Chronic Liver Disease Associated Cholangiocarcinoma: Genomic Insights and Precision Therapeutic Strategies
Simple Summary
Abstract
1. Introduction
2. Chronic Liver and Biliary Diseases as Etiologic Factors
2.1. Environmental and Cholestatic Risk Factors for CCA
2.2. Risks of Developing CCA from Hepatitis Viruses
2.3. Risks of Developing CCA with Chronic Cholestatic Liver Diseases
2.4. Risks of Developing CCA with Other Liver Diseases
3. Common Genomic and Molecular Alterations in CCA
3.1. Common Genetic Alterations Seen in CCA
3.2. Genetic Abnormalities in CCA as Therapeutic Targets
3.3. Genomic Alterations According to Anatomical Subtypes of CCA
4. Genomic and Molecular Alterations by Etiology
4.1. CCA Associated with Chronic Hepatitis Viruses Infection
Etiology | Subtype of CCA | Sample Size | Gene Alterations | Reference |
---|---|---|---|---|
HBV | iCCA | 103 patients | TP53, IDH1, PTEN, and ARID1A | [126] |
HBV | iCCA | 41 patients | TERT | [128] |
HCV | iCCA and perihilar CCA | 24 patients | FGFR2 | [67] |
PSC | All | 186 patients | TP53, KRAS, CDKN2A, SMAD4, and ERBB2 | [130] |
Liver Fluke | All | 8 patients | TP53, KRAS, and SMAD4 | [131] |
Liver Fluke | All | 108 patients | TP53 | [132] |
Liver Fluke | All | 23 patients | ERBB2, TP53 | [133] |
Hepatolithiasis | iCCA | 38 patients | KRAS | [134] |
4.2. CCA Associated with Chronic Cholestatic Liver Diseases
4.3. CCA Associated with Other Liver Diseases
5. Implications for Precision Therapy
5.1. FGFR2 Mutation-Targeted Therapy
5.2. IDH1 Mutation-Targeted Therapy
5.3. ERBB2 Mutation-Targeted Therapy
5.4. Therapies Targeting Other Alterations
6. Therapeutic Resistance and Future Direction in CCA
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AKT | Protein kinase B |
ALD | Alcohol-related liver disease |
ALK | Anaplastic lymphoma kinase |
ARD1A | AT-rich interactive domain 1A |
BAP1 | BRCA1-associated protein 1 |
BillN | Biliary intraepithelial neoplasia |
BRAF | B-Raf proto-oncogene, serine/threonine kinase |
BRCA1/2 | Breast cancer gene 1/2 |
CCA | Cholangiocarcinoma |
CDKN2A/B | Cyclin-dependent kinase inhibitor 2A/B |
DCR | Disease control rate |
DDX1 | DEAD-box RNA helicase 1 |
EGFR | Epidermal growth factor receptor |
ERBB2 | Erb-B2 receptor tyrosine kinase 2 |
ERK | Extracellular signal-regulated kinase |
eCCA | Extrahepatic cholangiocarcinoma |
FGFR2 | Fibroblast growth factor receptor 2 |
HBV | Hepatitis B virus |
HCC | Hepatocellular carcinoma |
HCV | Hepatitis C virus |
HER2 | Human epidermal growth factor receptor 2 |
iCCA | Intrahepatic cholangiocarcinoma |
IDH1 | Isocitrate dehydrogenase 1 |
KRAS | Kirsten rat sarcoma viral oncogene homolog |
MAPK | Mitogen-activated protein kinase |
MASLD | Metabolic dysfunction-associated steatotic liver disease |
MEK | MAPK/ERK kinase |
mTOR | Mechanistic target of rapamycin |
NGS | Next-generation sequencing |
NTRK | Neurotrophic tyrosine receptor kinase |
ORR | Overall survival rate |
OS | Overall survival |
PARP | Poly ADP-ribose polymerase |
PBC | Primary biliary cholangitis |
PFS | Progression-free survival |
PI3K | Phosphoinositide 3-kinase |
PIK3CA | Phosphatidylin-ositol-4,5-bisphosphate 3-kinase catalytic subunit alpha |
PSC | Primary sclerosing cholangitis |
PTEN | Phosphatase and tensin homolog deleted on chromosome 10 |
PtdIns(3,4,5)P3 | PI3K-generated phosphatidylinositol-3,4,5-trisphosphate |
RFS | Recurrence-free survival |
SMAD4 | SMAD family member 4 |
SVR | Sustained virological response |
TERT | Telomerase reverse transcriptase |
TGF-β | Transforming growth factor β |
TP53 | Tumor protein 53 |
TRK | Tropomyosin receptor kinase |
References
- Banales, J.M.; Marin, J.J.G.; Lamarca, A.; Rodrigues, P.M.; Khan, S.A.; Roberts, L.R.; Cardinale, V.; Carpino, G.; Andersen, J.B.; Braconi, C.; et al. Cholangiocarcinoma 2020: The next horizon in mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 557–588. [Google Scholar] [CrossRef]
- Gopal, P.; Robert, M.E.; Zhang, X. Cholangiocarcinoma: Pathologic and Molecular Classification in the Era of Precision Medicine. Arch. Pathol. Lab. Med. 2023, 148, 359–370. [Google Scholar] [CrossRef]
- Bergquist, A.; von Seth, E. Epidemiology of cholangiocarcinoma. Best Pract. Res., Clin. Gastroenterol. 2015, 29, 221–232. [Google Scholar] [CrossRef]
- Brindley, P.J.; Bachini, M.; Ilyas, S.I.; Khan, S.A.; Loukas, A.; Sirica, A.E.; Teh, B.T.; Wongkham, S.; Gores, G.J. Cholangiocarcinoma. Nat. Rev. Dis. Primers 2021, 7, 65. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; He, Q.; Lu, Y.; Zhang, W.; Jin, J.; Pan, H. Viral hepatitis increases the risk of cholangiocarcinoma: A systematic review and meta-analysis. Transl. Cancer Res. 2023, 12, 1602–1616. [Google Scholar] [CrossRef] [PubMed]
- Tani, J.; Masaki, T.; Oura, K.; Tadokoro, T.; Morishita, A.; Kobara, H. Extrahepatic Cancer Risk in Patients with Hepatitis C Virus Infection Treated with Direct-Acting Antivirals. Microorganisms 2024, 12, 1926. [Google Scholar] [CrossRef] [PubMed]
- Nanjundappa, R.H.; Christen, U.; Umeshappa, C.S. Distinct immune surveillance in primary biliary cholangitis and primary sclerosing cholangitis is linked with discrete cholangiocarcinoma risk. Hepatol. Commun. 2023, 7, e0218. [Google Scholar] [CrossRef]
- Bowlus, C.L.; Arrivé, L.; Bergquist, A.; Deneau, M.; Forman, L.; Ilyas, S.I.; Lunsford, K.E.; Martinez, M.; Sapisochin, G.; Shroff, R.; et al. AASLD practice guidance on primary sclerosing cholangitis and cholangiocarcinoma. Hepatology 2022, 77, 659–702. [Google Scholar] [CrossRef]
- Catanzaro, E.; Gringeri, E.; Burra, P.; Gambato, M. Primary Sclerosing Cholangitis-Associated Cholangiocarcinoma: From Pathogenesis to Diagnostic and Surveillance Strategies. Cancers 2023, 15, 4947. [Google Scholar] [CrossRef]
- Takahashi, Y.; Dungubat, E.; Kusano, H.; Fukusato, T. Pathology and Pathogenesis of Metabolic Dysfunction-Associated Steatotic Liver Disease-Associated Hepatic Tumors. Biomedicines 2023, 11, 2761. [Google Scholar] [CrossRef]
- Corrao, S.; Natoli, G.; Argano, C. Nonalcoholic fatty liver disease is associated with intrahepatic cholangiocarcinoma and not with extrahepatic form: Definitive evidence from meta-analysis and trial sequential analysis. Eur. J. Gastroenterol. Hepatol. 2020, 33, 62–68. [Google Scholar] [CrossRef]
- Xiong, J.; Yin, Z.; Xu, W.; Shen, Z.; Li, Y.; Lu, X. Alcoholic liver disease and risk of cholangiocarcinoma: A systematic review and meta-analysis. Onco. Targets Ther. 2018, 11, 8211–8219. [Google Scholar] [CrossRef] [PubMed]
- Gan, C.; Yuan, Y.; Shen, H.; Gao, J.; Kong, X.; Che, Z.; Guo, Y.; Wang, H.; Dong, E.; Xiao, J. Liver diseases: Epidemiology, causes, trends and predictions. Signal Transduct. Target. Ther. 2025, 10, 33. [Google Scholar] [CrossRef] [PubMed]
