Prevalence and Clinical Significance of Potential Drug–Drug Interactions in Hospitalized Pediatric Oncology Patients: A Prospective Pharmacoepidemiologic Study
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. The Study Design and Setting
2.2. Study Population
- Incomplete medical or medication records
- Presence of severe comorbidities that could confound DDI assessment (e.g., advanced congenital anomalies, end-stage organ failure)
- Refusal or inability to provide informed consent
2.3. Data Collection Procedures
- All prescribed medications, including dosage, frequency, route of administration, and therapeutic classification (e.g., antineoplastic, supportive care, adjunctive therapy)
- Changes to medication orders during hospitalization
- Relevant laboratory and clinical monitoring parameters
- Adverse drug reactions possibly attributable to DDIs
2.4. Drug–Drug Interaction Assessment
- The pair of drugs involved was recorded with generic names.
- The severity of each interaction was documented according to both Lexi-Interact™ (categories A, B, C, D, X) and Drugs.com™ (classified as minor, moderate, or major).
- The presumed mechanism (pharmacokinetic vs. pharmacodynamic) was noted.
- Interactions were further categorized as antineoplastic–antineoplastic, antineoplastic–non-antineoplastic, or non-antineoplastic–non-antineoplastic.
2.5. Outcomes and Definitions
- Total number of PDDIs per patient
- Distribution and frequency of DDI drug pairs
- Severity grading of observed PDDIs
- Clinical interventions taken in response to PDDIs (when applicable)
- Incidence of adverse drug reactions linked to identified PDDIs
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Medication Use Patterns
3.3. Prevalence and Types of Potential Drug–Drug Interactions
3.4. Clinical Outcomes, Adverse Reactions, and Management
3.5. Subgroup and Exploratory Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADR | Adverse Drug Reaction |
ALL | Acute Lymphoblastic Leukemia |
AML | Acute Myeloid Leukemia |
CRF | Case Report Form |
DDI | Drug–Drug Interaction |
PDDI | Potential Drug–Drug Interaction |
G-CSF | Granulocyte Colony-Stimulating Factor |
IRB | Institutional Review Board |
NHL | Non-Hodgkin Lymphoma |
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef]
- Bo, L.; Wang, Y.; Li, Y.; Wurpel, J.N.D.; Huang, Z.; Chen, Z.-S. The Battlefield of Chemotherapy in Pediatric Cancers. Cancers 2023, 15, 1963. [Google Scholar] [CrossRef] [PubMed]
- Rao, C.; Shenoy, V.; Udaykumar, P. Potential Drug–Drug Interactions in the Pediatric Intensive Care Unit of a Tertiary Care Hospital. J. Pharmacol. Pharmacother. 2019, 10, 63–68. [Google Scholar] [CrossRef]
- Yeh, M.-L.; Chang, Y.-J.; Yeh, S.-J.; Huang, L.-J.; Yen, Y.-T.; Wang, P.-Y.; Li, Y.-C.; Hsu, C.-Y. Potential drug–drug interactions in pediatric outpatient prescriptions for newborns and infants. Comput. Methods Programs Biomed. 2014, 113, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Kearns, G.L.; Abdel-Rahman, S.M.; Alander, S.W.; Blowey, D.L.; Leeder, J.S.; Kauffman, R.E.; Wood, A.J. Developmental Pharmacology—Drug Disposition, Action, and Therapy in Infants and Children. N. Engl. J. Med. 2003, 349, 1157–1167. [Google Scholar] [CrossRef]
