallation of Thorium
3.2.3. [225Ac]Ac Production via Special Facilities
3.2.4. Transformation of [226Ra]Ra to [229Th]Th via Thermal Neutron Irradiation
4. [225Ac]Ac/[213Bi]Bi Radionuclide Generator
Quality Control Evaluation of Produced [213Bi]Bi
5. Radiolabeling Strategies for [225Ac]Ac and [213Bi]Bi
5.1. Fast Uptake in Target Tissues
5.2. Encapsulation of the Radionuclide into a Nano-Carrier
5.3. Local Administration of the Alpha-Emitters
6. Chelating Agents for [225Ac]Ac and [213Bi]Bi
7. Biological Studies of [225Ac]Ac/[213Bi]Bi-Radiopharmaceuticals
7.1. Pre-Clinical Studies of [225Ac]Ac/[213Bi]Bi-Radiopharmaceuticals
7.1.1. Traditional Delivery Platforms
Antibodies
Peptides
7.1.2. Advanced Delivery Platforms
Self-Assembled Vesicles
- Liposomes
- Polymersomes
Carbon Nano-Construct
Inorganic Nanoparticles
7.2. Clinical Trials of [225Ac]Ac/[213Bi]Bi-Radiopharmaceuticals
- [213Bi]Bi-anti-CD33-mAb was therapeutically efficient in clinical trials in ~150 leukemia patients. It reached phase I and II stages, and showed a safe dose of up to 3 µCi/kg with no acute toxicity effects [106].
- [213Bi]Bi-DOTATOC was tested in ~50 neuroendocrine tumor patients to evaluate its toxicity. It showed safe usage with radioactivities of 18.5 MBq in two-month dosing intervals. However, hepatotoxicity was a limiting parameter for use [14].
- [225Ac]Ac/[213Bi]Bi-anti-EGFR-mAb was used via the intra-vesical route of administration in ~12 bladder cancer patients. It extensively reduced the toxicity to neighboring tissues with excellent therapeutic activity at the site of application [109].
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Ac | Actinium |
Po | Polonium |
Tl | Thallium |
Rn | Radon |
U | Uranium |
Bq | Becquerel |
keV | Kilo electron volt |
Y | year |
H | hour |
A | alpha |
t1/2 | Half-life |
W | Watt |
N | Neuton |
CK-CEN | Nuclear- Energy Research Centre |
IPF | Isotope production facility |
KIRAMS | Korean Institute for Radiological and Medical Sciences |
CNEA | Argentine National Atomic Energy Commission |
MSIG | multicolumn selective inversion generators |
INR | Institute for Nuclear Research of the Russian Academy of Sciences |
BNL | Brookhaven National Laboratory |
linac | linear electron accelerator |
ITU | Institute for Trans-Uranium Elements |
ISOL | Isotope Separation On-Line |
SRS | sealed radioactive sources |
USA | United States of America |
ITLC | Instant thin-layer chromatography |
SPECT | Single-photon emission computed tomography |
TAT | Targeted alpha-particle therapy |
LET | Linear energy transfer |
DTPA | Diethylenetriaminepenta acetic acid |
DMPS | 2,3-Dimercapto-1-propanesulfonic acid |
PEPA | 1,4,7,10,13-pentaazacyclopentadecane-N,N′,N′′,N′′′,N′′′′-pentaacetic acid |
DOTPA | 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetrapropionic acid |
p-SCN-Bn-DOTA | S-2-(4-Isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid |
DTPA-p-Bn-NCS | S-2-(4-Isothiocyanatobenzyl)-diethylenetriamine pentaacetic acid |
2B-DOTA-NCS | 2-(p-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid |
SCN-CHX-A-DTPA | 2-(4-isothiocyanatobenzyl)diethylenetriamine pentaacetic acid |
CHX-A″-DTPA | A′′ isomer of N-[(R)-2-amino-3-(4-nitrophenyl)propyl]-trans-(S,S-cyclohexane-1,2-diamine-N,N,N′,N′′,N′′-pentaacetic acid |
MeO-DOTA-NCS | α-(5-isothiocyanato-2-methoxyphenyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid |
HEHA-NCS | 2-(4-isothiocyanatobenzyl)-1,4,7,10,13, 16-hexaazacyclohexadecane- 1,4,7,10,13,16-hexaacetic acid |
Bispa2 | (6,6′-((9- hydroxy-1,5-bis(methoxycarbonyl)-2,4-di(pyridin-2-yl)-3,7-diazabicyclo [3.3.1]nonane3,7-diyl)bis(methylene))dipicolinic acid) |
SCN-CHX-A′′-DTPA or CHX-A′′-DTPA-p-Bn-NCS | [(R)-2-Amino-3-(4-isothiocyanatophenyl)propyl]-trans-(S,S)-cyclohexane1,2-diamine-pentaacetic acid |
Bi | Bismuth |
Fr | Francium |
Pb | Lead |
Ra | Radium |
NPI | Nuclear Physics Institute |
Ci | Curie |
MeV | Mega electron volt |
d | Day |
s | Second |
γ | Gamma |
β | Beta |
ppm | Part per million |
p | Proton |
JRC | Joint Research Centre |
PNNL | Pacific Northwest National Laboratory |
ISAC | Isotope Separator and Accelerator Facility |
CERN | European Organization for Nuclear Research |
QST | National Institutes for Quantum and Radiological Sciences and Technology |
IPPE | Lipinski Institute for Physics and Power Engineering |
LANL | Los Alamos National Lab |
ARIEL | Advanced Rare IsotopE Laboratory |
ORNL | Oak Ridge National Laboratory |
IAEA | International Atomic Energy Agency |
HFIR | High-Flux Isotope Reactor |
EOB | end of bombardment |
HPLC | High-pressure liquid chromatography |
PC | Paper chromatography |
RCY | Radiochemical-yield |
EDTA | Ethylenediaminetetra acetic acid |
DMSA | Dimercapto succinic acid |
DOTA | (1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid) |
DO3A | 1,4,7,10-Tetraazacyclododecane-1,4,7-triacetic acid |
cDTPA | Cyclic diethylenetriaminepenta acetic acid |
TETPA | 1,4,8,11-tetraazacyclotetradecan-1,4,8,11-tetrapropionic acid |
DOTATOC | 1,4,7,10-tetra-azacylododecane N,N′,N′′,N′′′-J-tetraacetic acid-Tyr3-octreotide |
DOTMP | (1,4,7,10-tetraazacyclododecan-1,4,7,10-tetramethylene-phosphonic acid) |
DOTAGA | 2,2′,2′′-(10-(2,6-dioxotetrahydro-2H-pyran-3-yl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid |
HEHA | 1,4,7,10,13,16-hexaaazacyclohexadecane-N,N′,N′′,N′′′,N′′′′, N′′′′′-hexaacetic acid |
Lpy | (2R)-2-hydroxy-3-[[(S)-hydroxy[[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxy cyclohexyl]oxy]phosphoryl]oxy]propyl tetradecanoate |
References
- Baidoo, K.E.; Yong, K.; Brechbiel, M.W. Molecular Pathways: Targeted α-Particle Radiation Therapy. Clin. Cancer Res. 2013, 19, 530–537. [Google Scholar] [CrossRef]
- Brechbiel, M.W. Targeted alpha-therapy: Past, present, future? Dalton Trans. 2007, 4918–4928. [Google Scholar] [CrossRef]
- Couturier, O.; Supiot, S.; Degraef-Mougin, M.; Faivre-Chauvet, A.; Carlier, T.; Chatal, J.F.; Davodeau, F.; Cherel, M. Cancer radioimmunotherapy with alpha-emitting nuclides. Eur. J. Nucl. Med. Mol. Imaging 2005, 32, 601–614. [Google Scholar] [CrossRef]
- Elgqvist, J.; Frost, S.; Pouget, J.P.; Albertsson, P. The potential and hurdles of targeted alpha therapy—Clinical trials and beyond. Front. Oncol. 2014, 3, 324. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Brechbiel, M.W. An overview of targeted alpha therapy. Tumour Biol. 2012, 33, 573–590. [Google Scholar] [CrossRef]
- Maucksch, U.; Runge, R.; Oehme, L.; Kotzerke, J.; Freudenberg, R. Radiotoxicity of alpha particles versus high and low energy electrons in hypoxic cancer cells. Nuklearmedizin 2018, 57, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Mulford, D.A.; Scheinberg, D.A.; Jurcic, J.G. The promise of targeted alpha-particle therapy. J. Nucl. Med. 2005, 46 (Suppl. 1), 199S–204S. [Google Scholar] [PubMed]
- Wilbur, D.S. Chemical and radiochemical considerations in radiolabeling with alpha-emitting radionuclides. Curr. Radiopharm. 2011, 4, 214–247. [Google Scholar] [CrossRef]
- McDevitt, M.R.; Sgouros, G.; Finn, R.D.; Humm, J.L.; Jurcic, J.G.; Larson, S.M.; Scheinberg, D.A. Radioimmunotherapy with alpha-emitting nuclides. Eur. J. Nucl. Med. 1998, 25, 1341–1351. [Google Scholar] [CrossRef]
- Sgouros, G.; Roeske, J.C.; McDevitt, M.R.; Palm, S.; Allen, B.J.; Fisher, D.R.; Brill, A.B.; Song, H.; Howell, R.W.; Akabani, G.; et al. MIRD Pamphlet No. 22 (abridged): Radiobiology and dosimetry of alpha-particle emitters for targeted radionuclide therapy. J. Nucl. Med. 2010, 51, 311–328. [Google Scholar] [CrossRef]
- Roncali, L.; Hindre, F.; Samarut, E.; Lacoeuille, F.; Rousseau, A.; Lemee, J.M.; Garcion, E.; Cherel, M. Current landscape and future directions of targeted-alpha-therapy for glioblastoma treatment. Theranostics 2025, 15, 4861–4889. [Google Scholar] [CrossRef]
- Kratochwil, C.; Bruchertseifer, F.; Giesel, F.L.; Weis, M.; Verburg, F.A.; Mottaghy, F.; Kopka, K.; Apostolidis, C.; Haberkorn, U.; Morgenstern, A. 225Ac-PSMA-617 for PSMA-Targeted alpha-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer. J. Nucl. Med. 2016, 57, 1941–1944. [Google Scholar] [CrossRef] [PubMed]
- van der Doelen, M.J.; Mehra, N.; van Oort, I.M.; Looijen-Salamon, M.G.; Janssen, M.J.R.; Custers, J.A.E.; Slootbeek, P.H.J.; Kroeze, L.I.; Bruchertseifer, F.; Morgenstern, A.; et al. Clinical-Prostate cancer Clinical outcomes and molecular profiling of advanced metastatic castration-resistant prostate cancer patients treated with Ac-PSMA-617 targeted alpha-radiation therapy. Urol. Oncol. Semin. Orig. Investig. 2021, 39, 729.e7–729.e16. [Google Scholar] [CrossRef]