- Storandt, M.H.; Tella, S.H.; Wieczorek, M.A.; Hodge, D.; Elrod, J.K.; Rosenberg, P.S.; Jin, Z.; Mahipal, A. Projected Incidence of Hepatobiliary Cancers and Trends Based on Age, Race, and Gender in the United States. Cancers 2024, 16, 684. [Google Scholar] [CrossRef] [PubMed]
- Tataru, D.; Khan, S.A.; Hill, R.; Morement, H.; Wong, K.; Paley, L.; Toledano, M.B. Cholangiocarcinoma across England: Temporal changes in incidence, survival and routes to diagnosis by region and level of socioeconomic deprivation. JHEP Rep. 2024, 6, 100983. [Google Scholar] [CrossRef]
- Esnaola, N.F.; Meyer, J.E.; Karachristos, A.; Maranki, J.L.; Camp, E.R.; Denlinger, C.S. Evaluation and management of intrahepatic and extrahepatic cholangiocarcinoma. Cancer 2016, 122, 1349–1369. [Google Scholar] [CrossRef]
- Oh, D.-Y.; He, A.R.; Bouattour, M.; Okusaka, T.; Qin, S.; Chen, L.-T.; Kitano, M.; Lee, C.-K.; Kim, J.W.; Chen, M.-H.; et al. Durvalumab or placebo plus gemcitabine and cisplatin in participants with advanced biliary tract cancer (TOPAZ-1): Updated overall survival from a randomised phase 3 study. Lancet Gastroenterol. Hepatol. 2024, 9, 694–704. [Google Scholar] [CrossRef]
- Valle, J.; Wasan, H.; Palmer, D.H.; Cunningham, D.; Anthoney, A.; Maraveyas, A.; Madhusudan, S.; Iveson, T.; Hughes, S.; Pereira, S.P.; et al. Cisplatin plus Gemcitabine versus Gemcitabine for Biliary Tract Cancer. N. Engl. J. Med. 2010, 362, 1273–1281. [Google Scholar] [CrossRef]
- Choi, J.H.; Thung, S.N. Recent Advances in Pathology of Intrahepatic Cholangiocarcinoma. Cancers 2024, 16, 1537. [Google Scholar] [CrossRef]
- Arai, Y.; Totoki, Y.; Hosoda, F.; Shirota, T.; Hama, N.; Nakamura, H.; Ojima, H.; Furuta, K.; Shimada, K.; Okusaka, T.; et al. Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma. Hepatology 2013, 59, 1427–1434. [Google Scholar] [CrossRef]
- Carosi, F.; Broseghini, E.; Fabbri, L.; Corradi, G.; Gili, R.; Forte, V.; Roncarati, R.; Filippini, D.M.; Ferracin, M. Targeting Isocitrate Dehydrogenase (IDH) in Solid Tumors: Current Evidence and Future Perspectives. Cancers 2024, 16, 2752. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Shi, L.; Merritt, J.; Zhu, A.X.; Bardeesy, N. Biology of IDH mutant cholangiocarcinoma. Hepatology 2022, 75, 1322–1337. [Google Scholar] [CrossRef] [PubMed]
- Brandi, G.; Di Girolamo, S.; Farioli, A.; de Rosa, F.; Curti, S.; Pinna, A.D.; Ercolani, G.; Violante, F.S.; Biasco, G.; Mattioli, S. Asbestos: A hidden player behind the cholangiocarcinoma increase? Findings from a case–control analysis. Cancer Causes Control. 2013, 24, 911–918. [Google Scholar] [CrossRef]
- Hasegawa, S.; Shoji, Y.; Kato, M.; Elzawahry, A.; Nagai, M.; Gi, M.; Suzuki, S.; Wanibuchi, H.; Mimaki, S.; Tsuchihara, K.; et al. Whole Genome Sequencing Analysis of Model Organisms Elucidates the Association Between Environmental Factors and Human Cancer Development. Int. J. Mol. Sci. 2024, 25, 11191. [Google Scholar] [CrossRef]
- Kim, T.-S.; Pak, J.H.; Kim, J.-B.; Bahk, Y.Y. Clonorchis sinensis, an oriental liver fluke, as a human biological agent of cholangiocarcinoma: A brief review. BMB Rep. 2016, 49, 590–597. [Google Scholar] [CrossRef]
- Mas-Coma, S.; Bargues, M.D.; Valero, M. Fascioliasis and other plant-borne trematode zoonoses. Int. J. Parasitol. 2005, 35, 1255–1278. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, J.S.; Joo, M.K.; Lee, B.J.; Kim, J.H.; Yeon, J.E.; Park, J.-J.; Byun, K.S.; Bak, Y.-T. Hepatolithiasis and intrahepatic cholangiocarcinoma: A review. World J. Gastroenterol. 2015, 21, 13418–13431. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Y.; Gu, D. Hepatitis B and C virus infections and the risk of biliary tract cancers: A meta-analysis of observational studies. Infect. Agents Cancer 2022, 17, 45. [Google Scholar] [CrossRef]
- Song, Z.; Lin, S.; Wu, X.; Ren, X.; Wu, Y.; Wen, H.; Qian, B.; Lin, H.; Huang, Y.; Zhao, C.; et al. Hepatitis B virus-related intrahepatic cholangiocarcinoma originates from hepatocytes. Hepatol. Int. 2023, 17, 1300–1317. [Google Scholar] [CrossRef]
- Huang, X.; Yu, D.; Gu, X.; Li, J.; Chen, J.; Zou, Y.; Liao, J. A comparative study of clinicopathological and imaging features of HBV-negative and HBV-positive intrahepatic cholangiocarcinoma patients with different pathologic differentiation degrees. Sci. Rep. 2023, 13, 19726. [Google Scholar] [CrossRef]
- Huang, S.-W.; Cheng, J.-S.; Chen, W.-T.; Wu, T.-S.; Ku, H.-P.; Yeh, C.-N.; Chien, R.-N.; Chang, M.-L. Hepatitis C accelerates extrahepatic cholangiocarcinoma risk: A joint study of hospital- based cases and nationwide population-based cohorts in a viral hepatitis-endemic area. Am. J. Cancer Res. 2023, 13, 3080–3090. [Google Scholar]
- Kinoshita, M.; Kosaka, H.; Kaibori, M.; Ueno, M.; Yasuda, S.; Komeda, K.; Yamamoto, Y.; Tani, M.; Aihara, T.; Shinkawa, H.; et al. Favorable impact of hepatitis C virus infection control on recurrence after surgical resection for intrahepatic cholangiocarcinoma. Hepatol. Res. 2024, 55, 707–717. [Google Scholar] [CrossRef] [PubMed]
- Souza, M.; Lima, L.C.; Al-Sharif, L.; Huang, D.Q. Incidence of Hepatobiliary Malignancies in Primary Sclerosing Cholangitis: Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2025, 23, 1695–1709.e13. [Google Scholar] [CrossRef] [PubMed]
- Schonau, J.; Wester, A.; Schattenberg, J.M.; Hagstrom, H. Risk of Cancer and Subsequent Mortality in Primary Biliary Cholangitis: A Population-based Cohort Study of 3052 Patients. Gastro. Hep. Adv. 2023, 2, 879–888. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Yang, Z.; Zhong, R. Primary biliary cirrhosis and cancer risk: A systematic review and meta-analysis. Hepatology 2012, 56, 1409–1417. [Google Scholar] [CrossRef]
- Liu, Z.-Y.; Zhou, Y.-M.; Shi, L.-H.; Yin, Z.-F. Risk factors of intrahepatic cholangiocarcinoma in patients with hepatolithiasis: A case-control study. Hepatobiliary Pancreat. Dis. Int. 2011, 10, 626–631. [Google Scholar] [CrossRef]
- Suzuki, Y.; Mori, T.; Abe, N.; Sugiyama, M.; Atomi, Y. Predictive factors for cholangiocarcinoma associated with hepatolithiasis determined on the basis of Japanese Multicenter study. Hepatol. Res. 2011, 42, 166–170. [Google Scholar] [CrossRef]
- Jagirdhar, G.S.K.; Bains, Y.; Surani, S. Removal of intrahepatic bile duct stone could reduce the risk of cholangiocarcinoma. World J. Clin. Cases 2024, 12, 1881–1884. [Google Scholar] [CrossRef]
- Summerfield, J.A.; Nagafuchi, Y.; Sherlock, S.; Cadafalch, J.; Scheuer, P.J. Hepatobiliary fibropolycystic diseases. A clinical and histological review of 51 patients. J. Hepatol. 1986, 2, 141–156. [Google Scholar] [CrossRef]
