Computational Drug Repurposing Across the Multiple Myeloma Spectrum: From MGUS to MM
Simple Summary
Abstract
1. Introduction
2. Objectives
- To analyse publicly available transcriptomic datasets across the full spectrum of multiple myeloma (MGUS, sMM, and MM) to identify stage-specific differentially expressed genes (DEGs) and perform pathway enrichment analysis.
- To apply a computational drug-repurposing pipeline aimed at identifying candidate therapeutic compounds for each disease stage and uncovering shared and distinct candidate drugs across the MM progression.
- To investigate the molecular targets and associated pathways of the repurposed drug candidates, offering insight into the biological complexity and heterogeneity of myeloma at each stage.
- To propose rational drug combination strategies, integrating FDA-approved treatments for MM with newly identified repurposed candidates.
3. Materials and Methods
3.1. Data
3.2. Pre-Processing of Data
3.3. Detection of Differentially Expressed Genes
3.4. Pathway Analysis of DEGs
3.5. Transcriptomics-Based Drug Repurposing
3.6. Collection of the Currently Running Clinical Trials of MM and Its Stages
3.7. Structural Similarity
3.8. Drug Target Pathway Analysis
3.9. Drug Combination Synergies
- ZIP (Zero Interaction Potency): Measures interactions across different doses [34].
- Loewe Additivity: Compares observed combination effects to the expected additive effects.
- HSA (Highest Single Agent): Evaluates whether the combination is superior to the best-performing single agent.
- Bliss Independence: Assesses interactions based on independent probabilities of drug effects.
4. Results
4.1. Differential Expression Analysis
4.2. Pathway Analysis of Differentially Expressed Genes
4.3. Identification of the Shortlisted Candidate Repurposed Drugs for MM and Its Stages
4.4. Investigation of Structural Similarity Concerning Ongoing Clinical Trials
4.5. Drug Combination Synergies
4.6. Top Drug Combinations Identified
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wang, J.; Lv, C.; Zhou, M.; Xu, J.-Y.; Chen, B.; Wan, Y. Second Primary Malignancy Risk in Multiple Myeloma from 1975 to 2018. Cancers 2022, 14, 4919. [Google Scholar] [CrossRef]
- Landgren, O.; Kyle, R.A.; Pfeiffer, R.M.; Katzmann, J.A.; Caporaso, N.E.; Hayes, R.B.; Dispenzieri, A.; Kumar, S.; Clark, R.J.; Baris, D.; et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: A prospective study. Blood 2009, 113, 5412–5417. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.K.; Rajkumar, V.; Kyle, R.A.; van Duin, M.; Sonneveld, P.; Mateos, M.-V.; Gay, F.; Anderson, K.C. Multiple myeloma. Nat. Rev. Dis. Prim. 2017, 3, 17046. [Google Scholar] [CrossRef] [PubMed]
- Malard, F.; Neri, P.; Bahlis, N.J.; Terpos, E.; Moukalled, N.; Hungria, V.T.M.; Manier, S.; Mohty, M. Multiple myeloma. Nat. Rev. Dis. Prim. 2024, 10, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Ntanasis-Stathopoulos, I.; Filippatos, C.; Malandrakis, P.; Kastritis, E.; Terpos, E.; Dimopoulos, M.-A.; Gavriatopoulou, M. Observation or treatment for smoldering multiple myeloma? A systematic review and meta-analysis of randomized controlled studies. Blood Cancer J. 2025, 15, 1–9. [Google Scholar] [CrossRef]
- Kumar, S.K.; Callander, N.S.; Adekola, K.; Anderson, L.D.; Baljevic, M.; Baz, R.; Campagnaro, E.; Castillo, J.J.; Costello, C.; D’aNgelo, C.; et al. Multiple Myeloma, Version 2.2024, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2023, 21, 1281–1301. [Google Scholar] [CrossRef] [PubMed]