- Kratochwil, C.; Giesel, F.L.; Bruchertseifer, F.; Mier, W.; Apostolidis, C.; Boll, R.; Murphy, K.; Haberkorn, U.; Morgenstern, A. (2)(1)(3)Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: A first-in-human experience. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 2106–2119. [Google Scholar] [CrossRef] [PubMed]
- Friesen, C.; Glatting, G.; Koop, B.; Schwarz, K.; Morgenstern, A.; Apostolidis, C.; Debatin, K.M.; Reske, S.N. Breaking chemoresistance and radioresistance with [213Bi]anti-CD45 antibodies in leukemia cells. Cancer Res. 2007, 67, 1950–1958. [Google Scholar] [CrossRef]
- Diamond, W.T.; Ross, C.K. Actinium-225 production with an electron accelerator. J. Appl. Phys. 2021, 129, 104901. [Google Scholar] [CrossRef]
- Rahman, A.K.M.R.; Babu, M.H.; Ovi, M.K.; Zilani, M.M.; Eithu, I.S.; Chakraborty, A. Actinium-225 in Targeted Alpha Therapy. J. Med. Phys. 2024, 49, 137–147. [Google Scholar] [CrossRef]
- Miederer, M.; Benesová-Schäfer, M.; Mamat, C.; Kästner, D.; Pretze, M.; Michler, E.; Brogsitter, C.; Kotzerke, J.; Kopka, K.; Scheinberg, D.A.; et al. Alpha-Emitting Radionuclides: Current Status and Future Perspectives. Pharmaceuticals 2024, 17, 76. [Google Scholar] [CrossRef]
- Mourtada, F.; Tomiyoshi, K.; Sims-Mourtada, J.; Mukai-Sasaki, Y.; Yagihashi, T.; Namiki, Y.; Murai, T.; Yang, D.J.; Inoue, T. Actinium-225 Targeted Agents: Where Are We Now? Brachytherapy 2023, 22, 697–708. [Google Scholar] [CrossRef]
- Miederer, M.; Scheinberg, D.A.; McDevitt, M.R. Realizing the potential of the Actinium-225 radionuclide generator in targeted alpha particle therapy applications. Adv. Drug Deliv. Rev. 2008, 60, 1371–1382. [Google Scholar] [CrossRef]
- Bruchertseifer, F.; Kellerbauer, A.; Malmbeck, R.; Morgenstern, A. Targeted alpha therapy with bismuth-213 and actinium-225: Meeting future demand. J. Label. Compd. Radiopharm. 2019, 62, 794–802. [Google Scholar] [CrossRef]
- Ferrier, M.G.; Batista, E.R.; Berg, J.M.; Birnbaum, E.R.; Cross, J.N.; Engle, J.W.; La Pierre, H.S.; Kozimor, S.A.; Lezama Pacheco, J.S.; Stein, B.W.; et al. Spectroscopic and computational investigation of actinium coordination chemistry. Nat. Commun. 2016, 7, 12312. [Google Scholar] [CrossRef] [PubMed]
- Kulikov, E.V.; Novgorodov, A.F.; Schumann, D. Hydrolysis of Actinium-225 Trace Quantities. J. Radioanal. Nucl. Chem. 1992, 164, 103–108. [Google Scholar] [CrossRef]
- Thiele, N.A.; Wilson, J.J. Actinium-225 for Targeted alpha Therapy: Coordination Chemistry and Current Chelation Approaches. Cancer Biother. Radiopharm. 2018, 33, 336–348. [Google Scholar] [CrossRef] [PubMed]
- Ramogida, C.F.; Orvig, C. Tumour targeting with radiometals for diagnosis and therapy. Chem. Commun. 2013, 49, 4720–4739. [Google Scholar] [CrossRef]
- Pomme, S.; Marouli, M.; Suliman, G.; Dikmen, H.; Van Ammel, R.; Jobbagy, V.; Dirican, A.; Stroh, H.; Paepen, J.; Bruchertseifer, F.; et al. Measurement of the 225Ac half-life. Appl. Radiat. Isot. 2012, 70, 2608–2614. [Google Scholar] [CrossRef]
- Morgenstern, A.; Apostolidis, C.; Kratochwil, C.; Sathekge, M.; Krolicki, L.; Bruchertseifer, F. An Overview of Targeted Alpha Therapy with (225)Actinium and (213)Bismuth. Curr. Radiopharm. 2018, 11, 200–208. [Google Scholar] [CrossRef]
- Boll, R.A.; Malkemus, D.; Mirzadeh, S. Production of actinium-225 for alpha particle mediated radioimmunotherapy. Appl. Radiat. Isot. 2005, 62, 667–679. [Google Scholar] [CrossRef]
- Morgenstern, A.; Apostolidis, C.; Bruchertseifer, F. Supply and Clinical Application of Actinium-225 and Bismuth-213. Semin. Nucl. Med. 2020, 50, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Ahenkorah, S.; Cassells, I.; Deroose, C.M.; Cardinaels, T.; Burgoyne, A.R.; Bormans, G.; Ooms, M.; Cleeren, F. Bismuth-213 for Targeted Radionuclide Therapy: From Atom to Bedside. Pharmaceutics 2021, 13, 599. [Google Scholar] [CrossRef]
- Aliev, R.A.; Ermolaev, S.V.; Vasiliev, A.N.; Ostapenko, V.S.; Lapshina, E.V.; Zhuikov, B.L.; Zakharov, N.V.; Pozdeev, V.V.; Kokhanyuk, V.M.; Myasoedov, B.F.; et al. Isolation of Medicine-Applicable Actinium-225 from Thorium Targets Irradiated by Medium-Energy Protons. Solvent Extr. Ion Exch. 2014, 32, 468–477. [Google Scholar] [CrossRef]
- Radchenko, V.; Engle, J.W.; Wilson, J.J.; Maassen, J.R.; Nortier, F.M.; Taylor, W.A.; Birnbaum, E.R.; Hudston, L.A.; John, K.D.; Fassbender, M.E. Application of ion exchange and extraction chromatography to the separation of actinium from proton-irradiated thorium metal for analytical purposes. J. Chromatogr. A 2015, 1380, 55–63. [Google Scholar] [CrossRef]
- Zhuikov, B.L. Successes and problems in the development of medical radioisotope production in Russia. Phys. Usp. 2016, 59, 481–486. [Google Scholar] [CrossRef]
- Apostolidis, C.; Molinet, R.; Rasmussen, G.; Morgenstern, A. Production of Ac-225 from Th-229 for targeted α therapy. Anal. Chem. 2005, 77, 6288–6291. [Google Scholar] [CrossRef]
- Harvey, J.; Nolen, J.A.; Kroc, T.; Gomes, I.; Horwitz, E.P.; Mcalister, D.R. Production of Actinium-225 Via High Energy Proton Induced Spallation of Thorium-232. In Proceedings of the Workshop on Applications of High Intensity Proton Accelerators, Batavia, IL, USA, 19–21 October 2009; pp. 321–326. [Google Scholar]
- Bidkar, A.P.; Zerefa, L.; Yadav, S.; VanBrocklin, H.F.; Flavell, R.R. Actinium-225 targeted alpha particle therapy for prostate cancer. Theranostics 2024, 14, 2969–2992. [Google Scholar] [CrossRef]
- Radchenko, V.; Engle, J.W.; Thisgaard, H. Status and future perspectives of Meitner-Auger and low energy electron-emitting radionuclides for targeted radionuclide therapy. Nucl. Med. Biol. 2021, 94–95, 106. [Google Scholar] [CrossRef] [PubMed]
- Eychenne, R.; Chérel, M.; Haddad, F.; Guérard, F.; Gestin, J.F. Overview of the Most Promising Radionuclides for Targeted Alpha Therapy: The “Hopeful Eight”. Pharmaceutics 2021, 13, 906. [Google Scholar] [CrossRef] [PubMed]
- Melville, G.; Allen, B.J. Cyclotron and linac production of Ac-225. Appl. Radiat. Isot. 2009, 67, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Koch, L.; Apostolidis, C.; Janssens, W.; Molinet, R.; Van Geel, J. Production of Ac-225 and application of the Bi-213 daughter in cancer therapy. Czechoslov. J. Phys. 1999, 49, 817–822. [Google Scholar] [CrossRef]
- Engle, J.W.; Mashnik, S.G.; Weidner, J.W.; Wolfsberg, L.E.; Fassbender, M.E.; Jackman, K.; Couture, A.; Bitteker, L.J.; Ullmann, J.L.; Gulley, M.S.; et al. Cross sections from proton irradiation of thorium at 800 MeV. Phys. Rev. C 2013, 88, 014604. [Google Scholar] [CrossRef]
- Weidner, J.W.; Mashnik, S.G.; John, K.D.; Ballard, B.; Birnbaum, E.R.; Bitteker, L.J.; Couture, A.; Fassbender, M.E.; Goff, G.S.; Gritzo, R.; et al. 225Ac and 223Ra production via 800 MeV proton irradiation of natural thorium targets. Appl. Radiat. Isot. 2012, 70, 2590–2595. [Google Scholar] [CrossRef]
- Melville, G.; Meriarty, H.; Metcalfe, P.; Knittel, T.; Allen, B.J. Production of Ac-225 for cancer therapy by photon-induced transmutation of Ra-226. Appl. Radiat. Isot. 2007, 65, 1014–1022. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; McDevitt, M.R.; Finn, R.D.; Scheinberg, D.A. Breakthrough of 225Ac and its radionuclide daughters from an 225Ac/213Bi generator: Development of new methods, quantitative characterization, and implications for clinical use. Appl. Radiat. Isot. 2001, 55, 667–678. [Google Scholar] [CrossRef]
- Robertson AK, R.C.; Schaffer, P.; Radchenko, V. Development of 225Ac radiopharmaceuticals: TRIUMF perspectives and experiences. Curr. Radiopharm. 2018, 11, 156–172. [Google Scholar] [CrossRef]
- Apostolidis, C.; Molinet, R.; McGinley, J.; Abbas, K.; Möllenbeck, J.; Morgenstern, A. Cyclotron production of Ac-225 for targeted alpha therapy. Appl. Radiat. Isot. 2005, 62, 383–387. [Google Scholar] [CrossRef]
- Schaffer, P.; Bénard, F.; Bernstein, A.; Buckley, K.; Celler, A.; Cockburn, N.; Corsaut, J.; Dodd, M.; Economou, C.; Eriksson, T.; et al. Direct Production Of 99mTc via 100Mo(p,2n) on Small Medical Cyclotrons. Phys. Procedia 2015, 66, 383–395. [Google Scholar] [CrossRef]
- Böhlen, T.T.; Cerutti, F.; Chin, M.P.W.; Fossò, A.; Ferrari, A.; Ortega, P.G.; Mairani, A.; Sala, P.R.; Smirnov, G.; Vlachoudisl, V. The FLUKA Code: Developments and Challenges for High Energy and Medical Applications. Nucl. Data Sheets 2014, 120, 211–214. [Google Scholar] [CrossRef]