- Fard-Aghaie, M.H.; Makridis, G.; Reese, T.; Feyerabend, B.; Wagner, K.C.; Schnitzbauer, A.; Bechstein, W.O.; Oldhafer, F.; Kleine, M.; Klempnauer, J.; et al. The rate of cholangiocarcinoma in Caroli Disease A German multicenter study. HPB 2022, 24, 267–276. [Google Scholar] [CrossRef]
- Chan, K.E.; Ong, E.Y.H.; Chung, C.H.; Ong, C.E.Y.; Koh, B.; Tan, D.J.H.; Lim, W.H.; Yong, J.N.; Xiao, J.; Wong, Z.Y.; et al. Longitudinal Outcomes Associated with Metabolic Dysfunction-Associated Steatotic Liver Disease: A Meta-analysis of 129 Studies. Clin. Gastroenterol. Hepatol. 2023, 22, 488–498.e14. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.-S.; Pan, G.-Q.; Meng, Q.-B.; Liu, J.-B.; Tian, Z.-Y.; Luan, S.-J. The causal relationship between metabolic factors, drinking, smoking and intrahepatic cholangiocarcinoma: A Mendelian randomization study. Front. Oncol. 2023, 13, 1203685. [Google Scholar] [CrossRef] [PubMed]
- Osataphan, S.; Mahankasuwan, T.; Saengboonmee, C. Obesity and cholangiocarcinoma: A review of epidemiological and molecular associations. J. Hepato-Biliary-Pancreatic Sci. 2021, 28, 1047–1059. [Google Scholar] [CrossRef] [PubMed]
- De Lorenzo, S.; Tovoli, F.; Mazzotta, A.; Vasuri, F.; Edeline, J.; Malvi, D.; Boudjema, K.; Renzulli, M.; Jeddou, H.; D’errico, A.; et al. Non-Alcoholic Steatohepatitis as a Risk Factor for Intrahepatic Cholangiocarcinoma and Its Prognostic Role. Cancers 2020, 12, 3182. [Google Scholar] [CrossRef]
- Villard, C.; Widman, L.; Sparrelid, E.; Bergquist, A.; Hagström, H. The risk of cholangiocarcinoma in patients with MASLD is not increased compared to the general population. Scand. J. Gastroenterol. 2024, 59, 1249–1251. [Google Scholar] [CrossRef]
- Jensen, M.D.; West, J.; Crooks, C.; Morling, J.R.; Kraglund, F.; Card, T.; Askgaard, G.; Jepsen, P. Primary Liver Cancer Risk and Mortality in Patients with Alcohol-Related Cirrhosis in England and Denmark: Observational Cohort Studies. Am. J. Gastroenterol. 2024, 120, 593–602. [Google Scholar] [CrossRef]
- Vogel, A.; Bridgewater, J.; Edeline, J.; Kelley, R.; Klümpen, H.; Malka, D.; Primrose, J.; Rimassa, L.; Stenzinger, A.; Valle, J.; et al. Biliary tract cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2023, 34, 127–140. [Google Scholar] [CrossRef]
- Montal, R.; Sia, D.; Montironi, C.; Leow, W.Q.; Esteban-Fabró, R.; Pinyol, R.; Torres-Martin, M.; Bassaganyas, L.; Moeini, A.; Peix, J.; et al. Molecular classification and therapeutic targets in extrahepatic cholangiocarcinoma. J. Hepatol. 2020, 73, 315–327. [Google Scholar] [CrossRef]
- Churi, C.R.; Shroff, R.; Wang, Y.; Rashid, A.; Kang, H.C.; Weatherly, J.; Zuo, M.; Zinner, R.; Hong, D.; Meric-Bernstam, F.; et al. Mutation Profiling in Cholangiocarcinoma: Prognostic and Therapeutic Implications. PLoS ONE 2014, 9, e115383. [Google Scholar] [CrossRef]
- Javle, M.; Bekaii-Saab, T.; Jain, A.; Wang, Y.; Kelley, R.K.; Wang, K.; Kang, H.C.; Catenacci, D.; Ali, S.; Krishnan, S.; et al. Biliary cancer: Utility of next-generation sequencing for clinical management. Cancer 2016, 122, 3838–3847. [Google Scholar] [CrossRef]
- Lee, H.; Wang, K.; Johnson, A.; Jones, D.M.; Ali, S.M.; Elvin, J.A.; Yelensky, R.; Lipson, D.; Miller, V.A.; Stephens, P.J.; et al. Comprehensive genomic profiling of extrahepatic cholangiocarcinoma reveals a long tail of therapeutic targets. J. Clin. Pathol. 2015, 69, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Guo, C.; Zhang, K.; Jiang, H.; Pang, F.; Dou, Y.; Liu, X.; Lin, H.; Dong, X.; Zhao, S.; et al. Comprehensive molecular profiling of extrahepatic cholangiocarcinoma in Chinese population and potential targets for clinical practice. Hepatobiliary Surg. Nutr. 2019, 8, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Lowery, M.A.; Ptashkin, R.; Jordan, E.; Berger, M.F.; Zehir, A.; Capanu, M.; Kemeny, N.E.; O’Reilly, E.M.; El-Dika, I.; Jarnagin, W.R.; et al. Comprehensive Molecular Profiling of Intrahepatic and Extrahepatic Cholangiocarcinomas: Potential Targets for Intervention. Clin. Cancer Res. 2018, 24, 4154–4161. [Google Scholar] [CrossRef]
- Boerner, T.; Drill, E.; Pak, L.M.; Nguyen, B.; Sigel, C.S.; Doussot, A.; Shin, P.; Goldman, D.A.; Gonen, M.; Allen, P.J.; et al. Genetic Determinants of Outcome in Intrahepatic Cholangiocarcinoma. Hepatology 2021, 74, 1429–1444. [Google Scholar] [CrossRef]
- Gwak, G.-Y.; Yoon, J.-H.; Shin, C.M.; Ahn, Y.J.; Chung, J.K.; Kim, Y.A.; Kim, T.-Y.; Lee, H.-S. Detection of response-predicting mutations in the kinase domain of the epidermal growth factor receptor gene in cholangiocarcinomas. J. Cancer Res. Clin. Oncol. 2005, 131, 649–652. [Google Scholar] [CrossRef]
- Leone, F.; Cavalloni, G.; Pignochino, Y.; Sarotto, I.; Ferraris, R.; Piacibello, W.; Venesio, T.; Capussotti, L.; Risio, M.; Aglietta, M. Somatic Mutations of Epidermal Growth Factor Receptor in Bile Duct and Gallbladder Carcinoma. Clin. Cancer Res. 2006, 12, 1680–1685. [Google Scholar] [CrossRef]
- Okawa, Y.; Ebata, N.; Kim, N.K.; Fujita, M.; Maejima, K.; Sasagawa, S.; Nakamura, T.; Park, W.-Y.; Hirano, S.; Nakagawa, H. Actionability evaluation of biliary tract cancer by genome transcriptome analysis and Asian cancer knowledgebase. Oncotarget 2021, 12, 1540–1552. [Google Scholar] [CrossRef]
- Goeppert, B.; Frauenschuh, L.; Renner, M.; Roessler, S.; Stenzinger, A.; Klauschen, F.; Warth, A.; Vogel, M.N.; Mehrabi, A.; Hafezi, M.; et al. BRAF V600E-specific immunohistochemistry reveals low mutation rates in biliary tract cancer and restriction to intrahepatic cholangiocarcinoma. Mod. Pathol. 2014, 27, 1028–1034. [Google Scholar] [CrossRef]
- Robertson, S.; Hyder, O.; Dodson, R.; Nayar, S.K.; Poling, J.; Beierl, K.; Eshleman, J.R.; Lin, M.-T.; Pawlik, T.M.; Anders, R.A. The frequency of KRAS and BRAF mutations in intrahepatic cholangiocarcinomas and their correlation with clinical outcome. Hum. Pathol. 2013, 44, 2768–2773. [Google Scholar] [CrossRef]
- Spizzo, G.; Puccini, A.; Xiu, J.; Goldberg, R.M.; Grothey, A.; Shields, A.F.; Arora, S.P.; Khushmann, M.; Salem, M.E.; Battaglin, F.; et al. Molecular profile of BRCA-mutated biliary tract cancers. ESMO Open 2020, 5, e000682. [Google Scholar] [CrossRef]
- Kendre, G.; Murugesan, K.; Brummer, T.; Segatto, O.; Saborowski, A.; Vogel, A. Charting co-mutation patterns associated with actionable drivers in intrahepatic cholangiocarcinoma. J. Hepatol. 2022, 78, 614–626. [Google Scholar] [CrossRef] [PubMed]
- Abou-Alfa, G.K.; Macarulla, T.; Javle, M.M.; Kelley, R.K.; Lubner, S.J.; Adeva, J.; Cleary, J.M.; Catenacci, D.V.; Borad, M.J.; Bridgewater, J.; et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): A multicentre, randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 2020, 21, 796–807. [Google Scholar] [CrossRef] [PubMed]