- Morales-Ríos, O.; Jasso-Gutiérrez, L.; Reyes-López, A.; Garduño-Espinosa, J.; Muñoz-Hernández, O. Potential drug-drug interactions and their risk factors in pediatric patients admitted to the emergency department of a tertiary care hospital in Mexico. PLoS ONE 2018, 13, e0190882. [Google Scholar] [CrossRef]
- Balk, T.E.; van der Sijs, I.H.; van Gelder, T.; Janssen, J.J.B.; van der Sluis, I.M.; van Leeuwen, R.W.F.; Engels, F.K. Drug-drug interactions in pediatric oncology patients. Pediatr. Blood Cancer 2017, 64, e26410. [Google Scholar] [CrossRef]
- Ismail, M.; Aziz, S.; Noor, S.; Haider, I.; Shams, F.; Haq, I.; Khadim, F.; Khan, Q.; Khan, F.; Asif, M. Potential drug-drug interactions in pediatric patients admitted to intensive care unit of Khyber Teaching Hospital, Peshawar, Pakistan: A cross-sectional study. J. Crit. Care 2017, 40, 243–250. [Google Scholar] [CrossRef]
- Umar, R.M. Drug-drug interactions between antiemetics used in cancer patients. J. Oncol. Sci. 2018, 4, 142–146. [Google Scholar] [CrossRef]
- Sienkiewicz-Oleszkiewicz, B.; Salamonowicz-Bodzioch, M.; Słonka, J.; Kałwak, K. Antifungal Drug-Drug Interactions with Commonly Used Pharmaceutics in European Pediatric Patients with Acute Lymphoblastic Leukemia. J. Clin. Med. 2023, 12, 4637. [Google Scholar] [CrossRef]
- Hadjibabaie, M.; Badri, S.; Ataei, S.; Moslehi, A.H.; Karimzadeh, I.; Ghavamzadeh, A. Potential drug–drug interactions at a referral hematology–oncology ward in Iran: A cross-sectional study. Cancer Chemother. Pharmacol. 2013, 71, 1619–1627. [Google Scholar] [CrossRef] [PubMed]
- Daignault, C.; Sauer, H.E.; Lindsay, H.; Alonzo, A.; Foster, J. Investigating Potential Drug-Drug Interactions in Pediatric and Adolescent Patients Receiving Chemotherapy. J. Oncol. Pharm. Pract. 2022, 28, 904–909. [Google Scholar] [CrossRef] [PubMed]
- Testoni, I.; Nicoletti, A.E.; Moscato, M.; De Vincenzo, C. A Qualitative Analysis of the Experiences of Young Patients and Caregivers Confronting Pediatric and Adolescent Oncology Diagnosis. Int. J. Environ. Res. Public Health 2023, 20, 6327. [Google Scholar] [CrossRef] [PubMed]
- Lexi-Interact. L-CO. Available online: https://www.uptodate.com/drug-interactions (accessed on 1 June 2019).
- Drugs.com. Available online: https://www.drugs.com/drug_interactions.html (accessed on 1 June 2019).
- Kolte, S.; Chelluri, S.; Dhande, P. The burden of drug interactions in oncology: Prevalence, risk factors and severity in a tertiary care hospital. J. Oncol. Pharm. Pract. 2025, in press. [Google Scholar] [CrossRef]
- Zhao, M.; Liu, C.-F.; Feng, Y.-F.; Chen, H. Potential drug-drug interactions in drug therapy for older adults with chronic coronary syndrome at hospital discharge: A real-world study. Front. Pharmacol. 2022, 13, 946415. [Google Scholar] [CrossRef]