- Jalilian, A.R.; Kleynhans, J.; Bouziotis, P.; Bruchertseifer, F.; Chakraborty, S.; De Blois, E.; Denecke, M.; Elboga, U.; Gizawyi, M.; Horak, C.; et al. IAEA activities to support the member states in the production of targeted alpha therapy radiopharmaceuticals. Nucl. Med. Biol. 2025, 144, 109008. [Google Scholar] [CrossRef] [PubMed]
- Chadwick, M.B.; Herman, M.; Oblozinsky, P.; Dunn, M.E.; Danon, Y.; Kahler, A.C.; Smith, D.L.; Pritychenko, B.; Arbanas, G.; Arcilla, R.; et al. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data. Nucl. Data Sheets 2011, 112, 2887–2996. [Google Scholar] [CrossRef]
- IAEA. IAEA-TECDOC-886; IAEA: Vienna, Austria, 1996. [Google Scholar]
- Tosato, M.; Favaretto, C.; Kleynhans, J.; Burgoyne, A.R.; Gestin, J.F.; van der Meulen, N.P.; Jalilian, A.; Koster, U.; Asti, M.; Radchenko, V. Alpha Atlas: Mapping global production of alpha-emitting radionuclides for targeted alpha therapy. Nucl. Med. Biol. 2025, 142–143, 108990. [Google Scholar] [CrossRef]
- Ermolaev, S.V.; Zhuikov, B.L.; Kokhanyuk, V.M.; Matushko, V.L.; Kalmykov, S.N.; Aliev, R.A.; Tananaev, I.G.; Myasoedov, B.F. Production of actinium, thorium and radium isotopes from natural thorium irradiated with protons up to 141 MeV. Radiochim. Acta 2012, 100, 223–229. [Google Scholar] [CrossRef]
- Griswold, J.R.; Medvedev, D.G.; Engle, J.W.; Copping, R.; Fitzsimmons, J.M.; Radchenko, V.; Cooley, J.C.; Fassbender, M.E.; Denton, D.L.; Murphy, K.E.; et al. Large scale accelerator production of 225AC: Effective cross sections for 78-192 MeV protons incident on 232Th targets. Appl. Radiat. Isot. 2016, 118, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Weidner, J.W.; Mashnik, S.G.; John, K.D.; Hemez, F.; Ballard, B.; Bach, H.; Birnbaum, E.R.; Bitteker, L.J.; Couture, A.; Dry, D.; et al. Proton-induced cross sections relevant to production of Ac and Ra in natural thorium targets below 200 MeV. Appl. Radiat. Isot. 2012, 70, 2602–2607. [Google Scholar] [CrossRef] [PubMed]
- Englert, M.; Krall, L.; Ewing, R.C. Is nuclear fission a sustainable source of energy? MRS Bull. 2012, 37, 417–424. [Google Scholar] [CrossRef]
- Robertson, A.K.H.; Ladouceur, K.; Nozar, M.; Moskven, L.; Ramogida, C.F.; D’Auria, J.; Sossi, V.; Schaffer, P. Design and Simulation of a Thorium Target for 225AC Production. AIP Conf. Proc. 2017, 1845, 020019. [Google Scholar] [CrossRef]
- Laxdal, R.E.; Morton, A.C.; Schaffer, P. Radioactive Ion Beams and Radiopharmaceuticals. Rev. Accel. Sci. Technol. 2013, 6, 37–57. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The stopping and range of ions in matter. Nucl. Instrum. Meth B 2010, 268, 1818–1823. [Google Scholar] [CrossRef]
- Copping, R.; Denton, D.; Murphy, K.; Hickman, E.; Marcus, C.; Stracener, D.; Mirzadeh, S. Radium targets for the reactor production of alpha-emitting medical radioisotopes. Abstr. Pap. Am. Chem. S 2018, 256, S1–S42. [Google Scholar]
- Boll, R.A.; Garland, M.; Mirzadeh, S. Reactor production of thorium-229. AIP Conf. Proc. 2005, 769, 1674–1675. [Google Scholar] [CrossRef]
- Baimukhanova, A.; Engudar, G.; Marinov, G.; Kurakina, E.; Dadakhanov, J.; Karaivanov, D.; Yang, H.; Ramogida, C.F.; Schaffer, P.; Magomedbekov, E.P.; et al. An alternative radiochemical separation strategy for isolation of Ac and Ra isotopes from high energy proton irradiated thorium targets for further application in Targeted Alpha Therapy (TAT). Nucl. Med. Biol. 2022, 112-113, 35–43. [Google Scholar] [CrossRef]
- Franchi, S.; Di Marco, V.; Tosato, M. Bismuth chelation for targeted alpha therapy: Current state of the art. Nucl. Med. Biol. 2022, 114, 168–188. [Google Scholar] [CrossRef]
- Forrester, R.; Dutech, G.; Akin, A.; Fassbender, M.E.; Mastren, T. An electrochemical generator for the continual supply of Bi from Ac for use in targeted alpha therapy applications. Nucl. Med. Biol. 2024, 136, 108941. [Google Scholar] [CrossRef]
- McAlister, D.R.; Horwitz, E.P. Automated two column generator systems for medical radionuclides. Appl. Radiat. Isot. 2009, 67, 1985–1991. [Google Scholar] [CrossRef] [PubMed]
- Bray, L.A.; Tingey, J.M.; DesChane, J.R.; Egorov, O.B.; Tenforde, T.S.; Wilbur, D.S.; Hamlin, D.K.; Pathare, P.M. Development of a unique bismuth (Bi-213) automated generator for use in cancer therapy. Ind. Eng. Chem. Res. 2000, 39, 3189–3194. [Google Scholar] [CrossRef]
- Wu, C.; Brechbiel, M.W.; Gansow, O.A. An improved generator for the production of Bi-213 from Ac-225. Abstr. Pap. Am. Chem. S 1996, 212, 61. [Google Scholar]
- McDevitt, M.R.; Finn, R.D.; Sgouros, G.; Ma, D.S.; Scheinberg, D.A. An Ac/Bi generator system for therapeutic clinical applications:: Construction and operation. Appl. Radiat. Isot. 1999, 50, 895–904. [Google Scholar] [CrossRef]
- Mirzadeh, S. Generator-produced alpha-emitters. Appl. Radiat. Isot. 1998, 49, 345–349. [Google Scholar] [CrossRef]
- Vasiliev, A.N.; Ermolaev, S.V.; Lapshina, E.V.; Zhuikov, B.L.; Betenekov, N.D. Ac/Bi generator based on inorganic sorbents. Radiochim. Acta 2019, 107, 1203–1211. [Google Scholar] [CrossRef]
- Zielinska, B.; Apostolidis, C.; Bruchertseifer, F.; Morgenstern, A. An improved method for the production of Ac-225/Bi-213 from Th-229 for targeted alpha therapy. Solvent Extr. Ion Exch. 2007, 25, 339–349. [Google Scholar] [CrossRef]
- Betenekov, N.D.; Denisov, E.I.; Vasiliev, A.N.; Ermolaev, S.V.; Zhuikov, B.L. Prospects for the Development of an 225Ac/213Bi Generator Using Inorganic Hydroxide Sorbents. Radiochemistry 2019, 61, 211–219. [Google Scholar] [CrossRef]
- Bruchertseifer, F.; Comba, P.; Martin, B.; Morgenstern, A.; Notni, J.; Starke, M.; Wadepohl, H. First-Generation Bispidine Chelators for Bi Radiopharmaceutical Applications. ChemMedChem 2020, 15, 1591–1600. [Google Scholar] [CrossRef]
- Hassan, M.; Bokhari, T.H.; Lodhi, N.A.; Khosa, M.K.; Usman, M. A review of recent advancements in Actinium-225 labeled compounds and biomolecules for therapeutic purposes. Chem. Biol. Drug Des. 2023, 102, 1276–1292. [Google Scholar] [CrossRef] [PubMed]
- Mdanda, S.; Ngema, L.M.; Mdlophane, A.; Sathekge, M.M.; Zeevaart, J.R. Recent Innovations and Nano-Delivery of Actinium-225: A Narrative Review. Pharmaceutics 2023, 15, 1719. [Google Scholar] [CrossRef]
- Jaggi, J.S.; Kappel, B.J.; McDevitt, M.R.; Sgouros, G.; Flombaum, C.D.; Cabassa, C.; Scheinberg, D.A. Efforts to control the errant products of a targeted in vivo generator. Cancer Res. 2005, 65, 4888–4895. [Google Scholar] [CrossRef]
- de Kruijff, R.M.; Wolterbeek, H.T.; Denkova, A.G. A Critical Review of Alpha Radionuclide Therapy-How to Deal with Recoiling Daughters? Pharmaceuticals 2015, 8, 321–336. [Google Scholar] [CrossRef]
- Miederer, M.; Henriksen, G.; Alke, A.; Mossbrugger, I.; Quintanilla-Martinez, L.; Senekowitsch-Schmidtke, R.; Essler, M. Preclinical evaluation of the α-particle generator nuclide Ac for somatostatin receptor radiotherapy of neuroendocrine tumors. Clin. Cancer Res. 2008, 14, 3555–3561. [Google Scholar] [CrossRef]
- Essler, M.; Gartner, F.C.; Neff, F.; Blechert, B.; Senekowitsch-Schmidtke, R.; Bruchertseifer, F.; Morgenstern, A.; Seidl, C. Therapeutic efficacy and toxicity of 225Ac-labelled vs. 213Bi-labelled tumour-homing peptides in a preclinical mouse model of peritoneal carcinomatosis. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 602–612. [Google Scholar] [CrossRef]
- McDevitt, M.R.; Ma, D.; Lai, L.T.; Simon, J.; Borchardt, P.; Frank, R.K.; Wu, K.; Pellegrini, V.; Curcio, M.J.; Miederer, M.; et al. Tumor therapy with targeted atomic nanogenerators. Science 2001, 294, 1537–1540. [Google Scholar] [CrossRef] [PubMed]
- Sofou, S.; Kappel, B.J.; Jaggi, J.S.; McDevitt, M.R.; Scheinberg, D.A.; Sgouros, G. Enhanced retention of the α-particle-emitting daughters of actinium-225 by liposome carriers. Bioconjugate Chem. 2007, 18, 2061–2067. [Google Scholar] [CrossRef] [PubMed]
- Bandekar, A.; Zhu, C.; Jindal, R.; Bruchertseifer, F.; Morgenstern, A.; Sofou, S. Anti-prostate-specific membrane antigen liposomes loaded with 225Ac for potential targeted antivascular alpha-particle therapy of cancer. J. Nucl. Med. 2014, 55, 107–114. [Google Scholar] [CrossRef]
- Fitzsimmons, J.; Atcher, R.; Cutler, C. Development of a prelabeling approach for a targeted nanochelator. J. Radioanal. Nucl. Chem. 2015, 305, 161–167. [Google Scholar] [CrossRef]
- Matson, M.L.; Villa, C.H.; Ananta, J.S.; Law, J.J.; Scheinberg, D.A.; Wilson, L.J. Encapsulation of α-Particle-Emitting 225Ac3+ Ions Within Carbon Nanotubes. J. Nucl. Med. 2015, 56, 897–900. [Google Scholar] [CrossRef]