- Borger, D.R.; Tanabe, K.K.; Fan, K.C.; Lopez, H.U.; Fantin, V.R.; Straley, K.S.; Schenkein, D.P.; Hezel, A.F.; Ancukiewicz, M.; Liebman, H.M.; et al. Frequent Mutation of Isocitrate Dehydrogenase (IDH)1 and IDH2 in Cholangiocarcinoma Identified Through Broad-Based Tumor Genotyping. Oncology 2011, 17, 72–79. [Google Scholar] [CrossRef]
- Silverman, I.M.; Hollebecque, A.; Friboulet, L.; Owens, S.; Newton, R.C.; Zhen, H.; Feliz, L.; Zecchetto, C.; Melisi, D.; Burn, T.C. Clinicogenomic Analysis of FGFR2-Rearranged Cholangiocarcinoma Identifies Correlates of Response and Mechanisms of Resistance to Pemigatinib. Cancer Discov. 2021, 11, 326–339. [Google Scholar] [CrossRef]
- Graham, R.P.; Fritcher, E.G.B.; Pestova, E.; Schulz, J.; Sitailo, L.A.; Vasmatzis, G.; Murphy, S.J.; McWilliams, R.R.; Hart, S.N.; Halling, K.C.; et al. Fibroblast growth factor receptor 2 translocations in intrahepatic cholangiocarcinoma. Hum. Pathol. 2014, 45, 1630–1638. [Google Scholar] [CrossRef]
- Maruki, Y.; Morizane, C.; Arai, Y.; Ikeda, M.; Ueno, M.; Ioka, T.; Naganuma, A.; Furukawa, M.; Mizuno, N.; Uwagawa, T.; et al. Molecular detection and clinicopathological characteristics of advanced/recurrent biliary tract carcinomas harboring the FGFR2 rearrangements: A prospective observational study (PRELUDE Study). J. Gastroenterol. 2021, 56, 250–260. [Google Scholar] [CrossRef]
- Satake, T.; Morizane, C.; Isayama, H.; Katanuma, A.; Endo, M.; Kobayashi, N.; Kojima, Y.; Kubo, S.; Matsubara, S.; Shiraishi, T.; et al. Multicenter observational study to characterize fibroblast growth factor receptor 2 fusions or rearrangements in patients with advanced/metastatic cholangiocarcinoma. Hepatol. Res. 2025, 55, 1005–1014. [Google Scholar] [CrossRef]
- Galdy, S.; Lamarca, A.; McNamara, M.G.; Hubner, R.A.; Cella, C.A.; Fazio, N.; Valle, J.W. HER2/HER3 pathway in biliary tract malignancies; systematic review and meta-analysis: A potential therapeutic target? Cancer Metastasis Rev. 2016, 36, 141–157. [Google Scholar] [CrossRef]
- Nam, A.-R.; Kim, J.-W.; Cha, Y.; Ha, H.; Park, J.E.; Bang, J.-H.; Jin, M.H.; Lee, K.-H.; Kim, T.-Y.; Han, S.-W.; et al. Therapeutic implication of HER2 in advanced biliary tract cancer. Oncotarget 2016, 7, 58007–58021. [Google Scholar] [CrossRef]
- Kim, H.; Kim, R.; Kim, H.R.; Jo, H.; Kim, H.; Ha, S.Y.; Park, J.O.; Park, Y.S.; Kim, S.T. HER2 Aberrations as a Novel Marker in Advanced Biliary Tract Cancer. Front. Oncol. 2022, 12, 834104. [Google Scholar] [CrossRef]
- Haaft, B.H.T.; Pedregal, M.; Prato, J.; Klümpen, H.-J.; Moreno, V.; Lamarca, A. Revolutionizing anti-HER2 therapies for extrahepatic cholangiocarcinoma and gallbladder cancer: Current advancements and future perspectives. Eur. J. Cancer 2024, 199, 113564. [Google Scholar] [CrossRef] [PubMed]
- Jacobi, O.; Ross, J.S.; Goshen-Lago, T.; Haddad, R.; Moore, A.; Sulkes, A.; Brenner, B.; Ben-Aharon, I. ERBB2 Pathway in Biliary Tract Carcinoma: Clinical Implications of a Targetable Pathway. Oncol. Res. Treat. 2020, 44, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Parikh, K.; Banna, G.; Liu, S.V.; Friedlaender, A.; Desai, A.; Subbiah, V.; Addeo, A. Drugging KRAS: Current perspectives and state-of-art review. J. Hematol. Oncol. 2022, 15, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Guo, Z.; Wang, F.; Fu, L. KRAS mutation: From undruggable to druggable in cancer. Signal Transduct. Target. Ther. 2021, 6, 386. [Google Scholar] [CrossRef]
- Thongyoo, P.; Chindaprasirt, J.; Aphivatanasiri, C.; Intarawichian, P.; Kunprom, W.; Kongpetch, S.; Techasen, A.; Loilome, W.; Namwat, N.; Titapun, A.; et al. KRAS Mutations in Cholangiocarcinoma: Prevalence, Prognostic Value, and KRAS G12/G13 Detection in Cell-Free DNA. Cancer Genom. Proteom. 2025, 22, 112–126. [Google Scholar] [CrossRef]
- Wang, H.; Guo, M.; Wei, H.; Chen, Y. Targeting p53 pathways: Mechanisms, structures and advances in therapy. Signal Transduct. Target. Ther. 2023, 8, 92. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, J.; Long, Y.; Maimaitijiang, A.; Su, Z.; Li, W.; Li, J. Unraveling the Guardian: p53′s Multifaceted Role in the DNA Damage Response and Tumor Treatment Strategies. Int. J. Mol. Sci. 2024, 25, 12928. [Google Scholar] [CrossRef]
- Stein, Y.; Aloni-Grinstein, R.; Rotter, V. Mutant p53 oncogenicity: Dominant-negative or gain-of-function? Carcinog. 2020, 41, 1635–1647. [Google Scholar] [CrossRef]
- Tornesello, M.L. TP53 mutations in cancer: Molecular features and therapeutic opportunities (Review). Int. J. Mol. Med. 2024, 55, 7. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Zhao, J.; Wu, Y.; Zhang, N.; Shen, W. ARID1A mutations in cancer development: Mechanism and therapy. Carcinog. 2023, 44, 197–208. [Google Scholar] [CrossRef]
- Ribeiro-Silva, C.; Vermeulen, W.; Lans, H. SWI/SNF: Complex complexes in genome stability and cancer. DNA Repair 2019, 77, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, J.; Akiyama, Y.; Shimada, S.; Ogura, T.; Ogawa, K.; Ono, H.; Mitsunori, Y.; Ban, D.; Kudo, A.; Yamaoka, S.; et al. Loss of ARID1A induces a stemness gene ALDH1A1 expression with histone acetylation in the malignant subtype of cholangiocarcinoma. Carcinog. 2019, 41, 734–742. [Google Scholar] [CrossRef]
- Yang, S.-Z.; Wang, A.-Q.; Du, J.; Wang, J.-T.; Yu, W.-W.; Liu, Q.; Wu, Y.-F.; Chen, S.-G. Low expression of ARID1A correlates with poor prognosis in intrahepatic cholangiocarcinoma. World J. Gastroenterol. 2016, 22, 5814–5821. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Ju, Z.; Zhao, W.; Wang, L.; Peng, Y.; Ge, Z.; Nagel, Z.D.; Zou, J.; Wang, C.; Kapoor, P.; et al. ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade. Nat. Med. 2018, 24, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, H.; Nakayama, K.; Kanno, K.; Ishibashi, T.; Ishikawa, M.; Iida, K.; Razia, S.; Kiyono, T.; Kyo, S. Evaluation of ARID1A as a Potential Biomarker for Predicting Response to Immune Checkpoint Inhibitors in Patients with Endometrial Cancer. Cancers 2024, 16, 1999. [Google Scholar] [CrossRef]
- Guo, B.; Friedland, S.C.; Alexander, W.; Myers, J.A.; Wang, W.; O’dEll, M.R.; Getman, M.; Whitney-Miller, C.L.; Agostini-Vulaj, D.; Huber, A.R.; et al. Arid1a mutation suppresses TGF-β signaling and induces cholangiocarcinoma. Cell Rep. 2022, 40, 111253. [Google Scholar] [CrossRef]
- Csergeová, L.; Krbušek, D.; Janoštiak, R. CIP/KIP and INK4 families as hostages of oncogenic signaling. Cell Div. 2024, 19, 11. [Google Scholar] [CrossRef]
- Kong, Y.; Hsieh, C.-H.; Alonso, L.C. ANRIL: A lncRNA at the CDKN2A/B Locus with Roles in Cancer and Metabolic Disease. Front. Endocrinol. 2018, 9, 405. [Google Scholar] [CrossRef]