- Suriyapakorn, B.; Chairat, P.; Boonyoprakarn, S.; Rojanarattanangkul, P.; Pisetcheep, W.; Hunsakunachai, N.; Vivithanaporn, P.; Wongwiwatthananukit, S.; Khemawoot, P. Comparison of potential drug-drug interactions with metabolic syndrome medications detected by two databases. PLoS ONE 2019, 14, e0225239. [Google Scholar] [CrossRef]
- Feinstein, J.; Dai, D.; Zhong, W.; Freedman, J.; Feudtner, C. Potential Drug−Drug Interactions in Infant, Child, and Adolescent Patients in Children’s Hospitals. Pediatrics 2015, 135, e99–e108. [Google Scholar] [CrossRef]
- Antoon, J.W.; Hall, M.; Herndon, A.; Carroll, A.; Ngo, M.-L.; Freundlich, K.L.; Stassun, J.C.; Frost, P.; Johnson, D.P.; Chokshi, S.B.; et al. Prevalence of Clinically Significant Drug-Drug Interactions Across US Children’s Hospitals. Pediatrics 2020, 146, e20200858. [Google Scholar] [CrossRef]
- Getachew, H.; Assen, M.; Dula, F.; Bhagavathula, A.S. Potential drug–drug interactions in pediatric wards of Gondar University Hospital, Ethiopia: A cross sectional study. Asian Pac. J. Trop. Biomed. 2016, 6, 534–538. [Google Scholar] [CrossRef]
- Apiraksattayakul, N.; Jitprapaikulsan, J.; Sanpakit, K.; Kumutpongpanich, T. Potential neurotoxicity associated with methotrexate. Sci. Rep. 2024, 14, 18548. [Google Scholar] [CrossRef]
- Ebbesen, M.S.; Nygaard, U.; Rosthøj, S.; Sørensen, D.; Nersting, J.; Vettenranta, K.; Wesenberg, F.; Kristinsson, J.; Harila-Saari, A.; Schmiegelow, K. Hepatotoxicity During Maintenance Therapy and Prognosis in Children With Acute Lymphoblastic Leukemia. J. Pediatr. Hematol. 2017, 39, 161–166. [Google Scholar] [CrossRef]
- Smeland, E.; Bremnes, R.M.; Bessesen, A.; Aarbakke, J.; Jæger, R. Interactions of vinblastine and vincristine with methotrexate transport in isolated rat hepatocytes. Cancer Chemother. Pharmacol. 1993, 32, 209–214. [Google Scholar] [CrossRef]
- Drug Interactions Between Methotrexate and Vincristine. Available online: https://www.drugs.com/drug-interactions/methotrexate-with-vincristine-1590-0-2301-0.html?professional=1&utm_source=chatgpt.com (accessed on 15 July 2025).
- Ramirez, L.; Cros, J.; Marin, B.; Boulogne, P.; Bergeron, A.; de Lafont, G.; Renon-Carron, F.; de Vinzelles, M.; Guigonis, V.; Nathan, N.; et al. Analgesic interaction between ondansetron and acetaminophen after tonsillectomy in children: TheParatron randomized, controlled trial. Eur. J. Pain 2015, 19, 661–668. [Google Scholar] [CrossRef]
- Pickering, G.; Loriot, M.; Libert, F.; Eschalier, A.; Beaune, P.; Dubray, C. Analgesic effect of acetaminophen in humans: First evidence of a central serotonergic mechanism. Clin. Pharmacol. Ther. 2006, 79, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Huth, K.; Vandecruys, P.; Orkin, J.; Patel, H. Medication safety for children with medical complexity. Paediatr. Child Health 2020, 25, 473. [Google Scholar] [CrossRef]