- McLaughlin, M.F.; Woodward, J.; Boll, R.A.; Wall, J.S.; Rondinone, A.J.; Kennel, S.J.; Mirzadeh, S.; Robertson, J.D. Gold coated lanthanide phosphate nanoparticles for targeted alpha generator radiotherapy. PLoS ONE 2013, 8, e54531. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; de Kruijff, R.M.; Rol, A.; Thijssen, L.; Mendes, E.; Morgenstern, A.; Bruchertseifer, F.; Stuart, M.C.; Wolterbeek, H.T.; Denkova, A.G. Retention studies of recoiling daughter nuclides of 225Ac in polymer vesicles. Appl. Radiat. Isot. 2014, 85, 45–53. [Google Scholar] [CrossRef]
- Zhu, C.; Bandekar, A.; Sempkowski, M.; Banerjee, S.R.; Pomper, M.G.; Bruchertseifer, F.; Morgenstern, A.; Sofou, S. Nanoconjugation of PSMA-Targeting Ligands Enhances Perinuclear Localization and Improves Efficacy of Delivered Alpha-Particle Emitters against Tumor Endothelial Analogues. Mol. Cancer Ther. 2016, 15, 106–113. [Google Scholar] [CrossRef]
- Sofou, S.; Thomas, J.L.; Lin, H.Y.; McDevitt, M.R.; Scheinberg, D.A.; Sgouros, G. Engineered liposomes for potential alpha-particle therapy of metastatic cancer. J. Nucl. Med. 2004, 45, 253–260. [Google Scholar]
- Arazi, L.; Cooks, T.; Schmidt, M.; Keisari, Y.; Kelson, I. Treatment of solid tumors by interstitial release of recoiling short-lived alpha emitters. Phys. Med. Biol. 2007, 52, 5025–5042. [Google Scholar] [CrossRef] [PubMed]
- Confino, H.; Hochman, I.; Efrati, M.; Schmidt, M.; Umansky, V.; Kelson, I.; Keisari, Y. Tumor ablation by intratumoral Ra-224-loaded wires induces anti-tumor immunity against experimental metastatic tumors. Cancer Immunol. Immunother. 2015, 64, 191–199. [Google Scholar] [CrossRef]
- Cooks, T.; Schmidt, M.; Bittan, H.; Lazarov, E.; Arazi, L.; Kelson, I.; Keisari, Y. Local control of lung derived tumors by diffusing alpha-emitting atoms released from intratumoral wires loaded with radium-224. Int. J. Radiat. Oncol. Biol. Phys. 2009, 74, 966–973. [Google Scholar] [CrossRef] [PubMed]
- Cooks, T.; Tal, M.; Raab, S.; Efrati, M.; Reitkopf, S.; Lazarov, E.; Etzyoni, R.; Schmidt, M.; Arazi, L.; Kelson, I.; et al. Intratumoral 224Ra-loaded wires spread alpha-emitters inside solid human tumors in athymic mice achieving tumor control. Anticancer Res. 2012, 32, 5315–5321. [Google Scholar]
- Cordier, D.; Forrer, F.; Bruchertseifer, F.; Morgenstern, A.; Apostolidis, C.; Good, S.; Muller-Brand, J.; Macke, H.; Reubi, J.C.; Merlo, A. Targeted alpha-radionuclide therapy of functionally critically located gliomas with 213Bi-DOTA-[Thi8,Met(O2)11]-substance P: A pilot trial. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 1335–1344. [Google Scholar] [CrossRef] [PubMed]
- Horev-Drori, G.; Cooks, T.; Bittan, H.; Lazarov, E.; Schmidt, M.; Arazi, L.; Efrati, M.; Kelson, I.; Keisari, Y. Local control of experimental malignant pancreatic tumors by treatment with a combination of chemotherapy and intratumoral 224radium-loaded wires releasing alpha-emitting atoms. Transl. Res. 2012, 159, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, D.; Vatsa, R.; Sood, A. Challenges and opportunities in developing Actinium-225 radiopharmaceuticals. Nucl. Med. Commun. 2022, 43, 970–977. [Google Scholar] [CrossRef]
- Escorcia, F.E.; Henke, E.; McDevitt, M.R.; Villa, C.H.; Smith-Jones, P.; Blasberg, R.G.; Benezra, R.; Scheinberg, D.A. Selective Killing of Tumor Neovasculature Paradoxically Improves Chemotherapy Delivery to Tumors. Cancer Res. 2010, 70, 9277–9286. [Google Scholar] [CrossRef]
- Singh Jaggi, J.; Henke, E.; Seshan, S.V.; Kappel, B.J.; Chattopadhyay, D.; May, C.; McDevitt, M.R.; Nolan, D.; Mittal, V.; Benezra, R.; et al. Selective alpha-particle mediated depletion of tumor vasculature with vascular normalization. PLoS ONE 2007, 2, e267. [Google Scholar] [CrossRef]
- Maguire, W.F.; McDevitt, M.R.; Smith-Jones, P.M.; Scheinberg, D.A. Efficient 1-step radiolabeling of monoclonal antibodies to high specific activity with 225Ac for alpha-particle radioimmunotherapy of cancer. J. Nucl. Med. 2014, 55, 1492–1498. [Google Scholar] [CrossRef]
- Majkowska-Pilip, A.; Rius, M.; Bruchertseifer, F.; Apostolidis, C.; Weis, M.; Bonelli, M.; Laurenza, M.; Krolicki, L.; Morgenstern, A. In vitro evaluation of (225) Ac-DOTA-substance P for targeted alpha therapy of glioblastoma multiforme. Chem. Biol. Drug Des. 2018, 92, 1344–1356. [Google Scholar] [CrossRef]
- Miederer, M.; McDevitt, M.R.; Sgouros, G.; Kramer, K.; Cheung, N.K.V.; Scheinberg, D.A. Pharmacokinetics, dosimetry, and toxicity of the targetable atomic generator, Ac-HuM195, in nonhuman primates. J. Nucl. Med. 2004, 45, 129–137. [Google Scholar]
- Pruszynski, M.; D’Huyvetter, M.; Bruchertseifer, F.; Morgenstern, A.; Lahoutte, T. Evaluation of an Anti-HER2 Nanobody Labeled with (225)Ac for Targeted alpha-Particle Therapy of Cancer. Mol. Pharm. 2018, 15, 1457–1466. [Google Scholar] [CrossRef]
- Borchardt, P.E.; Yuan, R.R.; Miederer, M.; McDevitt, M.R.; Scheinberg, D.A. Targeted actinium-225 generators for therapy of ovarian cancer. Cancer Res. 2003, 63, 5084–5090. [Google Scholar]
- Deal, K.A.; Davis, I.A.; Mirzadeh, S.; Kennel, S.J.; Brechbiel, M.W. Improved in vivo stability of actinium-225 macrocyclic complexes. J. Med. Chem. 1999, 42, 2988–2992. [Google Scholar] [CrossRef]
- Chappell, L.L.; Deal, K.A.; Dadachova, E.; Brechbiel, M.W. Synthesis, conjugation, and radiolabeling of a novel bifunctional chelating agent for (225)Ac radioimmunotherapy applications. Bioconjug Chem. 2000, 11, 510–519. [Google Scholar] [CrossRef]
- Davis, I.A.; Glowienka, K.A.; Boll, R.A.; Deal, K.A.; Brechbiel, M.W.; Stabin, M.; Bochsler, P.N.; Mirzadeh, S.; Kennel, S.J. Comparison of 225actinium chelates: Tissue distribution and radiotoxicity. Nucl. Med. Biol. 1999, 26, 581–589. [Google Scholar] [CrossRef]
- Rosenblat, T.L.; McDevitt, M.R.; Mulford, D.A.; Pandit-Taskar, N.; Divgi, C.R.; Panageas, K.S.; Heaney, M.L.; Chanel, S.; Morgenstern, A.; Sgouros, G.; et al. Sequential cytarabine and alpha-particle immunotherapy with bismuth-213-lintuzumab (HuM195) for acute myeloid leukemia. Clin. Cancer Res. 2010, 16, 5303–5311. [Google Scholar] [CrossRef]
- Cao, X.; Li, Q.; Moritz, A.; Xie, Z.; Dolg, M.; Chen, X.; Fang, W. Density functional theory studies of actinide(III) motexafins (An-Motex2+, An = Ac, Cm, Lr). Structure, stability, and comparison with lanthanide(III) motexafins. Inorg. Chem. 2006, 45, 3444–3451. [Google Scholar] [CrossRef]
- Comba, P.; Jermilova, U.; Orvig, C.; Patrick, B.O.; Ramogida, C.F.; Ruck, K.; Schneider, C.; Starke, M. Octadentate Picolinic Acid-Based Bispidine Ligand for Radiometal Ions. Chemistry 2017, 23, 15945–15956. [Google Scholar] [CrossRef]
- Autenrieth, M.E.; Seidl, C.; Bruchertseifer, F.; Horn, T.; Kurtz, F.; Feuerecker, B.; D’Alessandria, C.; Pfob, C.; Nekolla, S.; Apostolidis, C.; et al. Treatment of carcinoma in situ of the urinary bladder with an alpha-emitter immunoconjugate targeting the epidermal growth factor receptor: A pilot study. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1364–1371. [Google Scholar] [CrossRef]
- Wu, C.; Gansow, O.A.; Brechbiel, M.W. Evaluation of methods for large scale preparation of antibody ligand conjugates. Nucl. Med. Biol. 1999, 26, 339–342. [Google Scholar] [CrossRef]
- Xu, H.; Baidoo, K.E.; Wong, K.J.; Brechbiel, M.W. A novel bifunctional maleimido CHX-A” chelator for conjugation to thiol-containing biomolecules. Bioorganic Med. Chem. Lett. 2008, 18, 2679–2683. [Google Scholar] [CrossRef][Green Version]
- Schwartz, J.; Jaggi, J.S.; O’Donoghue, J.A.; Ruan, S.; McDevitt, M.; Larson, S.M.; Scheinberg, D.A.; Humm, J.L. Renal uptake of bismuth-213 and its contribution to kidney radiation dose following administration of actinium-225-labeled antibody. Phys. Med. Biol. 2011, 56, 721–733. [Google Scholar] [CrossRef]
- Jurcic, J.G.; Larson, S.M.; Sgouros, G.; McDevitt, M.R.; Finn, R.D.; Divgi, C.R.; Ballangrud, A.M.; Hamacher, K.A.; Ma, D.; Humm, J.L.; et al. Targeted alpha particle immunotherapy for myeloid leukemia. Blood 2002, 100, 1233–1239. [Google Scholar] [CrossRef]
- Park, S.I.; Shenoi, J.; Pagel, J.M.; Hamlin, D.K.; Wilbur, D.S.; Orgun, N.; Kenoyer, A.L.; Frayo, S.; Axtman, A.; Back, T.; et al. Conventional and pretargeted radioimmunotherapy using bismuth-213 to target and treat non-Hodgkin lymphomas expressing CD20: A preclinical model toward optimal consolidation therapy to eradicate minimal residual disease. Blood 2010, 116, 4231–4239. [Google Scholar] [CrossRef] [PubMed]