- Kimura, H.; Klein, A.P.M.; Hruban, R.H.; Roberts, N.J.V. The Role of Inherited Pathogenic CDKN2A Variants in Susceptibility to Pancreatic Cancer. Pancreas 2021, 50, 1123–1130. [Google Scholar] [CrossRef]
- Kreuger, I.Z.M.; Slieker, R.C.; van Groningen, T.; van Doorn, R. Therapeutic Strategies for Targeting CDKN2A Loss in Melanoma. J. Investig. Dermatol. 2023, 143, 18–25.E1. [Google Scholar] [CrossRef]
- Peng, Y.; Chen, Y.; Song, M.; Zhang, X.; Li, P.; Yu, X.; Huang, Y.; Zhang, N.; Ji, L.; Xia, L.; et al. Co-occurrence of CDKN2A/B and IFN-I homozygous deletions correlates with an immunosuppressive phenotype and poor prognosis in lung adenocarcinoma. Mol. Oncol. 2022, 16, 1746–1760. [Google Scholar] [CrossRef]
- Ballin, N.; Ott, A.; Seibel-Kelemen, O.; Bonzheim, I.; Nann, D.; Beha, J.; Spahn, S.; Singer, S.; Ossowski, S.; Roggia, C.; et al. Case Report: FGFR2 inhibitor resistance via PIK3CA and CDKN2A/B in an intrahepatic cholangiocarcinoma patient with FGFR2-SH3GLB1 fusion. Front. Oncol. 2025, 15, 1527484. [Google Scholar] [CrossRef]
- Zhang, Y. Targeting Epidermal Growth Factor Receptor for Cancer Treatment: Abolishing Both Kinase-Dependent and Kinase-Independent Functions of the Receptor. Pharmacol. Rev. 2023, 75, 1218–1232. [Google Scholar] [CrossRef]
- Halder, S.; Basu, S.; Lall, S.P.; Ganti, A.K.; Batra, S.K.; Seshacharyulu, P. Targeting the EGFR signaling pathway in cancer therapy: What’s new in 2023? Expert Opin. Ther. Targets 2023, 27, 305–324. [Google Scholar] [CrossRef]
- Nakazawa, K.; Dobashi, Y.; Suzuki, S.; Fujii, H.; Takeda, Y.; Ooi, A. Amplification and overexpression of c-erbB-2, epidermal growth factor receptor, and c-met in biliary tract cancers. J. Pathol. 2005, 206, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, D.; Ojima, H.; Iwasaki, M.; Hiraoka, N.; Kosuge, T.; Kasai, S.; Hirohashi, S.; Shibata, T. Clinicopathological and prognostic significance of EGFR, VEGF, and HER2 expression in cholangiocarcinoma. Br. J. Cancer 2007, 98, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Cheng, H.; Roberts, T.M.; Zhao, J.J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov. 2009, 8, 627–644. [Google Scholar] [CrossRef] [PubMed]
- Samuels, Y.; Wang, Z.; Bardelli, A.; Silliman, N.; Ptak, J.; Szabo, S.; Yan, H.; Gazdar, A.; Powell, S.M.; Riggins, G.J.; et al. High Frequency of Mutations of the PIK3CA Gene in Human Cancers. Science 2004, 304, 554. [Google Scholar] [CrossRef]
- Mishra, R.; Patel, H.; Alanazi, S.; Kilroy, M.K.; Garrett, J.T. PI3K Inhibitors in Cancer: Clinical Implications and Adverse Effects. Int. J. Mol. Sci. 2021, 22, 3464. [Google Scholar] [CrossRef]
- Milsap, A.; Tsai, J.; Jafry, B.; Kim, A.; Kazmi, S.M.A.; Verma, N. Comprehensive analysis of PIK3CA mutations in advanced colorectal cancer using circulating tumor DNA profiling. npj Precis. Oncol. 2025, 9, 220. [Google Scholar] [CrossRef]
- Berchuck, J.; Facchinetti, F.; DiToro, D.; Baiev, I.; Majeed, U.; Reyes, S.; Chen, C.; Zhang, K.; Sharman, R.; Junior, P.U.; et al. The clinical landscape of cell-free DNA alterations in 1671 patients with advanced biliary tract cancer. Ann. Oncol. 2022, 33, 1269–1283. [Google Scholar] [CrossRef]
- Leicht, D.T.; Balan, V.; Kaplun, A.; Singh-Gupta, V.; Kaplun, L.; Dobson, M.; Tzivion, G. Raf kinases: Function, regulation and role in human cancer. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2007, 1773, 1196–1212. [Google Scholar] [CrossRef]
- Bharti, J.; Gogu, P.; Pandey, S.K.; Verma, A.; Yadav, J.P.; Singh, A.K.; Kumar, P.; Dwivedi, A.R.; Pathak, P. BRAF V600E in cancer: Exploring structural complexities, mutation profiles, and pathway dysregulation. Exp. Cell Res. 2025, 446, 114440. [Google Scholar] [CrossRef]
- Boucai, L.; Zafereo, M.; Cabanillas, M.E. Thyroid Cancer: A Review. JAMA 2024, 331, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Scolyer, R.A.; Atkinson, V.; Gyorki, D.E.; Lambie, D.; O’TOole, S.; Saw, R.P.; Amanuel, B.; Angel, C.M.; Button-Sloan, A.E.; Carlino, M.S.; et al. BRAF mutation testing for patients diagnosed with stage III or stage IV melanoma: Practical guidance for the Australian setting. Pathology 2022, 54, 6–19. [Google Scholar] [CrossRef] [PubMed]
- Osterlund, E.; Ristimaki, A.; Makinen, M.J.; Kytola, S.; Kononen, J.; Pfeiffer, P.; Soveri, L.M.; Keinanen, M.; Sorbye, H.; Nunes, L.; et al. Atypical (non-V600E) BRAF mutations in metastatic colorectal cancer in population and real-world cohorts. Int. J. Cancer 2024, 154, 488–503. [Google Scholar] [CrossRef]
- Ragupathi, A.; Singh, M.; Perez, A.M.; Zhang, D. Targeting the BRCA1/2 deficient cancer with PARP inhibitors: Clinical outcomes and mechanistic insights. Front. Cell Dev. Biol. 2023, 11, 1133472. [Google Scholar] [CrossRef]
- Valenza, C.; Trapani, D.; Gandini, S.; Sposetti, C.; Bielo, L.B.; Marra, A.; Giarratano, T.; Favero, D.; Cortesi, L.; Moscetti, L.; et al. Platinum-based chemotherapy and PARP inhibitors for patients with a germline BRCA pathogenic variant and advanced breast cancer (LATER-BC): Retrospective multicentric analysis of post-progression treatments. Eur. J. Cancer 2023, 190, 112944. [Google Scholar] [CrossRef]
- Zhao, M.; Mishra, L.; Deng, C.X. The role of TGF-beta/SMAD4 signaling in cancer. Int. J. Biol. Sci. 2018, 14, 111–123. [Google Scholar] [CrossRef]
- Murimwa, G.Z.; Williams, N.E.; Alzhanova, D.; Mohammadi, A.; Westcott, J.M.; Beato, F.; Dai, R.; Nivelo, L.; Rossi, F.; Fleming, H.K.; et al. SMAD4 Deficiency Promotes Pancreatic Cancer Progression and Confers Susceptibility to TGFβ Inhibition. Cancer Res. 2025, 85, 2987–2996. [Google Scholar] [CrossRef]
- Liu, A.; Yu, C.; Qiu, C.; Wu, Q.; Huang, C.; Li, X.; She, X.; Wan, K.; Liu, L.; Li, M.; et al. PRMT5 methylating SMAD4 activates TGF-β signaling and promotes colorectal cancer metastasis. Oncogene 2023, 42, 1572–1584. [Google Scholar] [CrossRef]
- Takayama, H.; Kobayashi, S.; Gotoh, K.; Sasaki, K.; Iwagami, Y.; Yamada, D.; Tomimaru, Y.; Akita, H.; Asaoka, T.; Noda, T.; et al. Prognostic value of functional SMAD4 localization in extrahepatic bile duct cancer. World J. Surg. Oncol. 2022, 20, 291. [Google Scholar] [CrossRef]
- Gao, B.; Li, X.; Li, S.; Wang, S.; Wu, J.; Li, J. Pan-cancer analysis identifies RNA helicase DDX1 as a prognostic marker. Phenomics 2022, 2, 33–49. [Google Scholar] [CrossRef] [PubMed]
- Dang, L.; White, D.W.; Gross, S.; Bennett, B.D.; Bittinger, M.A.; Driggers, E.M.; Fantin, V.R.; Jang, H.G.; Jin, S.; Keenan, M.C.; et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009, 462, 739–744. [Google Scholar] [CrossRef] [PubMed]