- Choi, Y.H.; Lee, I.H.; Yang, M.; Cho, Y.S.; Jo, Y.H.; Bae, H.J.; Kim, Y.S.; Park, J.D. Clinical significance of potential drug–drug interactions in a pediatric intensive care unit: A single-center retrospective study. PLoS ONE 2021, 16, e0246754. [Google Scholar] [CrossRef] [PubMed]
- Fraser, L.K.; Gibson-Smith, D.; Jarvis, S.; Papworth, A.; Neefjes, V.; Hills, M.; Doran, T.; Taylor, J. Polypharmacy in Children and Young People With Life-limiting Conditions From 2000 to 2015: A Repeated Cross-sectional Study in England. J. Pain Symptom Manag. 2022, 64, 213–221.e1. [Google Scholar] [CrossRef] [PubMed]
- Horace, A.; Ahmed, F. Polypharmacy in pediatric patients and opportunities for pharmacists’ involvement. Integr. Pharm. Res. Pract. 2015, 4, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Baysari, M.T.; Hilmer, S.N.; Day, R.O.; Van Dort, B.A.; Zheng, W.Y.; Quirk, R.; Deidun, D.; Moran, M.; Stanceski, K.; Aryal, N.; et al. Effectiveness of computerised alerts to reduce drug–drug interactions (DDIs) and DDI-related harm in hospitalised patients: A quasi-experimental controlled pre–post study. BMJ Qual. Saf. 2025, in press. [Google Scholar] [CrossRef]
Variable | Patients (n = 80) * | ||
---|---|---|---|
Age, y | 8.9 ± 4.6 range (1–17) | ||
Gender | Female | 33 (41.3%) | |
Male | 47 (58.8%) | ||
Weight (kg) | 30.2450 | ||
Height (cm) | 128.9625 | ||
Malignancy type | |||
ALL | 25 (31.0%) | ||
AML | 8 (10.0%) | ||
HL | 2 (2.0%) | ||
NHL | 7 (8.0%) | ||
Neuroblastoma | 1 (1%) | ||
Osteosarcoma | 7 (8%) | ||
Medulloblastoma | 5 (6%) | ||
Ewing sarcoma | 6 (7%) | ||
Hepatoblastoma | 4 (5%) | ||
Wilm’s tumour | 4 (5%) | ||
Soft tissue sarcoma | 2 (2%) | ||
Rhabdomyosarcoma | 3 (3%) | ||
GCT | 2 (2%) | ||
Mixed line leukemia | 1 (1%) | ||
Ependymoma | 1 (1%) | ||
Ameloblastic carcinoma | 1 (1%) | ||
Adrenocortical tumor | 1(1%) | ||
Comorbidities | |||
None | 73 (91%) | ||
DM | 2 (2%) | ||
Ataxia telangiectasia | 1(1%) | ||
CP | 1(1%) | ||
Down | 1(1%) | ||
Minor thalassemia | 1 (1%) | ||
Myelodysplastic syndrome | 1(1%) | ||
Admission cause | |||
Chemotherapy | 68 (85%) | ||
Febrile neutropenia | 9 (11%) | ||
Chemotherapy & Neutropenia | 2 (2%) | ||
Meningitis | 1(1%) | ||
Chemotherapy | Yes | 72(90%) | |
No | 8 (10%) | ||
Admission | Urgent | 30 (37.5%) | |
Scheduled | 50 (62.5%) |
Drug Name | n (%) | Therapeutic Group 1 | Drug Name | n (%) | Therapeutic Group 1 |
---|---|---|---|---|---|
Ranitidine 2 | 66 | A02BA | Cyclophosphamide | 8 | L01AA |
Allopurinol | 59 | M04AA | Ifosfamide | 11 | L01AA |
Granisetron | 64 | A04AA | Amphotericin B | 7 | J02AA |
Cytosar | 37 | L01BC | Vancomycin | 7 | J01XA |
Methotrexate | 34 | L04AX | Irinotecan | 5 | L01CE |
Paracetamol | 33 | N02BE | Pantoprazole | 5 | A02BC |
Co-Trimoxazole | 33 | J01EE | Mercaptopurine (6-MP) | 5 | L01BB |
Vincristine | 29 | L01CA | Voriconazole | 5 | J02AC |
Ursodeoxycholic acid | 25 | A05AA | Bevacizumab | 4 | L01FG |
Etoposide | 22 | L01CB | Clindamycin | 4 | J01FF |
G-CSF | 22 | L03AA | Doxorubicin | 4 | L01DB |
Dexamethasone | 21 | H02AB | Piperacillin/tazobactam | 4 | J01CR |