- Roscher, M.; Hormann, I.; Leib, O.; Marx, S.; Moreno, J.; Miltner, E.; Friesen, C. Targeted alpha-therapy using [Bi-213]anti-CD20 as novel treatment option for radio- and chemoresistant non-Hodgkin lymphoma cells. Oncotarget 2013, 4, 218–230. [Google Scholar] [CrossRef]
- Song, E.Y.; Rizvi, S.M.A.; Qu, C.F.; Raja, C.; Brechbiel, M.W.; Morgenstern, A.; Apostolidis, C.; Allen, B.J. Pharmacokinetics and toxicity ofBi-labeled PAI2 in preclinical targeted alpha therapy for cancer. Cancer Biol. Ther. 2007, 6, 898–904. [Google Scholar] [CrossRef] [PubMed]
- Qu, C.F.; Song, Y.J.; Rizvi, S.M.A.; Li, Y.; Smith, R.; Perkins, A.C.; Morgenstern, A.; Brechbiel, M.; Allen, B.J. In vivo and in vitro inhibition of pancreatic cancer growth by targeted alpha therapy using Bi-CHX. A”-C595. Cancer Biol. Ther. 2005, 4, 848–853. [Google Scholar] [CrossRef]
- Allen, B.J.; Tian, Z.; Rizvi, S.M.; Li, Y.; Ranson, M. Preclinical studies of targeted alpha therapy for breast cancer using 213Bi-labelled-plasminogen activator inhibitor type 2. Br. J. Cancer 2003, 88, 944–950. [Google Scholar] [CrossRef] [PubMed]
- Song, E.Y.; Qu, C.F.; Rizvi, S.M.A.; Raja, C.; Beretov, J.; Morgenstern, A.; Apostolidis, C.; Bruchertseifer, F.; Perkins, A.; Allen, B.J. Bismuth-213 radioimmunotherapy with C595 anti-MUC1 monoclonal antibody in an ovarian cancer ascites model. Cancer Biol. Ther. 2008, 7, 76–80. [Google Scholar] [CrossRef]
- Morgenstern, A.; Krolicki, L.; Kunikowska, J.; Koziara, H.; Krolicki, B.; Jakucinski, M.; Apostolidis, C.; Bruchertseifer, F. Targeted alpha therapy of glioblastoma multiforme: First clinical experience with 213Bi-substance P. J. Nucl. Med. 2014, 55, 390. [Google Scholar]
- Allen, B.J.; Raja, C.; Rizvi, S.; Li, Y.; Tsui, W.; Graham, P.; Thompson, J.F.; Reisfeld, R.A.; Kearsley, J. Intralesional targeted alpha therapy for metastatic melanoma. Cancer Biol. Ther. 2005, 4, 1318–1324. [Google Scholar] [CrossRef]
- Allen, B.J.; Singla, A.A.; Rizvi, S.M.; Graham, P.; Bruchertseifer, F.; Apostolidis, C.; Morgenstern, A. Analysis of patient survival in a Phase I trial of systemic targeted alpha-therapy for metastatic melanoma. Immunotherapy 2011, 3, 1041–1050. [Google Scholar] [CrossRef]
- Raja, C.; Graham, P.; Abbas Rizvi, S.M.; Song, E.; Goldsmith, H.; Thompson, J.; Bosserhoff, A.; Morgenstern, A.; Apostolidis, C.; Kearsley, J.; et al. Interim analysis of toxicity and response in phase 1 trial of systemic targeted alpha therapy for metastatic melanoma. Cancer Biol. Ther. 2007, 6, 846–852. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Rizvi, S.M.; Jager, M.J.; Conway, R.M.; Billson, F.A.; Allen, B.J.; Madigan, M.C. In vitro targeting of NG2 antigen by 213Bi-9.2.27 alpha-immunoconjugate induces cytotoxicity in human uveal melanoma cells. Investig. Ophthalmol. Vis. Sci. 2005, 46, 4365–4371. [Google Scholar] [CrossRef]
- Rizvi, S.M.; Allen, B.J.; Tian, Z.; Goozee, G.; Sarkar, S. In vitro and preclinical studies of targeted alpha therapy (TAT) for colorectal cancer. Color. Dis. 2001, 3, 345–353. [Google Scholar] [CrossRef]
- Fichou, N.; Gouard, S.; Maurel, C.; Barbet, J.; Ferrer, L.; Morgenstern, A.; Bruchertseifer, F.; Faivre-Chauvet, A.; Bigot-Corbel, E.; Davodeau, F.; et al. Single-Dose Anti-CD138 Radioimmunotherapy: Bismuth-213 is More Efficient than Lutetium-177 for Treatment of Multiple Myeloma in a Preclinical Model. Front. Med. 2015, 2, 76. [Google Scholar] [CrossRef]
- Li, Y.; Tian, Z.; Rizvi, S.M.A.; Bander, N.H.; Allen, B.J. and preclinical targeted alpha therapy of human prostate cancer with Bi-213 labeled J591 antibody against the prostate specific membrane antigen. Prostate Cancer Prostatic Dis. 2002, 5, 36–46. [Google Scholar] [CrossRef]
- Adams, G.P.; Shaller, C.C.; Chappell, L.L.; Wu, C.; Horak, E.M.; Simmons, H.H.; Litwin, S.; Marks, J.D.; Weiner, L.M.; Brechbiel, M.W. Delivery of the α-emitting radioisotope bismuth-213 to solid tumors via single-chain Fv and diabody molecules. Nucl. Med. Biol. 2000, 27, 339–346. [Google Scholar] [CrossRef]
- Pfost, B.; Seidl, C.; Autenrieth, M.; Saur, D.; Bruchertseifer, F.; Morgenstern, A.; Schwaiger, M.; Senekowitsch-Schmidtke, R. Intravesical α-Radioimmunotherapy with Bi-Anti-EGFR-mAb Defeats Human Bladder Carcinoma in Xenografted Nude Mice. J. Nucl. Med. 2009, 50, 1700–1708. [Google Scholar] [CrossRef] [PubMed]
- Poty, S.; Francesconi, L.C.; McDevitt, M.R.; Morris, M.J.; Lewis, J.S. α-Emitters for Radiotherapy: From Basic Radiochemistry to Clinical Studies-Part 2. J. Nucl. Med. 2018, 59, 1020–1027. [Google Scholar] [CrossRef]
- Yeong, C.H.; Cheng, M.H.; Ng, K.H. Therapeutic radionuclides in nuclear medicine: Current and future prospects. J. Zhejiang Univ. Sci. B 2014, 15, 845–863. [Google Scholar] [CrossRef]
- Sollini, M.; Marzo, K.; Chiti, A.; Kirienko, M. The five “W”s and “How” of Targeted Alpha Therapy: Why? Who? What? Where? When? and How? Rend. Lincei-Sci. Fis. 2020, 31, 231–247. [Google Scholar] [CrossRef]
- Current, K.; Meyer, C.; Magyar, C.E.; Mona, C.E.; Almajano, J.; Slavik, R.; Stuparu, A.D.; Cheng, C.; Dawson, D.W.; Radu, C.G.; et al. Investigating PSMA-Targeted Radioligand Therapy Efficacy as a Function of Cellular PSMA Levels and Intratumoral PSMA Heterogeneity. Clin. Cancer Res. 2020, 26, 2946–2955. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, D.L.; Bryan, R.A.; Dawicki, W.; Geoghegan, E.M.; Liang, Q.; Gokhale, M.; Reddy, V.; Garg, R.; Allen, K.J.H.; Berger, M.S.; et al. Preclinical Development of an Actinium-225-Labeled Antibody Radio-Conjugate Directed Against CD45 for Targeted Conditioning and Radioimmunotherapy. Biol. Blood Marrow Tr. 2020, 26, S160–S161. [Google Scholar] [CrossRef]
- Marcu, L.; Bezak, E.; Allen, B.J. Global comparison of targeted alpha vs targeted beta therapy for cancer: In vitro, in vivo and clinical trials. Crit. Rev. Oncol. Hemat 2018, 123, 7–20. [Google Scholar] [CrossRef]
- Behling, K.; Maguire, W.F.; Lopez Puebla, J.C.; Sprinkle, S.R.; Ruggiero, A.; O’Donoghue, J.; Gutin, P.H.; Scheinberg, D.A.; McDevitt, M.R. Vascular Targeted Radioimmunotherapy for the Treatment of Glioblastoma. J. Nucl. Med. 2016, 57, 1576–1582. [Google Scholar] [CrossRef]
- Makvandi, M.; Dupis, E.; Engle, J.W.; Nortier, F.M.; Fassbender, M.E.; Simon, S.; Birnbaum, E.R.; Atcher, R.W.; John, K.D.; Rixe, O.; et al. Alpha-Emitters and Targeted Alpha Therapy in Oncology: From Basic Science to Clinical Investigations. Target. Oncol. 2018, 13, 189–203. [Google Scholar] [CrossRef] [PubMed]
- Tafreshi, N.K.; Doligalski, M.L.; Tichacek, C.J.; Pandya, D.N.; Budzevich, M.M.; El-Haddad, G.; Khushalani, N.I.; Moros, E.G.; McLaughlin, M.L.; Wadas, T.J.; et al. Development of Targeted Alpha Particle Therapy for Solid Tumors. Molecules 2019, 24, 4314. [Google Scholar] [CrossRef] [PubMed]
- McDevitt, M.R.; Sgouros, G.; Sofou, S. Targeted and Nontargeted alpha-Particle Therapies. Annu. Rev. Biomed. Eng. 2018, 20, 73–93. [Google Scholar] [CrossRef] [PubMed]
- Miederer, M.; McDevitt, M.R.; Borchardt, P.; Bergman, I.; Kramer, K.; Cheung, N.K.V.; Scheinberg, D.A. Treatment of neuroblastoma meningeal carcinomatosis with intrathecal application of α-emitting atomic nanogenerators targeting disialo-ganglioside GD2. Clin. Cancer Res. 2004, 10, 6985–6992. [Google Scholar] [CrossRef]
- Song, H.; Hobbs, R.F.; Vajravelu, R.; Huso, D.L.; Esaias, C.; Apostolidis, C.; Morgenstern, A.; Sgouros, G. Radioimmunotherapy of Breast Cancer Metastases with α-Particle Emitter Ac: Comparing Efficacy withBi and Y. Cancer Res. 2009, 69, 8941–8948. [Google Scholar] [CrossRef] [PubMed]
- Kennel, S.J.; Chappell, L.L.; Dadachova, K.; Brechbiel, M.W.; Lankford, T.K.; Davis, I.A.; Stabin, M.; Mirzadeh, S. Evaluation of Ac for vascular targeted radioimmunotherapy of lung tumors. Cancer Biother. Radiopharm. 2000, 15, 235–244. [Google Scholar] [CrossRef]
- Sattiraju, A.; Sai, K.K.S.; Xuan, A.; Pandya, D.N.; Almaguel, F.G.; Wadas, T.J.; Herpai, D.M.; Debinski, W.; Mintz, A. IL13RA2 targeted alpha particle therapy against glioblastomas. Oncotarget 2017, 8, 42997–43007. [Google Scholar] [CrossRef] [PubMed]
- Tafreshi, N.K.; Tichacek, C.J.; Pandya, D.N.; Doligalski, M.L.; Budzevich, M.M.; Kil, H.; Bhatt, N.B.; Kock, N.D.; Messina, J.L.; Ruiz, E.E.; et al. Melanocortin 1 Receptor-Targeted α-Particle Therapy for Metastatic Uveal Melanoma. J. Nucl. Med. 2019, 60, 1124–1133. [Google Scholar] [CrossRef] [PubMed]
- Pfannkuchen, N.; Pektor, S.; Miederer, M.; Roesch, F. In vivo evaluation of [Ac]Ac-DOTA for α-therapy of bone metastases. J. Nucl. Med. 2018, 11, 223–230. [Google Scholar]