- Raghunathachar, S.K.; Krishnamurthy, K.P.; Gopalaiah, L.M.; Abhijith, D.; Prashant, A.; Parichay, S.R.; Ramesh, A.M. Navigating the clinical landscape: Update on the diagnostic and prognostic biomarkers in multiple myeloma. Mol. Biol. Rep. 2024, 51, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, M.A.; Voorhees, P.M.; Schjesvold, F.; Cohen, Y.C.; Hungria, V.; Sandhu, I.; Lindsay, J.; Baker, R.I.; Suzuki, K.; Kosugi, H.; et al. Daratumumab or Active Monitoring for High-Risk Smoldering Multiple Myeloma. N. Engl. J. Med. 2025, 392, 1777–1788. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhao, B.; Lan, H.; Sun, J.; Wei, G. Bortezomib-induced peripheral neuropathy: Clinical features, molecular basis, and therapeutic approach. Crit. Rev. Oncol. 2024, 197, 104353. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Terpos, E.; Boccadoro, M.; Moreau, P.; Mateos, M.-V.; Zweegman, S.; Cook, G.; Engelhardt, M.; Delforge, M.; Hajek, R.; et al. EHA–EMN Evidence-Based Guidelines for diagnosis, treatment and follow-up of patients with multiple myeloma. Nat. Rev. Clin. Oncol. 2025, 22, 680–700. [Google Scholar] [CrossRef]
- Nooka, A.K.; Rodriguez, C.; Mateos, M.V.; Manier, S.; Chastain, K.; Banerjee, A.; Kobos, R.; Qi, K.; Verona, R.; Doyle, M.; et al. Incidence, timing, and management of infections in patients receiving teclistamab for the treatment of relapsed/refractory multiple myeloma in the MajesTEC-1 study. Cancer 2023, 130, 886–900. [Google Scholar] [CrossRef]
- Abramson, H.N. Recent Advances in the Applications of Small Molecules in the Treatment of Multiple Myeloma. Int. J. Mol. Sci. 2023, 24, 2645. [Google Scholar] [CrossRef]
- Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30, 207–210. [Google Scholar] [CrossRef] [PubMed]
- André, T.; Meuleman, N.; Stamatopoulos, B.; De Bruyn, C.; Pieters, K.; Bron, D.; Lagneaux, L.; Covas, D.T. Evidences of Early Senescence in Multiple Myeloma Bone Marrow Mesenchymal Stromal Cells. PLoS ONE 2013, 8, e59756. [Google Scholar] [CrossRef] [PubMed]
- Zhan, F.; Barlogie, B.; Arzoumanian, V.; Huang, Y.; Williams, D.R.; Hollmig, K.; Pineda-Roman, M.; Tricot, G.; van Rhee, F.; Zangari, M.; et al. Gene-expression signature of benign monoclonal gammopathy evident in multiple myeloma is linked to good prognosis. Blood 2006, 109, 1692–1700. [Google Scholar] [CrossRef]
- Chng, W.J.; Kumar, S.; VanWier, S.; Ahmann, G.; Price-Troska, T.; Henderson, K.; Chung, T.-H.; Kim, S.; Mulligan, G.; Bryant, B.; et al. Molecular Dissection of Hyperdiploid Multiple Myeloma by Gene Expression Profiling. Cancer Res. 2007, 67, 2982–2989. [Google Scholar] [CrossRef]
- Agnelli, L.; Mosca, L.; Fabris, S.; Lionetti, M.; Andronache, A.; Kwee, I.; Todoerti, K.; Verdelli, D.; Battaglia, C.; Bertoni, F.; et al. A SNP microarray and FISH-based procedure to detect allelic imbalances in multiple myeloma: An integrated genomics approach reveals a wide gene dosage effect. Genes Chromosom. Cancer 2009, 48, 603–614. [Google Scholar] [CrossRef]
- López-Corral, L.; Corchete, L.A.; Sarasquete, M.E.; Mateos, M.V.; García-Sanz, R.; Fermiñán, E.; Lahuerta, J.-J.; Bladé, J.; Oriol, A.; Teruel, A.I.; et al. Transcriptome analysis reveals molecular profiles associated with evolving steps of monoclonal gammopathies. Haematologica 2014, 99, 1365–1372. [Google Scholar] [CrossRef]