Mesna | 19 | R05CB | Amikacin | 3 | J01GB |
Meropenem | 18 | J01DH | Bleomycin | 3 | L01DC |
Ciprofloxacin | 17 | J01MA | Cefazolin | 3 | J01DB |
Hydrocortisone | 16 | H02AB | Ondansetron | 3 | A04AA |
Livergol® 3 | 14 | A05BA | Pantoprazole | 3 | A02BC |
Doxorubicin | 13 | L01DB | Metoclopramide | 3 | A03FA |
Pegaspargase | 13 | L01XX | Rituximab | 3 | L01FA |
Cisplatin | 12 | L01XA | Temozolomide | 3 | L01AX |
Leucovorin | 12 | V03AF | Fluorouracil (5-FU) | 2 | L01BC |
Pairs of Drugs | n (%) | Pairs of Drugs | n (%) | Pairs of Drugs | n (%) |
---|---|---|---|---|---|
Acetaminophen–Granisetron | 26 (13.1%) | Cisplatin–Etoposide | 4 (2%) | Etoposide–Cytarabine | 1 (0.5%) |
MTX–VCR | 16 (8.1%) | MTX–Idarubicin | 4 (2%) | Adrianycin–Etoposide | 1 (0.5%) |
MTX–Cotrimoxazole | 16 (8.1%) | Doxorubicin–Cisplatin | 3 (1.5%) | Cotrimoxazole–Fluconazole | 1 (0.5%) |
Pegaspar–VCR | 14 (7.1%) | Bleomycin–Etoposide | 3 (1.5%) | Cotrimoxazole–Linezolid | 1 (0.5%) |
Cotrimoxazole–Ciprofloxacin | 13 (6.5%) | VCR–Cisplatin | 3 (1.5%) | Pegaspar–Cytarabine | 1 (0.5%) |
Pegaspar–MTX | 11 (5.5%) | Bleomycin–Cisplatin | 2 (1%) | Fluconazole–Granisetrone | 1 (0.5%) |
MTX–Ciprofloxacin | 10 (5%) | CCNU–Cisplatin | 2 (1%) | Fluconazole–Ciprofloxacin | 1 (0.5%) |
MTX–Leukoverin | 10 (5%) | VCR–Fluconazole | 1 (0.5%) | Oxaliplatin–Etoposide | 1 (0.5%) |
MTX–Adriamycin | 10 (5%) | Ranitidine–Fluconazole | 1 (0.5%) | Cisplatin–Cytarabine | 1 (0.5%) |
Etoposide–Cytozar | 8 (4%) | Irinotecan–Sirolimus | 1 (0.5%) | Azithromycin–Fluconazole | 1 (0.5%) |
Ciprofloxacin–Hydrocortisone | 7 (3.5%) | Linezolid–Granisetrone | 1 (0.5%) | Dexamethasone–Fluconazole | 1 (0.5%) |
Ciprofloxacin–Dexamethasone | 6 (3%) | MTX–Cytarabine | 1 (0.5%) | Ranitidine–Azithromycin | 1 (0.5%) |
MTX–6MP | 4 (2%) | Cytarabine–Adriamycin | 1 (0.5%) | Cytarabine–Idarubicin | 1 (0.5%) |
5FU–Leukoverin | 4 (2%) | MTX–Etoposide | 1 (0.5%) | MTX–Azithromycin | 1 (0.5%) |
Chemotherapy Regimen | LEXI Interact | Drugs.com | Other Drugs (LEXI) | LEXI Interact | |
---|---|---|---|---|---|
1 | Etoposide Cytosar | No | Moderate 1 | No | N.A. |
2 | Methotrexate Leucovorin | A | Moderate; Leucovorin may reduce the effects of methotrexate. | Methotrexate & Azithromycin | C: Azithromycin may increase the serum concentration of Methotrexate |
3 | Vincristine Irinotecan Temozolomide Bevacizumab | No | No | Vincristine & Fluconazole | C: Neuropathies, gastrointestinal toxicities |
Acetaminophen & Granisetron | B: Granisetron may diminish the analgesic effect of acetaminophen | ||||
Fluconazole & ranitidine | A | ||||
4 | Vincristine Mesna Ifosfamide Etoposide | No | No | Ciprofloxacin & Dexamethasone | C: Tendonitis, tendon rupture |
Ciprofloxacin & Cotrimoxazole | C: Hypoglycemia | ||||
5 | Irinotecan Prednisolone Sirolimus | No | Irinotecan & Sirolimus (moderate); Using sirolimus together with irinotecan may increase the blood levels and effects of one or both medications. | Linezolide & Granisetron | C: Hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status change |