- Nakamae, H.; Wilbur, D.S.; Hamlin, D.K.; Thakar, M.S.; Santos, E.B.; Fisher, D.R.; Kenoyer, A.L.; Pagel, J.M.; Press, O.W.; Storb, R.; et al. Biodistributions, Myelosuppression, and Toxicities in Mice Treated with an Anti-CD45 Antibody Labeled with the α-Emitting Radionuclides Bismuth-213 or Astatine-211. Cancer Res. 2009, 69, 2408–2415. [Google Scholar] [CrossRef] [PubMed]
- Chérel, M.; Gouard, S.; Gaschet, J.; Saï-Maurel, C.; Bruchertseifer, F.; Morgenstern, A.; Bourgeois, M.; Gestin, J.F.; Bodéré, F.K.; Barbet, J.; et al. 213Bi Radioimmunotherapy with an Anti-mCD138 Monoclonal Antibody in a Murine Model of Multiple Myeloma. J. Nucl. Med. 2013, 54, 1597–1604. [Google Scholar] [CrossRef]
- Seidl, C.; Zöckler, C.; Beck, R.; Quintanilla-Martinez, L.; Bruchertseifer, F.; Senekowitsch-Schmidtke, R. Lu-immunotherapy of experimental peritoneal carcinomatosis shows comparable effectiveness to Bi-immunotherapy, but causes toxicity not observed with Bi. Eur. J. Nucl. Med. Mol. I 2011, 38, 312–322. [Google Scholar] [CrossRef]
- Behr, T.M.; Behe, M.; Stabin, M.G.; Wehrmann, E.; Apostolidis, C.; Molinet, R.; Strutz, F.; Fayyazi, A.; Wieland, E.; Gratz, S.; et al. High-linear energy transfer (LET) alpha versus low-LET beta emitters in radioimmunotherapy of solid tumors: Therapeutic efficacy and dose-limiting toxicity of 213Bi- versus 90Y-labeled CO17-1A Fab’ fragments in a human colonic cancer model. Cancer Res. 1999, 59, 2635–2643. [Google Scholar]
- Nikula, T.K.; McDevitt, M.R.; Finn, R.D.; Wu, C.; Kozak, R.W.; Garmestani, K.; Brechbiel, M.W.; Curcio, M.J.; Pippin, C.G.; Tiffany-Jones, L.; et al. Alpha-emitting bismuth cyclohexylbenzyl DTPA constructs of recombinant humanized anti-CD33 antibodies: Pharmacokinetics, bioactivity, toxicity and chemistry. J. Nucl. Med. 1999, 40, 166–176. [Google Scholar]
- Bloechl, S.; Beck, R.; Seidl, C.; Morgenstern, A.; Schwaiger, M.; Senekowitsch-Schmidtke, R. Fractionated locoregional low-dose radioimmunotherapy improves survival in a mouse model of diffuse-type gastric cancer using a 213Bi-conjugated monoclonal antibody. Clin. Cancer Res. 2005, 11, 7070s–7074s. [Google Scholar] [CrossRef]
- Kennel, S.J.; Brechbiel, M.W.; Milenic, D.E.; Schlom, J.; Mirzadeh, S. Actinium-225 conjugates of MAb CC49 and humanized ΔCHCC49. Cancer Biother. Radiopharm. 2002, 17, 219–231. [Google Scholar] [CrossRef]
- Knor, S.; Sato, S.; Huber, T.; Morgenstern, A.; Bruchertseifer, F.; Schmitt, M.; Kessler, H.; Senekowitsch-Schmidtke, R.; Magdolen, V.; Seidl, C. Development and evaluation of peptidic ligands targeting tumour-associated urokinase plasminogen activator receptor (uPAR) for use in alpha-emitter therapy for disseminated ovarian cancer. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Norenberg, J.P.; Krenning, B.J.; Konings, I.R.H.M.; Kusewitt, D.F.; Nayak, T.K.; Anderson, T.L.; de Jong, M.; Garmestani, K.; Brechbiel, M.W.; Kvols, L.K. Bi-[DOTA,Tyr]octreotide peptide receptor radionuclide therapy of pancreatic tumors in a preclinical animal model. Clin. Cancer Res. 2006, 12, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Wild, D.; Frischknecht, M.; Zhang, H.; Morgenstern, A.; Bruchertseifer, F.; Boisclair, J.; Provencher-Bolliger, A.; Reubi, J.C.; Maecke, H.R. Alpha- versus beta-particle radiopeptide therapy in a human prostate cancer model (213Bi-DOTA-PESIN and 213Bi-AMBA versus 177Lu-DOTA-PESIN). Cancer Res. 2011, 71, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Kaspersen, F.M.; Bos, E.; Doornmalen, A.V.; Geerlings, M.W.; Apostolidis, C.; Molinet, R. Cytotoxicity of 213Bi- and 225Ac-immunoconjugates. Nucl. Med. Commun. 1995, 16, 468–476. [Google Scholar] [CrossRef]
- Ballangrud, Å.M.; Yang, W.H.; Palm, S.; Enmon, R.; Borchardt, P.E.; Pellegrini, V.A.; McDevitt, M.R.; Scheinberg, D.A.; Sgouros, G. Alpha-particle emitting atomic generator (actinium-225)-labeled trastuzumab (herceptin) targeting of breast cancer spheroids:: Efficacy HER2/expression. Clin. Cancer Res. 2004, 10, 4489–4497. [Google Scholar] [CrossRef]
- Yoshida, T.; Jin, K.; Song, H.; Park, S.; Huso, D.L.; Zhang, Z.; Han, L.F.; Zhu, C.; Bruchertseifer, F.; Morgenstern, A.; et al. Effective treatment of ductal carcinoma in situ with a HER-2-targeted alpha-particle emitting radionuclide in a preclinical model of human breast cancer. Oncotarget 2016, 7, 33306–33315. [Google Scholar] [CrossRef]
- Behling, K.; Maguire, W.F.; Di Gialleonardo, V.; Heeb, L.E.M.; Hassan, I.F.; Veach, D.R.; Keshari, K.R.; Gutin, P.H.; Scheinberg, D.A.; McDevitt, M.R. Remodeling the Vascular Microenvironment of Glioblastoma with α-Particles. J. Nucl. Med. 2016, 57, 1771–1777. [Google Scholar] [CrossRef]
- Nelson, B.J.B.; Andersson, J.D.; Wuest, F. Targeted Alpha Therapy: Progress in Radionuclide Production, Radiochemistry, and Applications. Pharmaceutics 2021, 13, 49. [Google Scholar] [CrossRef]
- Ludwig, D.; Bryan, R.; Dawicki, W.; Geoghegan, E.M.; Liang, Q.; Seth, S.; Gokhale, M.; Berger, M.S.; Reddy, V.; Garg, R.; et al. Preclinical Development of an Actinium-225-Labeled Antibody Radio-Conjugate Directed Against CD45 for Targeted Conditioning and Radioimmunotherapy. Blood 2019, 134, 5601. [Google Scholar] [CrossRef]
- McDevitt, M.R.; Finn, R.D.; Ma, D.; Larson, S.M.; Scheinberg, D.A. Preparation of alpha-emitting 213Bi-labeled antibody constructs for clinical use. J. Nucl. Med. 1999, 40, 1722–1727. [Google Scholar]
- McDevitt, M.R.; Barendswaard, E.; Ma, D.; Lai, L.; Curcio, M.J.; Sgouros, G.; Ballangrud, A.M.; Yang, W.H.; Finn, R.D.; Pellegrini, V.; et al. An α-particle emitting antibody ([213Bi]J591) for radioimmunotherapy of prostate cancer. Cancer Res. 2000, 60, 6095–6100. [Google Scholar] [PubMed]
- Sabet, A.; Ezziddin, K.; Pape, U.F.; Reichman, K.; Haslerud, T.; Ahmadzadehfar, H.; Biersack, H.J.; Nagarajah, J.; Ezziddin, S. Accurate assessment of long-term nephrotoxicity after peptide receptor radionuclide therapy withLu-octreotate. Eur. J. Nucl. Med. Mol. I 2014, 41, 505–510. [Google Scholar] [CrossRef]
- Chan, H.S.; Konijnenberg, M.W.; de Blois, E.; Koelewijn, S.; Baum, R.P.; Morgenstern, A.; Bruchertseifer, F.; Breeman, W.A.; de Jong, M. Influence of tumour size on the efficacy of targeted alpha therapy withBi-[DOTA,Tyr]-octreotate. Ejnmmi Res. 2016, 6, 6. [Google Scholar] [CrossRef]
- Chan, H.S.; Konijnenberg, M.W.; Daniels, T.; Nysus, M.; Makvandi, M.; de Blois, E.; Breeman, W.A.; Atcher, R.W.; de Jong, M.; Norenberg, J.P. Improved safety and efficacy of Bi-DOTATATE-targeted alpha therapy of somatostatin receptor-expressing neuroendocrine tumors in mice pre-treated with L-lysine. Ejnmmi Res. 2016, 6, 83. [Google Scholar] [CrossRef] [PubMed]
- Majkowska-Pilip, A.; Gaweda, W.; Zelechowska-Matysiak, K.; Wawrowicz, K.; Bilewicz, A. Nanoparticles in Targeted Alpha Therapy. Nanomaterials 2020, 10, 1366. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.Y.; Seideman, J.; Sofou, S. Enhanced loading efficiency and retention of Ac in rigid liposomes for potential targeted therapy of micrometastases. Bioconjugate Chem. 2008, 19, 1274–1282. [Google Scholar] [CrossRef] [PubMed]
- de Kruijff, R.M.; van der Meer, A.; Windmeijer, C.A.A.; Kouwenberg, J.J.M.; Morgenstern, A.; Bruchertseifer, F.; Sminia, P.; Denkova, A.G. The therapeutic potential of polymersomes loaded with (225)Ac evaluated in 2D and 3D in vitro glioma models. Eur. J. Pharm. Biopharm. 2018, 127, 85–91. [Google Scholar] [CrossRef]
- Kruijff, R.M.; Raave, R.; Kip, A.; Molkenboer-Kuenen, J.; Morgenstern, A.; Bruchertseifer, F.; Heskamp, S.; Denkova, A.G. The in vivo fate of (225)Ac daughter nuclides using polymersomes as a model carrier. Sci. Rep. 2019, 9, 11671. [Google Scholar] [CrossRef]
- Thijssen, L.; Schaart, D.R.; de Vries, D.; Morgenstern, A.; Bruchertseifer, F.; Denkova, A.G. Polymersomes as nano-carriers to retain harmful recoil nuclides in alpha radionuclide therapy: A feasibility study. Radiochim. Acta 2012, 100, 473–481. [Google Scholar] [CrossRef]
- Woodward, J.; Kennel, S.J.; Stuckey, A.; Osborne, D.; Wall, J.; Rondinone, A.J.; Standaert, R.F.; Mirzadeh, S. LaPO Nanoparticles Doped with Actinium-225 that Partially Sequester Daughter Radionuclides. Bioconjugate Chem. 2011, 22, 766–776. [Google Scholar] [CrossRef] [PubMed]
- Cedrowska, E.; Pruszynski, M.; Majkowska-Pilip, A.; Meczynska-Wielgosz, S.; Bruchertseifer, F.; Morgenstern, A.; Bilewicz, A. Functionalized TiO(2) nanoparticles labelled with (225)Ac for targeted alpha radionuclide therapy. J. Nanoparticle Res. 2018, 20, 83. [Google Scholar] [CrossRef] [PubMed]