- Kinzler, M.N.; Jeroch, J.; Klasen, C.; Himmelsbach, V.; Koch, C.; Finkelmeier, F.; Trojan, J.; Zeuzem, S.; Pession, U.; Reis, H.; et al. Impact of IDH1 mutation on clinical course of patients with intrahepatic cholangiocarcinoma: A retrospective analysis from a German tertiary center. J. Cancer Res. Clin. Oncol. 2023, 149, 6391–6398. [Google Scholar] [CrossRef] [PubMed]
- Chmiel, P.; Gęca, K.; Rawicz-Pruszyński, K.; Polkowski, W.P.; Skórzewska, M. FGFR Inhibitors in Cholangiocarcinoma—A Novel Yet Primary Approach: Where Do We Stand Now and Where to Head Next in Targeting This Axis? Cells 2022, 11, 3929. [Google Scholar] [CrossRef]
- Landgraf, R. HER2 therapy. HER2 (ERBB2): Functional diversity from structurally conserved building blocks. Breast Cancer Res. 2007, 9, 202. [Google Scholar] [CrossRef]
- Ko, H.C.; Strickland, K.C.; Jaggessarsingh, D.; Dillard, A.; Green, M.; Newburn, E.; Sellaro, T.; Klein, J.L.; Caveney, B.; Eisenberg, M.; et al. From tissue-specific to tissue-agnostic: HER2 overexpression and the rise of antibody-drug conjugates. Front. Oncol. 2025, 15, 1565872. [Google Scholar] [CrossRef]
- Saito, A.; Yoshida, H.; Nishikawa, T.; Yonemori, K. Human epidermal growth factor receptor 2 targeted therapy in endometrial cancer: Clinical and pathological perspectives. World J. Clin. Oncol. 2021, 12, 868–881. [Google Scholar] [CrossRef]
- Vivaldi, C.; Fornaro, L.; Ugolini, C.; Niccoli, C.; Musettini, G.; Pecora, I.; Insilla, A.C.; Salani, F.; Pasquini, G.; Catanese, S.; et al. HER2 Overexpression as a Poor Prognostic Determinant in Resected Biliary Tract Cancer. Oncol. 2020, 25, 886–893. [Google Scholar] [CrossRef]
- Chung, T.; Park, Y.N. Up-to-Date Pathologic Classification and Molecular Characteristics of Intrahepatic Cholangiocarcinoma. Front. Med. 2022, 9, 857140. [Google Scholar] [CrossRef]
- Wang, T.; Drill, E.; Vakiani, E.; Pak, L.M.; Boerner, T.; Askan, G.; Schvartzman, J.M.; Simpson, A.L.; Jarnagin, W.R.; Sigel, C.S. Distinct histomorphological features are associated with IDH1 mutation in intrahepatic cholangiocarcinoma. Hum. Pathol. 2019, 91, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Meng, H.; Tian, Y.; Wang, Y.; Song, T.; Zhang, T.; Wu, Q.; Cui, Y.; Li, H.; Zhang, W.; et al. Distinct clinical and prognostic implication of IDH1/2 mutation and other most frequent mutations in large duct and small duct subtypes of intrahepatic cholangiocarcinoma. BMC Cancer 2020, 20, 318. [Google Scholar] [CrossRef] [PubMed]
- Wardell, C.P.; Fujita, M.; Yamada, T.; Simbolo, M.; Fassan, M.; Karlic, R.; Polak, P.; Kim, J.; Hatanaka, Y.; Maejima, K.; et al. Genomic characterization of biliary tract cancers identifies driver genes and predisposing mutations. J. Hepatol. 2018, 68, 959–969. [Google Scholar] [CrossRef]
- Yoon, J.G.; Kim, M.H.; Jang, M.; Kim, H.; Hwang, H.K.; Kang, C.M.; Lee, W.J.; Kang, B.; Lee, C.; Lee, M.G.; et al. Molecular Characterization of Biliary Tract Cancer Predicts Chemotherapy and Programmed Death 1/Programmed Death-Ligand 1 Blockade Responses. Hepatology 2021, 74, 1914–1931. [Google Scholar] [CrossRef]
- Zou, S.; Li, J.; Zhou, H.; Frech, C.; Jiang, X.; Chu, J.S.C.; Zhao, X.; Li, Y.; Li, Q.; Wang, H.; et al. Mutational landscape of intrahepatic cholangiocarcinoma. Nat. Commun. 2014, 5, 5696. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, H.; Zhou, D.; Wang, H.; Wang, Q.; Zou, S.; Tu, Q.; Wu, M.; Hu, H. Hepatitis B virus-associated intrahepatic cholangiocarcinoma and hepatocellular carcinoma may hold common disease process for carcinogenesis. Eur. J. Cancer 2010, 46, 1056–1061. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, Y.; Tian, T.; Rao, X.; Dong, W.; Zhang, J.; Yang, Y.; Tao, Q.; Peng, F.; Shen, C.; et al. Analysis of viral integration reveals new insights of oncogenic mechanism in HBV-infected intrahepatic cholangiocarcinoma and combined hepatocellular-cholangiocarcinoma. Hepatol. Int. 2022, 16, 1339–1352. [Google Scholar] [CrossRef]
- An, J.; Kim, D.; Oh, B.; Oh, Y.; Song, J.; Park, N.; Kim, H.I.; Kang, H.J.; Oh, J.; Kim, W.; et al. Comprehensive characterization of viral integrations and genomic aberrations in HBV-infected intrahepatic cholangiocarcinomas. Hepatology 2021, 75, 997–1011. [Google Scholar] [CrossRef]
- Goeppert, B.; Folseraas, T.; Roessler, S.; Kloor, M.; Volckmar, A.L.; Endris, V.; Buchhalter, I.; Stenzinger, A.; Grzyb, K.; Grimsrud, M.M.; et al. Genomic Characterization of Cholangiocarcinoma in Primary Sclerosing Cholangitis Reveals Therapeutic Opportunities. Hepatology 2020, 72, 1253–1266. [Google Scholar] [CrossRef]
- Ong, C.K.; Subimerb, C.; Pairojkul, C.; Wongkham, S.; Cutcutache, I.; Yu, W.; McPherson, J.R.; Allen, G.E.; Ng, C.C.Y.; Wong, B.H.; et al. Exome sequencing of liver fluke–associated cholangiocarcinoma. Nat. Genet. 2012, 44, 690–693. [Google Scholar] [CrossRef]
- Chan-On, W.; Nairismägi, M.-L.; Ong, C.K.; Lim, W.K.; Dima, S.; Pairojkul, C.; Lim, K.H.; McPherson, J.R.; Cutcutache, I.; Heng, H.L.; et al. Exome sequencing identifies distinct mutational patterns in liver fluke–related and non-infection-related bile duct cancers. Nat. Genet. 2013, 45, 1474–1478. [Google Scholar] [CrossRef] [PubMed]
- Jusakul, A.; Cutcutache, I.; Yong, C.H.; Lim, J.Q.; Huang, M.N.; Padmanabhan, N.; Nellore, V.; Kongpetch, S.; Ng, A.W.T.; Ng, L.M.; et al. Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma. Cancer Discov. 2017, 7, 1116–1135. [Google Scholar] [CrossRef] [PubMed]
- Zen, Y.; Adsay, N.V.; Bardadin, K.; Colombari, R.; Ferrell, L.; Haga, H.; Hong, S.-M.; Hytiroglou, P.; Klöppel, G.; Lauwers, G.Y.; et al. Biliary intraepithelial neoplasia: An international interobserver agreement study and proposal for diagnostic criteria. Mod. Pathol. 2007, 20, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Kamp, E.J.; Dinjens, W.N.; Doukas, M.; van Marion, R.; Verheij, J.; Ponsioen, C.Y.; Bruno, M.J.; Koerkamp, B.G.; Trivedi, P.J.; Peppelenbosch, M.P.; et al. Genetic alterations during the neoplastic cascade towards cholangiocarcinoma in primary sclerosing cholangitis. J. Pathol. 2022, 258, 227–235. [Google Scholar] [CrossRef]
- Vedeld, H.M.; Grimsrud, M.M.; Andresen, K.; Pharo, H.D.; von Seth, E.; Karlsen, T.H.; Honne, H.; Paulsen, V.; Färkkilä, M.A.; Bergquist, A.; et al. Early and accurate detection of cholangiocarcinoma in patients with primary sclerosing cholangitis by methylation markers in bile. Hepatology 2021, 75, 59–73. [Google Scholar] [CrossRef]
- Boyd, S.; Mustamäki, T.; Sjöblom, N.; Nordin, A.; Tenca, A.; Jokelainen, K.; Rantapero, T.; Liuksiala, T.; Lahtinen, L.; Kuopio, T.; et al. NGS of brush cytology samples improves the detection of high-grade dysplasia and cholangiocarcinoma in patients with primary sclerosing cholangitis: A retrospective and prospective study. Hepatol. Commun. 2024, 8, e0415. [Google Scholar] [CrossRef]