6 | Etoposide Adriamycin Cytarabine Methotrexate | No | 1- Methotrexate & Cytarabine (Moderate); Liver and/or nervous system problems. 2- Methotrexate & Adriamycin (Moderate) 1 3- Adriamycin & Cytarabine (Moderate) 1 4- Methotrexate & Etoposide (Moderate) 2 5- Etoposide & Cytarabine (Moderate) 2 6- Adriamycin & Etoposide (Minor). | No | N.A. |
7 | Vincristine PegAspar Methotrexate Cytarabine | No | 1- Methotrexate & Cytarabine (moderate); Liver and/or nervous system problems. 2- Methotrexate & Vincristine (moderate); Liver problems. 3- PegAspar & Methotrexate (moderate); Pegaspargase may reduce the effects of methotrexate in the treatment of some conditions. 4- PegAspar & Cytarabine (moderate); Liver damage. 5- Vincristine & PegAspar (moderate); Liver damage | Methotrexate & Cotrimoxazole | D: Bone marrow suppression |
Ciprofloxacin & Hydrocortisone | |||||
Linezolide & Granisetron | C: Hyperreflexia clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status change. | ||||
Methotrexate & Ciprofloxacin | C: Ciprofloxacin may increase the serum concentration of methotrexate. | ||||
Cotrimoxazole & Ciprofloxacin | C: Hypoglycemia | ||||
Cotrimoxazole & Fluconazole | B: Fluconazole may increase the serum concentration of Sulfamethoxazole | ||||
Cotrimoxazole & Linezolide | C: Hypoglycemia | ||||
Vincristine and Fluconazole | C: Neuropathies, gastrointestinal toxicities | ||||
Acetaminophen & Granisetron | B. Granisetron may diminish the analgesic effect of acetaminophen. | ||||
Fluconazole & ciprofloxacin | B: QTc-prolonging effect | ||||
Fluconazole & Granisetron | B: QTc-prolonging effect | ||||
Fluconazole & ranitidine | A | ||||
8 | Oxaliplatin Etoposide Bevacizumab | No | Oxaliplatin & Etoposide (moderate); Nerve damage. | Dexamethasone & Granisetron | D |
9 | Doxorubicin Cisplatin | No | Moderate 1 | Doxorubicin conventional & Granisetron | D |
Dexamethasone & Granisetron | D | ||||
Doxorubicin liposomal & Granisetron | C | ||||
10 | Cisplatin Vincristine 5-fluorouracil Leucovorin | Fluorouracil and leucovorin (C): Diarrhea, Mucositis/stomatitis, neutropenia | Major; Anemia, bleeding problems, infections, and nerve damage (fluorouracil and leucovorin). | No | N.A. |
11 | Methotrexate 6-Mercaptopurine | No | Minor | Granisetron & Hydrocortisone | D |
12 | Cisplatin Etoposide Bleomycin | No | 1- Bleomycin & cisplatin (moderate); Nerve damage. 2- Bleomycin & Etoposide (moderate) 1; 3- Cisplatin and Etoposide (moderate); Nausea and vomiting, fever, chills, sore throat, flu symptoms, easy bruising, or extreme weakness. | No | N.A. |
13 | Cisplatin Etoposide Cytarabine | No | 1- Cisplatin & Cytarabine (moderate) 1 2- Cisplatin & etoposide (moderate); Nausea and vomiting, fever, chills, sore throat, flu symptoms, easy bruising, or extreme weakness 3- Cytarabine & Etoposide (moderate) 1 | Azithromycin & Fluconazole | C: Monitor for QTc interval prolongation and ventricular arrhythmias |