- Mulvey, J.J.; Villa, C.H.; McDevitt, M.R.; Escorcia, F.E.; Casey, E.; Scheinberg, D.A. Self-assembly of carbon nanotubes and antibodies on tumours for targeted amplified delivery. Nat. Nanotechnol. 2013, 8, 763–771. [Google Scholar] [CrossRef]
- Sempkowski, M.; Zhu, C.; Menzenski, M.Z.; Kevrekidis, I.G.; Bruchertseifer, F.; Morgenstern, A.; Sofou, S. Sticky Patches on Lipid Nanoparticles Enable the Selective Targeting and Killing of Untargetable Cancer Cells. Langmuir 2016, 32, 8329–8338. [Google Scholar] [CrossRef]
- Salvanou, E.A.; Stellas, D.; Tsoukalas, C.; Mavroidi, B.; Paravatou-Petsotas, M.; Kalogeropoulos, N.; Xanthopoulos, S.; Denat, F.; Laurent, G.; Bazzi, R.; et al. A Proof-of-Concept Study on the Therapeutic Potential of Au Nanoparticles Radiolabeled with the Alpha-Emitter Actinium-225. Pharmaceutics 2020, 12, 188. [Google Scholar] [CrossRef]
- Lingappa, M.; Song, H.; Thompson, S.; Bruchertseifer, F.; Morgenstern, A.; Sgouros, G. Immunoliposomal Delivery of Bi for α-Emitter Targeting of Metastatic Breast Cancer. Cancer Res. 2010, 70, 6815–6823. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, A.; Villa, C.H.; Holland, J.P.; Sprinkle, S.R.; May, C.; Lewis, J.S.; Scheinberg, D.A.; McDevitt, M.R. Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes. Int. J. Nanomed. 2010, 5, 783–802. [Google Scholar] [CrossRef]
- Sathekge, M.; Morgenstern, A. Advances in targeted alpha therapy of cancer. Eur. J. Nucl. Med. Mol. I 2024, 51, 1205–1206. [Google Scholar] [CrossRef]
- Zhang, J.J.; Qin, S.S.; Yang, M.D.; Zhang, X.Y.; Zhang, S.H.; Yu, F. Alpha-emitters and targeted alpha therapy in cancer treatment. Iradiology 2023, 1, 245–261. [Google Scholar] [CrossRef]
- Jang, A.; Kendi, A.T.; Johnson, G.B.; Halfdanarson, T.R.; Sartor, O. Targeted Alpha-Particle Therapy: A Review of Current Trials. Int. J. Mol. Sci. 2023, 24, 1626. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Yang, J.; Guo, J.; Tao, L.; Xu, B.; Wang, G.; Meng, F.; Zhong, Z. Dual-targeted alpha therapy mitigates prostate cancer and boosts immune checkpoint blockade therapy. J. Control Release 2025, 382, 113686. [Google Scholar] [CrossRef] [PubMed]
- Tulik, M.; Kulinski, R.; Tabor, Z.; Brzozowska, B.; Laba, P.; Bruchertseifer, F.; Morgenstern, A.; Krolicki, L.; Kunikowska, J. Quantitative SPECT/CT imaging of actinium-225 for targeted alpha therapy of glioblastomas. EJNMMI Phys. 2024, 11, 41. [Google Scholar] [CrossRef]
- Besiroglu, H.; Kadihasanoglu, M. The Safety and Efficacy of Targeted Alpha Therapy, Ac-225 Prostate-Specific Membrane Antigen, in Patients with Metastatic Castration-Resistant Prostate Cancer: A Systematic Review and Meta-Analysis. Prostate 2025, 85, 541–557. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Kulkarni, H.R.; Baum, R.P. Peptide Receptor Radionuclide Therapy Using 225Ac-DOTATOC Achieves Partial Remission in a Patient With Progressive Neuroendocrine Liver Metastases After Repeated beta-Emitter Peptide Receptor Radionuclide Therapy. Clin. Nucl. Med. 2020, 45, 241–243. [Google Scholar] [CrossRef]
- Sathekge, M.M.; Bruchertseifer, F.; Lawal, I.O.; Vorster, M.; Knoesen, O.; Lengana, T.; Boshomane, T.G.; Mokoala, K.K.; Morgenstern, A. Treatment of brain metastases of castration-resistant prostate cancer with (225)Ac-PSMA-617. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1756–1757. [Google Scholar] [CrossRef]
- Sathekge, M.; Bruchertseifer, F.; Knoesen, O.; Reyneke, F.; Lawal, I.; Lengana, T.; Davis, C.; Mahapane, J.; Corbett, C.; Vorster, M.; et al. (225)Ac-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: A pilot study. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 129–138. [Google Scholar] [CrossRef]
- Popovtzer, A.; Rosenfeld, E.; Mizrachi, A.; Bellia, S.R.; Ben-Hur, R.; Feliciani, G.; Sarnelli, A.; Arazi, L.; Deutsch, L.; Kelson, I.; et al. Initial Safety and Tumor Control Results From a “First-in-Human” Multicenter Prospective Trial Evaluating a Novel Alpha-Emitting Radionuclide for the Treatment of Locally Advanced Recurrent Squamous Cell Carcinomas of the Skin and Head and Neck. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 571–578. [Google Scholar] [CrossRef]
- Naya, M.; Murthy, V.L.; Taqueti, V.R.; Foster, C.R.; Klein, J.; Garber, M.; Dorbala, S.; Hainer, J.; Blankstein, R.; Resnic, F.; et al. Preserved coronary flow reserve effectively excludes high-risk coronary artery disease on angiography. J. Nucl. Med. 2014, 55, 248–255. [Google Scholar] [CrossRef]
- Krolicki, L.; Bruchertseifer, F.; Kunikowska, J.; Koziara, H.; Krolicki, B.; Jakucinski, M.; Pawlak, D.; Apostolidis, C.; Mirzadeh, S.; Rola, R.; et al. Prolonged survival in secondary glioblastoma following local injection of targeted alpha therapy with (213)Bi-substance P analogue. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1636–1644. [Google Scholar] [CrossRef]
- Kratochwil, C.; Bruchertseifer, F.; Rathke, H.; Hohenfellner, M.; Giesel, F.L.; Haberkorn, U.; Morgenstern, A. Targeted alpha-Therapy of Metastatic Castration-Resistant Prostate Cancer with (225)Ac-PSMA-617: Swimmer-Plot Analysis Suggests Efficacy Regarding Duration of Tumor Control. J. Nucl. Med. 2018, 59, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Belli, M.L.; Sarnelli, A.; Mezzenga, E.; Cesarini, F.; Caroli, P.; Di Iorio, V.; Strigari, L.; Cremonesi, M.; Romeo, A.; Nicolini, S.; et al. Targeted Alpha Therapy in mCRPC (Metastatic Castration-Resistant Prostate Cancer) Patients: Predictive Dosimetry and Toxicity Modeling of (225)Ac-PSMA (Prostate-Specific Membrane Antigen). Front. Oncol. 2020, 10, 531660. [Google Scholar] [CrossRef]
- Hadaschik, B. Re:(225)Ac-PSMA-617 for PSMA-Targeting Alpha-radiation Therapy of Patients with Metastatic Castration-resistant Prostate Cancer. Eur. Urol. 2016, 70, 1080–1081. [Google Scholar] [CrossRef] [PubMed]
- Kneifel, S.; Cordier, D.; Good, S.; Ionescu, M.C.S.; Ghaffari, A.; Hofer, S.; Kretzschmar, M.; Tolnay, M.; Apostolidis, C.; Waser, B.; et al. Local targeting of malignant gliomas by the diffusible peptidic vector 1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10-triacetic acid-substance P. Clin. Cancer Res. 2006, 12, 3843–3850. [Google Scholar] [CrossRef] [PubMed]
- Sathekge, M.; Bruchertseifer, F.; Vorster, M.; Lawal, I.O.; Knoesen, O.; Mahapane, J.; Davis, C.; Reyneke, F.; Maes, A.; Kratochwil, C.; et al. Predictors of Overall and Disease-Free Survival in Metastatic Castration-Resistant Prostate Cancer Patients Receiving (225)Ac-PSMA-617 Radioligand Therapy. J. Nucl. Med. 2020, 61, 62–69. [Google Scholar] [CrossRef]
- Kratochwil, C.; Bruchertseifer, F.; Rathke, H.; Bronzel, M.; Apostolidis, C.; Weichert, W.; Haberkorn, U.; Giesel, F.L.; Morgenstern, A. Targeted alpha-Therapy of Metastatic Castration-Resistant Prostate Cancer with (225)Ac-PSMA-617: Dosimetry Estimate and Empiric Dose Finding. J. Nucl. Med. 2017, 58, 1624–1631. [Google Scholar] [CrossRef]
- Krolicki, L.; Bruchertseifer, F.; Kunikowska, J.; Koziara, H.; Krolicki, B.; Jakucinski, M.; Pawlak, D.; Apostolidis, C.; Mirzadeh, S.; Rola, R.; et al. Safety and efficacy of targeted alpha therapy with (213)Bi-DOTA-substance P in recurrent glioblastoma. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 614–622. [Google Scholar] [CrossRef]
[225Ac]Ac Production | Production Mode | Production Facility | Refs. | |
---|---|---|---|---|
Current | [229Th]Th | [229Th]Th generators: Natural decay of 233U hoards | ORNL, USA I.T.U., Germany IPPE, Russia | [27,28,31,32,33,35] |
Developed | [226Ac]Ac | Electron Accelerators: 226Ra(γ,n)225Ra → 225Ac | Medical linacs: ARIEL (TRIUMF, Canada) | [39,43] |
Proton Accelerators 226Ra(p,2n) 225Ac | Medium-sized cyclotrons: JRC cyclotron, Germany 1 (QST), Japan 2 NPI, Czech Republic 3 CNEA, Argentina 4 SCK-CEN, Belgium 5 KIRAMS, South Korea | [21,40,41,46] | ||
Nuclear Reactors: 226Ra(n,2n)225Ra → 225Ac | Fast breeder reactor | [50] | ||
[232Th]Th | Thorium Spallation:232Th(p,x) 225Ac | INR, Russia BNL, USA LANL, New Mexico | [31,32,35,41,42] | |
Special facilities | ISOL, ISAC (TRIUMF, Canada) ISOL, ISOLDE (CERN, Geneva) MEDICIS (CERN, Switzerland) IPF (TRIUMF, Canada) | [46,58,59] | ||
Transformation of [226Ra]Ra to [229Th]Th | 226Ra(n,γ)227Ra,227Ac(n,γ)228Ac, 228Th(n,γ) 229Th | High-Flux Isotope Reactor (HFIR), ORNL, USA | [60,61] |
Targeting Agent | Chelating Agent | Refs. |
---|---|---|
Anti-CD33 IgG (HuM195) | DMSA, DMPS, Ca-DTPA, SCNCHX-A-DTPA | [106,112,113] |
Anti-CD20 IgG (rituximab) | DMPS, CHX-A′′-DTPA | [114,115] |
Plasminogen activator inhibitor type 2 | CHX-A′′-DTPA, cDTPA | [116,117,118] |
Anti-MUC1 IgG (C595 IgG) | cDTPA, CHX.A′′ | [117,119] |