- McNee, G.; Eales, K.L.; Wei, W.; Williams, D.S.; Barkhuizen, A.; Bartlett, D.B.; Essex, S.; Anandram, S.; Filer, A.; Moss, P.A.H.; et al. Citrullination of histone H3 drives IL-6 production by bone marrow mesenchymal stem cells in MGUS and multiple myeloma. Leukemia 2016, 31, 373–381. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021, 2, 100141. [Google Scholar] [CrossRef]
- Tomazou, M.; Bourdakou, M.M.; Minadakis, G.; Zachariou, M.; Oulas, A.; Karatzas, E.; Loizidou, E.M.; Kakouri, A.C.; Christodoulou, C.C.; Savva, K.; et al. Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19. Briefings Bioinform. 2021, 22. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.; Narayan, R.; Corsello, S.M.; Peck, D.D.; Natoli, T.E.; Lu, X.; Gould, J.; Davis, J.F.; Tubelli, A.A.; Asiedu, J.K.; et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 2017, 171, 1437–1452.e17. [Google Scholar] [CrossRef]
- Duan, Q.; Reid, S.P.; Clark, N.R.; Wang, Z.; Fernandez, N.F.; Rouillard, A.D.; Readhead, B.; Tritsch, S.R.; Hodos, R.; Hafner, M.; et al. L1000CDS2: LINCS L1000 characteristic direction signatures search engine. NPJ Syst. Biol. Appl. 2016, 2, 16015. [Google Scholar] [CrossRef]
- Evangelista, J.E.; Clarke, D.J.B.; Xie, Z.; Lachmann, A.; Jeon, M.; Chen, K.; Jagodnik, K.M.; Jenkins, S.L.; Kuleshov, M.V.; Wojciechowicz, M.L.; et al. SigCom LINCS: Data and metadata search engine for a million gene expression signatures. Nucleic Acids Res. 2022, 50, W697–W709. [Google Scholar] [CrossRef]
- Bolton, E.E.; Wang, Y.; Thiessen, P.A.; Bryant, S.H. Chapter 12—PubChem: Integrated Platform of Small Molecules and Biological Activities. Annu. Rep. Comput. Chem. 2008, 4, 217–241. [Google Scholar]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open babel: An open chemical toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef]
- Cao, D.-S.; Xiao, N.; Xu, Q.-S.; Chen, A.F. Rcpi: R/Bioconductor package to generate various descriptors of proteins, compounds and their interactions. Bioinformatics 2014, 31, 279–281. [Google Scholar] [CrossRef]
- Karatzas, E.; Zamora, J.E.; Athanasiadis, E.; Dellis, D.; Cournia, Z.; Spyrou, G.M.; Cowen, L. ChemBioServer 2.0: An advanced web server for filtering, clustering and networking of chemical compounds facilitating both drug discovery and repurposing. Bioinformatics 2020, 36, 2602–2604. [Google Scholar] [CrossRef]
- Bajusz, D.; Rácz, A.; Héberger, K. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J. Chemin. 2015, 7, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Corsello, S.; Bittker, J.A.; Liu, Z.; Gould, J.; McCarren, P.; Hirschman, J.E.; Johnston, S.E.; Vrcic, A.; Wong, B.; Khan, M.; et al. The Drug Repurposing Hub: A next-generation drug library and information resource. Nat. Med. 2017, 23, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Zagidullin, B.; Aldahdooh, J.; Zheng, S.; Wang, W.; Wang, Y.; Saad, J.; Malyutina, A.; Jafari, M.; Tanoli, Z.; Pessia, A.; et al. DrugComb: An integrative cancer drug combination data portal. Nucleic Acids Res. 2019, 47, W43–W51. [Google Scholar] [CrossRef]
- Yadav, B.; Wennerberg, K.; Aittokallio, T.; Tang, J. Searching for Drug Synergy in Complex Dose–Response Landscapes Using an Interaction Potency Model. Comput. Struct. Biotechnol. J. 2015, 13, 504–513. [Google Scholar] [CrossRef] [PubMed]
- Jurczyszyn, A.; Zebzda, A.; Czepiel, J.; Perucki, W.; Bazan-Socha, S.; Cibor, D.; Owczarek, D.; Majka, M. Geldanamycin and Its Derivatives Inhibit the Growth of Myeloma Cells and Reduce the Expression of the MET Receptor. J. Cancer 2014, 5, 480–490. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Sun, F.; Thornton, K.; Jing, X.; Dong, J.; Yun, G.; Pisano, M.; Zhan, F.; Kim, S.H.; Katzenellenbogen, J.A.; et al. FOXM1 regulates glycolysis and energy production in multiple myeloma. Oncogene 2022, 41, 3899–3911. [Google Scholar] [CrossRef]