- Hsu, M.; Sasaki, M.; Igarashi, S.; Sato, Y.; Nakanuma, Y. KRAS and GNAS mutations and p53 overexpression in biliary intraepithelial neoplasia and intrahepatic cholangiocarcinomas. Cancer 2013, 119, 1669–1674. [Google Scholar] [CrossRef]
- Ueno, M.; Ikeda, M.; Morizane, C.; Kobayashi, S.; Ohno, I.; Kondo, S.; Okano, N.; Kimura, K.; Asada, S.; Namba, Y.; et al. Nivolumab alone or in combination with cisplatin plus gemcitabine in Japanese patients with unresectable or recurrent biliary tract cancer: A non-randomised, multicentre, open-label, phase 1 study. Lancet Gastroenterol. Hepatol. 2019, 4, 611–621. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Sahai, V.; Hollebecque, A.; Vaccaro, G.; Melisi, D.; Al-Rajabi, R.; Paulson, A.S.; Borad, M.J.; Gallinson, D.; Murphy, A.G.; et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: A multicentre, open-label, phase 2 study. Lancet Oncol. 2020, 21, 671–684. [Google Scholar] [CrossRef]
- Makawita, S.; Abou-Alfa, G.K.; Roychowdhury, S.; Sadeghi, S.; Borbath, I.; Goyal, L.; Cohn, A.; Lamarca, A.; Oh, D.-Y.; Macarulla, T.; et al. Infigratinib in patients with advanced cholangiocarcinoma with FGFR2 gene fusions/translocations: The PROOF 301 trial. Futur. Oncol. 2020, 16, 2375–2384. [Google Scholar] [CrossRef]
- Goyal, L.; Meric-Bernstam, F.; Hollebecque, A.; Valle, J.W.; Morizane, C.; Karasic, T.B.; Abrams, T.A.; Furuse, J.; Kelley, R.K.; Cassier, P.A.; et al. Futibatinib for FGFR2 -Rearranged Intrahepatic Cholangiocarcinoma. N. Engl. J. Med. 2023, 388, 228–239. [Google Scholar] [CrossRef]
- Zhu, A.X.; Macarulla, T.; Javle, M.M.; Kelley, R.K.; Lubner, S.J.; Adeva, J.; Cleary, J.M.; Catenacci, D.V.T.; Borad, M.J.; Bridgewater, J.A.; et al. Final Overall Survival Efficacy Results of Ivosidenib for Patients with Advanced Cholangiocarcinoma with IDH1 Mutation: The Phase 3 Randomized Clinical ClarIDHy Trial. JAMA Oncol. 2021, 7, 1669–1677. [Google Scholar] [CrossRef]
- Javle, M.; Borad, M.J.; Azad, N.S.; Kurzrock, R.; Abou-Alfa, G.K.; George, B.; Hainsworth, J.; Meric-Bernstam, F.; Swanton, C.; Sweeney, C.J.; et al. Pertuzumab and trastuzumab for HER2-positive, metastatic biliary tract cancer (MyPathway): A multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol. 2021, 22, 1290–1300. [Google Scholar] [CrossRef] [PubMed]
- Meric-Bernstam, F.; Makker, V.; Oaknin, A.; Oh, D.-Y.; Banerjee, S.; González-Martín, A.; Jung, K.H.; Ługowska, I.; Manso, L.; Manzano, A.; et al. Efficacy and Safety of Trastuzumab Deruxtecan in Patients with HER2-Expressing Solid Tumors: Primary Results From the DESTINY-PanTumor02 Phase II Trial. J. Clin. Oncol. 2024, 42, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V.; Lassen, U.; Élez, E.; Italiano, A.; Curigliano, G.; Javle, M.; de Braud, F.; Prager, G.W.; Greil, R.; Stein, A.; et al. Dabrafenib plus trametinib in patients with BRAFV600E-mutated biliary tract cancer (ROAR): A phase 2, open-label, single-arm, multicentre basket trial. Lancet Oncol. 2020, 21, 1234–1243. [Google Scholar] [CrossRef] [PubMed]
- Javle, M.; Roychowdhury, S.; Kelley, R.K.; Sadeghi, S.; Macarulla, T.; Weiss, K.H.; Waldschmidt, D.-T.; Goyal, L.; Borbath, I.; El-Khoueiry, A.; et al. Infigratinib (BGJ398) in previously treated patients with advanced or metastatic cholangiocarcinoma with FGFR2 fusions or rearrangements: Mature results from a multicentre, open-label, single-arm, phase 2 study. Lancet Gastroenterol. Hepatol. 2021, 6, 803–815. [Google Scholar] [CrossRef]
- Sootome, H.; Fujita, H.; Ito, K.; Ochiiwa, H.; Fujioka, Y.; Ito, K.; Miura, A.; Sagara, T.; Ito, S.; Ohsawa, H.; et al. Futibatinib Is a Novel Irreversible FGFR 1-4 Inhibitor That Shows Selective Antitumor Activity against FGFR-Deregulated Tumors. Cancer Res. 2020, 80, 4986–4997. [Google Scholar] [CrossRef]
- Wu, Q.; Ellis, H.; Siravegna, G.; Michel, A.G.; Norden, B.L.; Fece de la Cruz, F.; Balasooriya, E.R.; Zhen, Y.; Silveira, V.S.; Che, J.; et al. Landscape of Clinical Resistance Mechanisms to FGFR Inhibitors in FGFR2-Altered Cholangiocarcinoma. Clin. Cancer Res. 2024, 30, 198–208. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Stein, E.M.; de Botton, S.; Roboz, G.J.; Altman, J.K.; Mims, A.S.; Swords, R.; Collins, R.H.; Mannis, G.N.; Pollyea, D.A.; et al. Durable Remissions with Ivosidenib in IDH1 -Mutated Relapsed or Refractory AML. N. Engl. J. Med. 2018, 378, 2386–2398. [Google Scholar] [CrossRef]
- Huang, L.; Pang, D.; Yang, H.; Li, W.; Wang, S.; Cui, S.; Liao, N.; Wang, Y.; Wang, C.; Chang, Y.-C.; et al. Neoadjuvant–adjuvant pertuzumab in HER2-positive early breast cancer: Final analysis of the randomized phase III PEONY trial. Nat. Commun. 2024, 15, 2153. [Google Scholar] [CrossRef]
- Tabernero, J.; Hoff, P.M.; Shen, L.; Ohtsu, A.; Shah, M.A.; Siddiqui, A.; Heeson, S.; Kiermaier, A.; Macharia, H.; Restuccia, E.; et al. Pertuzumab, trastuzumab, and chemotherapy in HER2-positive gastric/gastroesophageal junction cancer: End-of-study analysis of the JACOB phase III randomized clinical trial. Gastric Cancer 2022, 26, 123–131. [Google Scholar] [CrossRef]
- Subbiah, V.; Kreitman, R.J.; Wainberg, Z.A.; Gazzah, A.; Lassen, U.; Stein, A.; Wen, P.Y.; Dietrich, S.; de Jonge, M.J.A.; Blay, J.-Y.; et al. Dabrafenib plus trametinib in BRAFV600E-mutated rare cancers: The phase 2 ROAR trial. Nat. Med. 2023, 29, 1103–1112. [Google Scholar] [CrossRef]
- Ekman, S. How selecting best therapy for metastatic NTRK fusion-positive non-small cell lung cancer? Transl. Lung Cancer Res. 2020, 9, 2535–2544. [Google Scholar] [CrossRef] [PubMed]
- O’hAire, S.; Franchini, F.; Kang, Y.-J.; Steinberg, J.; Canfell, K.; Desai, J.; Fox, S.; Ijzerman, M. Systematic review of NTRK 1/2/3 fusion prevalence pan-cancer and across solid tumours. Sci. Rep. 2023, 13, 4116. [Google Scholar] [CrossRef] [PubMed]
- Demetri, G.D.; De Braud, F.; Drilon, A.; Siena, S.; Patel, M.R.; Cho, B.C.; Liu, S.V.; Ahn, M.J.; Chiu, C.H.; Lin, J.J.; et al. Updated Integrated Analysis of the Efficacy and Safety of Entrectinib in Patients with NTRK Fusion-Positive Solid Tumors. Clin. Cancer Res. 2022, 28, 1302–1312. [Google Scholar] [CrossRef] [PubMed]
- Drilon, A.; Laetsch, T.W.; Kummar, S.; Dubois, S.G.; Lassen, U.N.; Demetri, G.D.; Nathenson, M.; Doebele, R.C.; Farago, A.F.; Pappo, A.S.; et al. Efficacy of Larotrectinib in TRK Fusion–Positive Cancers in Adults and Children. N. Engl. J. Med. 2018, 378, 731–739. [Google Scholar] [CrossRef]
- Hong, D.S.; Xu, R.H.; Shen, L.; Dierselhuis, M.P.; Orbach, D.; McDermott, R.; Italiano, A.; Tahara, M.; Bernard-Gauthier, V.; Neu, N.; et al. Efficacy and safety of larotrectinib as first-line treatment for patients with TRK fusion cancer. ESMO Open 2025, 10, 105110. [Google Scholar] [CrossRef]