Substance P | DOTAGA-/DOTA | [93,120] |
Anti-NG2 IgG (9.2.27 IgG) | cDTPA | [121,122,123,124,125] |
Anti-CD138 IgG | p-SCN-Bn-DOTA, SCN-CHX-A′′-DTPA | [126] |
Anti-PSMA IgG (J591 IgG) | cDTPAa | [127] |
C6.5K-A scFv, C6.5K-A diabody | CHX-A′′-DTPA | [128] |
Anti-EGFR-mAb | p-SCN-Bn-CHX-A′′-DTPA, CHX-A′′-DTPA | [109,129] |
DOTATOC | DOTA | [14] |
Isotope | Compound | Targeting Moiety | Cancer Type | Result | Ref. |
---|---|---|---|---|---|
[225Ac]Ac | [225Ac]Ac–DOTA–HuM195 | HuM195 Ab | Cynomolgus monkey leukemia. | Improved efficacy with less renal toxicity. | [100] |
[225Ac]Ac–DOTA-trastuzumab | Trastuzumab | SKOV3 human ovarian cancer. | Improved efficacy with less toxicity. | [68] | |
[225Ac]Ac–DOTA–J591 | J591 mAbs | Human LNCaP prostate. | Improved efficacy with no toxicity. | [70] | |
[225Ac]Ac–DOTA–3F8 | 3F8 Ab | NMB-7 human neuroblastoma xenografts in nude mice. | Increased survival with low toxicity. | [140] | |
[225Ac]Ac-7.16.4 | 7.16.4 mAb | neu-N transgenic mouse model with rat HER-2/neu expression and spontaneous lung metastases. | Improved efficacy with slight renal toxicity. | [141] | |
[225Ac]Ac–DOTA–E4G10 | E4G10 Ab | LS174T human colon xenografts in female nude mice. | High affinity targeting with appropriate efficacy. | [96] | |
[225Ac]Ac-HEHA-Mab 201B | Mab 201B | EMT-6 mammary carcinoma. | Appropriate efficacy with some toxicity. | [142] | |
[225Ac]Ac-DOTATOC | DOTATOC peptide | AR42J rat pancreatic exocrine. | Appropriate efficacy with less toxicity. | [78] | |
[225Ac]Ac–DOTA–F3 | F3 peptide | MDA-MB-435 human peritoneal carcinomatosis in SCID mice. | Improved targeting and efficacy with minor renal toxicity. | [79] | |
[225Ac]Ac-Pep-1L | Pep-1L peptide | U8251 human glioblastoma orthotopic xenografts in male nude mice. | U8251 human glioblastoma. Orthotopic xenografts in male nude mice. | [143] | |
[225Ac]Ac-DOTA–MC1RL | MC1RL peptide | MEL270 human uveal melanoma xenografts in SCID mice. | Decreased metastasis and improved survival. | [144] | |
[225Ac]Ac-DOTAZOL | Zoledronic acid | Wistar rats. | Improved bone/blood ratio with some renal toxicity. | [145] | |
[213Bi]Bi | [213Bi]Bi-30F11-CHX-A | 30F11 Ab | Female BALB/c mice. | High renal toxicity. | [146] |
[213Bi]Bi-CD138 | Anti-CD138 Ab | 5T33 mouse multiple myeloma cell culturedinC57BL/KaLwRij mice. | Improved survival with moderate toxicity. | [147] | |
[213Bi]Bi-d9Mab | d9Mab | HSC45-M2 human gastric cancer cells in nude mice. | Improved efficacy with low toxicity. | [148] | |
[213Bi]Bi-matuzumab | Matuzumab | EJ28 human orthotopic bladder xenografts in nude mice. | Increased efficacy with some renal toxicity. | [129] | |
[213Bi]Bi-Fab | CO17-1A Fab | GW-39 human colon cancer in xenograft mice. | High efficacy with low toxicity. | [149] | |
[213Bi]Bi-CHX-A-DTPA HuM195 | HuM195 mAb | Normal BALB/c mice. | Improved pharmacokinetic parameters. | [150] | |
[213Bi]Bi-d9-E-cad mAb | d9-E-cad mAb | HSC45-M2 human gastric xenografts with d9-E-cad mutation in female nude mice. | Improved efficacy upon double administration compared to a single one, with no toxicity. | [151] | |
[213Bi]Bi- HuCC49DCH2 | Humanized CC49 mAb | LS-174T human colon xenografts in female nude mice. | Improved efficacy. | [152] | |
[213Bi]Bi-P-P4D | P-P4D peptide | OV-MZ-6 human ovarian xenografts in female nude mice. | High tumor accumulation with low nephrotoxicity. | [153] | |
[213Bi]Bi-DOTATOC | DOTATOC peptide | CA20948 rat pancreatic adenocarcinoma tumors in Lewis rats. | Improved efficacy with low toxicity. | [154] | |
[213Bi]Bi–DOTA–PESIN, or [213Bi]Bi-AMBA | PESIN and AMBA Peptides | PC-3 human prostate xenografts in female nude mice. | [213Bi]Bi–DOTA–PESIN had lower nephrotoxicity than [213Bi]Bi-AMBA. | [155] |
Isotope | Nano-Platform | Targeting Moiety | Cancer Type | Objective | Ref. |
---|---|---|---|---|---|
[225Ac]Ac | PEGylated liposome | PSMA J591 antibody | (PSMA)- expressing cells | Reduction in the recoil effect | [82] |
PEGylated liposome | Trastuzumab | SKOV-3 ovarian cells | Recoiling | [168] | |
PEGylated liposome | - | - | Recoiling | [88] | |
PEGylatedMUVEL | Trastuzumab | SKOV-3 ovarian cells | Recoiling | [81] | |
Polymersomes | - | - | Recoiling | [169] | |
Polymersomes | - | - | Recoiling | [170] | |
Polymersomes | - | - | Recoiling | [171] | |
(La0.5Gd0.5)PO4 | MAb 201b | EMT-6 lung tumor cells | Recoiling | [85] | |
La ([225Ac]Ac)PO4 | MAb 201b | EMT-6 lung tumor cells | Recoiling | [172] | |
TiO2 | Substance P (5-11) | NK1 glioma receptor | Recoiling | [173] | |
Carbon nanotubes-DOTA | LintuzumabRituximabanti-A33 | CD20 + B-cell lymphoma C33 + myelocytic leukemia A33 + colon adenocarcinoma | Targeted delivery and rapid clearance | [174] | |
Lipid vehicle | Trastuzumab | BT-474, MDA-MB-231, MCF7 breast carcinoma cell | Improved targeting of low HER2-expression cells | [175] | |
Carbon nanotubes-DOTA | Tumor neovascular-targeting antibody | LS174T xeno-graft tumor model | Targeted delivery and rapid clearance | [136] | |
Gold NPs-DOTA | - | U87 glioblastoma cancer cells | Localized cancer treatment | [176] | |
[213Bi]Bi | Immunoliposomes | CHX-A-DTPA | Rat/neu transgenic mouse model of mammary carcinoma | Improve the therapeutic efficacy | [177] |
Tumor | [225Ac]Ac Agent | [213Bi]Bi Agent |
---|---|---|
Neuroendocrine | [225Ac]Ac-DOTATOC | [213Bi]Bi-DOTATOC |
Multiple myeloma | [225Ac]Ac-BC8 | [213Bi]Bi-labeled 9.E7.4 anti-CD138 mAb |
[225Ac]Ac-lintuzumab | [213Bi]Bi-labeled Anti-CD138 IgG | |
Metastatic castration resistant prostate cancer | [225Ac]Ac-PSMA617 | [213Bi]Bi-DOTA-PESIN |
Glioblastoma | [225Ac]Ac-E4G10 | [213Bi]Bi-DOTA-substance P |
Lymphoma | [225Ac]Ac-anti-CD33 HUM195 | [213Bi]Bi-DOTA-biotin |
[213Bi]Bi-anti-CD20-mAb 12 | ||
Leukemia | [225Ac]Ac-lintuzumab | [213Bi]Bi-lintuzumab |
[225Ac]Ac-anti-CD33-mAb | [213Bi]Bi-HuM195 | |
[213Bi]Bi-anti-CD33-mAb 49 | ||
Breast cancer | [225Ac]Ac-7.16.4 anti-rat HER-2/neu | [213Bi]Bi-CHX-A″DTPA-C6.5K-A scFv |
[213Bi]Bi-Plasminogen activator inhibitor type 2 | ||
Melanoma | [225Ac]Ac-crown-_MSH | [213Bi]Bi-anti-MCSP-mAb 54 |
[213Bi]Bi-Cdtpa-Anti-NG2 IgG (9.2.27 IgG) | ||
Glioma | [225Ac]Ac-Substance P 20 | [213Bi]Bi-Substance P 68 |
Neuroendocrine Tumors | [225Ac]Ac-DOTATOC 39 | [213Bi]Bi-DOTATOC 25 |
Prostate cancer | [225Ac]Ac-PSMA617 > 400 | [213Bi]Bi- cDTPAa- Anti-PSMA IgG (J591 IgG) |
Advanced refractory Solid tumors | [225Ac]Ac-FPI-1434 | Information is not available |
Colorectal cancer | Information is not available | [213Bi]Bi-labeled CO-1A Fab’ |
Bladder carcinoma | Information is not available | [213Bi]Bi-anti-EGFR mAb |
Peritoneal carcinoma | Information is not available | [213Bi]Bi-d9MAb |
Ovarian cancer | Information is not available | [213Bi]Bi-CHX-A″DTPA-C6.5K-A scFv |
[213Bi]Bi-CHX-A″DTPA- C6.5K-A diabody | ||
[213Bi]Bi-Anti-MUC1 IgG (C595 IgG) | ||
Non-Hodgkin lymphoma | Information is not available | [213Bi]Bi-Anti-CD20 IgG (rituximab) |
Pancreatic cancer | Information is not available | [213Bi]Bi-Plasminogen activator inhibitor type 2 |
[213Bi]Bi-Anti-MUC1 IgG (C595 IgG) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nawar, M.F.; Selim, A.A.; Essa, B.M.; El-Daoushy, A.F.; Swidan, M.M.; Chambers, C.G.; Al Qahtani, M.H.; Smith, C.J.; Sakr, T.M. Actinium-225/Bismuth-213 as Potential Leaders for Targeted Alpha Therapy: Current Supply, Application Barriers, and Future Prospects. Cancers 2025, 17, 3055. https://doi.org/10.3390/cancers17183055
Nawar MF, Selim AA, Essa BM, El-Daoushy AF, Swidan MM, Chambers CG, Al Qahtani MH, Smith CJ, Sakr TM. Actinium-225/Bismuth-213 as Potential Leaders for Targeted Alpha Therapy: Current Supply, Application Barriers, and Future Prospects. Cancers. 2025; 17(18):3055. https://doi.org/10.3390/cancers17183055
Chicago/Turabian StyleNawar, Mohamed F., Adli A. Selim, Basma M. Essa, Alaa F. El-Daoushy, Mohamed M. Swidan, Claudia G. Chambers, Mohammed H. Al Qahtani, Charles J. Smith, and Tamer M. Sakr. 2025. "Actinium-225/Bismuth-213 as Potential Leaders for Targeted Alpha Therapy: Current Supply, Application Barriers, and Future Prospects" Cancers 17, no. 18: 3055. https://doi.org/10.3390/cancers17183055
APA StyleNawar, M. F., Selim, A. A., Essa, B. M., El-Daoushy, A. F., Swidan, M. M., Chambers, C. G., Al Qahtani, M. H., Smith, C. J., & Sakr, T. M. (2025). Actinium-225/Bismuth-213 as Potential Leaders for Targeted Alpha Therapy: Current Supply, Application Barriers, and Future Prospects. Cancers, 17(18), 3055. https://doi.org/10.3390/cancers17183055