Ciprofloxacin & Hydrocortisone | C: Tendonitis, tendon rupture | ||||
Dexamethasone & Fluconazole | C: Fluconazole may decrease the metabolism of Dexamethasone | ||||
Linezolide & Granisetron | C: Hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status change | ||||
Ranitidine & Azithromycin | C | ||||
Cotrimoxazole & Ciprofloxacin | C: Hypoglycemia | ||||
Cotrimoxazole & fluconazole | C | ||||
Cotrimoxazole & Linezolide | C: Hypoglycemia | ||||
Acetaminophen & Granisetron | B: Granisetron may diminish the analgesic effect of acetaminophen. | ||||
Fluconazole & Ciprofloxacin | B: QTc-prolonging effect | ||||
Fluconazole & Granisetron | B: QTc-prolonging effect | ||||
Fluconazole & Ranitidine | A | ||||
14 | Cisplatin Vincristine 5-fluorouracil Leucovorin | Fluorouracil and Leucovorin (C): Diarrhea, mucositis/Stomatitis, neutropenia | Fluorouracil & leucovorin (Major); Anemia, bleeding problems, infections, and nerve damage. | No | N.A. |
15 | 6-Mercaptopurine Methotrexate Leucovorin | Methotrexate and Leucovorin (A) | 1- Methotrexate & Leucovorin (Moderate); Leucovorin may reduce the effects of methotrexate. 2- Methotrexate and Mercaptopurine (Minor); | No | N.A. |
16 | Lomustine Vincristine Cisplatin | No | 1- Vincristine & Cisplatin (Moderate); Nerve damage. 2- Cisplatin & Lomustine (Moderate) 1 | Vincristine & Granisetron | C |
A | |||||
17 | Idarubicin Cytarabine Methotrexate | No | 1- Methotrexate & Cytarabine (Moderate); Liver and/or nervous system problems. 2- Methotrexate & Idarubicin (Moderate) 1 3- Cytarabine & Idarubicin (Moderate) 1 | No | N.A. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zekavat, O.R.; Zarsanj, N.; Sadeghdoust, A.; Lavu, A.; Bordbar, M.; Eltonsy, S.; Peymani, P. Prevalence and Clinical Significance of Potential Drug–Drug Interactions in Hospitalized Pediatric Oncology Patients: A Prospective Pharmacoepidemiologic Study. Cancers 2025, 17, 3054. https://doi.org/10.3390/cancers17183054
Zekavat OR, Zarsanj N, Sadeghdoust A, Lavu A, Bordbar M, Eltonsy S, Peymani P. Prevalence and Clinical Significance of Potential Drug–Drug Interactions in Hospitalized Pediatric Oncology Patients: A Prospective Pharmacoepidemiologic Study. Cancers. 2025; 17(18):3054. https://doi.org/10.3390/cancers17183054
Chicago/Turabian StyleZekavat, Omid Reza, Narjes Zarsanj, Adel Sadeghdoust, Alekhya Lavu, Mohammadreza Bordbar, Sherif Eltonsy, and Payam Peymani. 2025. "Prevalence and Clinical Significance of Potential Drug–Drug Interactions in Hospitalized Pediatric Oncology Patients: A Prospective Pharmacoepidemiologic Study" Cancers 17, no. 18: 3054. https://doi.org/10.3390/cancers17183054
APA StyleZekavat, O. R., Zarsanj, N., Sadeghdoust, A., Lavu, A., Bordbar, M., Eltonsy, S., & Peymani, P. (2025). Prevalence and Clinical Significance of Potential Drug–Drug Interactions in Hospitalized Pediatric Oncology Patients: A Prospective Pharmacoepidemiologic Study. Cancers, 17(18), 3054. https://doi.org/10.3390/cancers17183054