- Ellis, H.; Braconi, C.; Valle, J.W.; Bardeesy, N. Cholangiocarcinoma Targeted Therapies: Mechanisms of Action and Resistance. Am. J. Pathol. 2025, 195, 437–452. [Google Scholar] [CrossRef]
- Wu, Q.; Zhen, Y.; Shi, L.; Vu, P.; Greninger, P.; Adil, R.; Merritt, J.; Egan, R.; Wu, M.J.; Yin, X.; et al. EGFR Inhibition Potentiates FGFR Inhibitor Therapy and Overcomes Resistance in FGFR2 Fusion-Positive Cholangiocarcinoma. Cancer Discov. 2022, 12, 1378–1395. [Google Scholar] [CrossRef]
- Harding, J.J.; Lowery, M.A.; Shih, A.H.; Schvartzman, J.M.; Hou, S.; Famulare, C.; Patel, M.; Roshal, M.; Do, R.K.; Zehir, A.; et al. Isoform Switching as a Mechanism of Acquired Resistance to Mutant Isocitrate Dehydrogenase Inhibition. Cancer Discov. 2018, 8, 1540–1547. [Google Scholar] [CrossRef] [PubMed]
- Cleary, J.M.; Rouaisnel, B.; Daina, A.; Raghavan, S.; Roller, L.A.; Huffman, B.M.; Singh, H.; Wen, P.Y.; Bardeesy, N.; Zoete, V.; et al. Secondary IDH1 resistance mutations and oncogenic IDH2 mutations cause acquired resistance to ivosidenib in cholangiocarcinoma. npj Precis. Oncol. 2022, 6, 61. [Google Scholar] [CrossRef]
- Schlam, I.; Tarantino, P.; Tolaney, S.M. Overcoming Resistance to HER2-Directed Therapies in Breast Cancer. Cancers 2022, 14, 3996. [Google Scholar] [CrossRef] [PubMed]
- Harding, J.J.; Piha-Paul, S.A.; Shah, R.H.; Murphy, J.J.; Cleary, J.M.; Shapiro, G.I.; Quinn, D.I.; Braña, I.; Moreno, V.; Borad, M.; et al. Antitumour activity of neratinib in patients with HER2-mutant advanced biliary tract cancers. Nat. Commun. 2023, 14, 630. [Google Scholar] [CrossRef]
- Sun, C.; Wang, L.; Huang, S.; Heynen, G.J.J.E.; Prahallad, A.; Robert, C.; Haanen, J.; Blank, C.; Wesseling, J.; Willems, S.M.; et al. Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature 2014, 508, 118–122. [Google Scholar] [CrossRef]
- Rizos, H.; Menzies, A.M.; Pupo, G.M.; Carlino, M.S.; Fung, C.; Hyman, J.; Haydu, L.E.; Mijatov, B.; Becker, T.M.; Boyd, S.C.; et al. BRAF inhibitor resistance mechanisms in metastatic melanoma: Spectrum and clinical impact. Clin. Cancer Res. 2014, 20, 1965–1977. [Google Scholar] [CrossRef]
- Villanueva, J.; Vultur, A.; Lee, J.T.; Somasundaram, R.; Fukunaga-Kalabis, M.; Cipolla, A.K.; Wubbenhorst, B.; Xu, X.; Gimotty, P.A.; Kee, D.; et al. Acquired Resistance to BRAF Inhibitors Mediated by a RAF Kinase Switch in Melanoma Can Be Overcome by Cotargeting MEK and IGF-1R/PI3K. Cancer Cell 2010, 18, 683–695. [Google Scholar] [CrossRef]
- Tritripmongkol, P.; Plengsuriyakarn, T.; Tarasuk, M.; Na-Bangchang, K. In vitro cytotoxic and toxicological activities of ethanolic extract of Kaempferia galanga Linn. and its active component, ethyl-p-methoxycinnamate, against cholangiocarcinoma. J. Integr. Med. 2020, 18, 326–333. [Google Scholar] [CrossRef]
Gene Alterations | Functional Role | Frequency | References |
---|---|---|---|
KRAS | Transduces signals from cell surface receptors to downstream pathways to regulate cell proliferation and survival. | iCCA: 24–27% eCCA: 37–46% | [48,49,50,51,52] |
TP53 | Tumor suppressor regulating cell cycle arrest, DNA repair, apoptosis, and senescence in response to cellular stress | iCCA: 20–27% eCCA: 35–68% | [48,50,52,53] |
ARID1A | Chromatin remodeling and transcription regulation; loss-of-function mutations contribute to tumorigenesis | iCCA: 18–23% eCCA: 14% | [48,50,53] |
CDKN2A/B | Regulation of the G1/S cell cycle checkpoint via inhibition of CDK4/6 | iCCA: 15–27% eCCA: 19% | [50,52,54] |
EGFR | Regulation of cell proliferation, survival, and differentiation through tyrosine kinase signaling | All: 13.6–20% | [55,56] |
PIK3CA | Driver of oncogenic PI3K signaling that promotes cell growth and survival | iCCA: 6% eCCA: 3–7% | [48,57] |
BRAFV600E | Promotion of cell growth and survival through activation of the MAPK/ERK signaling pathway. | iCCA: 3–7% eCCA: nearly 0% | [4,58,59] |
BRCA1/2 | Maintenance of genomic stability through homologous recombination repair of DNA double-strand breaks | iCCA: 3% eCCA: 5% | [60,61] |
SMAD4 | Tumor suppressor mediating TGF-β signaling to regulate cell cycle arrest, apoptosis, and differentiation | iCCA: 4% eCCA: 25% | [49] |
IDH1 | Catalyzes the cytosolic step of the tricarboxylic acid cycle, converting isocitrate to α-ketoglutarate | iCCA: 13–29% eCCA: 0–5% | [53,62,63] |
FGFR2 | Oncogenic driver through aberrant activation of FGF signaling | iCCA: 8–16% eCCA: 0–2% | [20,53,64,65,66,67] |
ERBB2 | Promotion of cell proliferation and survival through activation of downstream MAPK and PI3K-AKT signaling pathways | iCCA: 4–6% eCCA: 3–20% | [48,68,69,70,71,72] |
Target Alterations | Molecular Targeted Agents | Trial Phase | Clinical Trial Results | References |
---|---|---|---|---|
FGFR2 fusion/rearrangement | Pemigatinib | Phase II | ORR: 35.5%, PFS: 6.9 months, OS: 21.1months | [140] |
FGFR2 fusion/rearrangement | Infigratinib | Phase III | ORR: 37.9%, PFS: 7.4 months, OS: NE | [141] |
FGFR2 fusion/rearrangement | Futibatinib | Phase II | ORR: 42.0%, PFS: 9.0 months, OS: 21.7 months | [142] |
IDH1 mutation | Ivosidenib | Phase III | ORR: 2.0%, PFS: 6.9 months, OS: 10.3 months | [62,143] |
HER2 alteration | Pertuzumab plus Trastuzumab | Phase IIa | ORR:23% | [144] |
HER2 alteration | Trastuzumab plus Deruxtecan | Phase II | ORR: 37.1%, PFS: 6.9 months, OS: 13.4 months | [145] |
BRAFV600E mutation | Dabrafenib plus Trametinib | Phase II | ORR: about 47%, PFS: about 9 months, OS: about 14 months | [146] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oura, K.; Morishita, A.; Nakahara, M.; Tadokoro, T.; Fujita, K.; Tani, J.; Masaki, T.; Kobara, H. Chronic Liver Disease Associated Cholangiocarcinoma: Genomic Insights and Precision Therapeutic Strategies. Cancers 2025, 17, 3052. https://doi.org/10.3390/cancers17183052
Oura K, Morishita A, Nakahara M, Tadokoro T, Fujita K, Tani J, Masaki T, Kobara H. Chronic Liver Disease Associated Cholangiocarcinoma: Genomic Insights and Precision Therapeutic Strategies. Cancers. 2025; 17(18):3052. https://doi.org/10.3390/cancers17183052
Chicago/Turabian StyleOura, Kyoko, Asahiro Morishita, Mai Nakahara, Tomoko Tadokoro, Koji Fujita, Joji Tani, Tsutomu Masaki, and Hideki Kobara. 2025. "Chronic Liver Disease Associated Cholangiocarcinoma: Genomic Insights and Precision Therapeutic Strategies" Cancers 17, no. 18: 3052. https://doi.org/10.3390/cancers17183052
APA StyleOura, K., Morishita, A., Nakahara, M., Tadokoro, T., Fujita, K., Tani, J., Masaki, T., & Kobara, H. (2025). Chronic Liver Disease Associated Cholangiocarcinoma: Genomic Insights and Precision Therapeutic Strategies. Cancers, 17(18), 3052. https://doi.org/10.3390/cancers17183052