- Richardson, P.G.; Mitsiades, C.S.; Laubach, J.P.; Lonial, S.; Chanan-Khan, A.A.; Anderson, K.C. Inhibition of heat shock protein 90 (HSP90) as a therapeutic strategy for the treatment of myeloma and other cancers. Br. J. Haematol. 2011, 152, 367–379. [Google Scholar] [CrossRef]
- Wang, M.; Shen, G.; Blagg, B.S. Radanamycin, a macrocyclic chimera of radicicol and geldanamycin. Bioorganic Med. Chem. Lett. 2006, 16, 2459–2462. [Google Scholar] [CrossRef]
- Soga, S.; Shiotsu, Y.; Akinaga, S.; Sharma, S.V. Development of Radicicol Analogues. Curr. Cancer Drug Targets 2003, 3, 359–369. [Google Scholar] [CrossRef]
- Abruzzese, M.P.; Bilotta, M.T.; Fionda, C.; Zingoni, A.; Soriani, A.; Petrucci, M.T.; Ricciardi, M.R.; Molfetta, R.; Paolini, R.; Santoni, A.; et al. The homeobox transcription factor MEIS2 is a regulator of cancer cell survival and IMiDs activity in Multiple Myeloma: Modulation by Bromodomain and Extra-Terminal (BET) protein inhibitors. Cell Death Dis. 2019, 10, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Cernuda, B.; Fernandes, C.T.; Allam, S.M.; Orzillo, M.; Suppa, G.; Chang, Z.C.; Athanasopoulos, D.; Buraei, Z.; Ai, T. The molecular determinants of R-roscovitine block of hERG channels. PLoS ONE 2019, 14, e0217733. [Google Scholar] [CrossRef]
- Benson, C.; White, J.; De Bono, J.; O’DOnnell, A.; Raynaud, F.; Cruickshank, C.; McGrath, H.; Walton, M.; Workman, P.; Kaye, S.; et al. A phase I trial of the selective oral cyclin-dependent kinase inhibitor seliciclib (CYC202; R-Roscovitine), administered twice daily for 7 days every 21 days. Br. J. Cancer 2006, 96, 29–37. [Google Scholar] [CrossRef]
- MacCallum, D.E.; Melville, J.; Frame, S.; Watt, K.; Anderson, S.; Gianella-Borradori, A.; Lane, D.P.; Green, S.R. Seliciclib (CYC202, R-Roscovitine) Induces Cell Death in Multiple Myeloma Cells by Inhibition of RNA Polymerase II–Dependent Transcription and Down-regulation of Mcl-1. Cancer Res. 2005, 65, 5399–5407. [Google Scholar] [CrossRef] [PubMed]
- Zagouri, F.; Bournakis, E.; Koutsoukos, K.; Papadimitriou, C.A. Heat Shock Protein 90 (Hsp90) Expression and Breast Cancer. Pharmaceuticals 2012, 5, 1008–1020. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.B.M.A.; Toh, T.B.; Hooi, L.; Silva, A.; Zhang, Y.; Tan, P.F.; Teh, A.L.; Karnani, N.; Jha, S.; Ho, C.-M.; et al. Optimizing drug combinations against multiple myeloma using a quadratic phenotypic optimization platform (QPOP). Sci. Transl. Med. 2018, 10. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.J.; Dai, M.; Pellegrino, G.; Wagner, B.K.; Stern, A.M.; Shamji, A.F.; Schreiber, S.L. Synthesis, cellular evaluation, and mechanism of action of piperlongumine analogs. Proc. Natl. Acad. Sci. 2012, 109, 15115–15120. [Google Scholar] [CrossRef]
- Kung, F.-P.; Lim, Y.-P.; Chao, W.-Y.; Zhang, Y.-S.; Yu, H.-I.; Tai, T.-S.; Lu, C.-H.; Chen, S.-H.; Li, Y.-Z.; Zhao, P.-W.; et al. Piperlongumine, a Potent Anticancer Phytotherapeutic, Induces Cell Cycle Arrest and Apoptosis In Vitro and In Vivo through the ROS/Akt Pathway in Human Thyroid Cancer Cells. Cancers 2021, 13, 4266. [Google Scholar] [CrossRef]
- Yao, Y.; Sun, Y.; Shi, M.; Xia, D.; Zhao, K.; Zeng, L.; Yao, R.; Zhang, Y.; Li, Z.; Niu, M.; et al. Piperlongumine induces apoptosis and reduces bortezomib resistance by inhibiting STAT3 in multiple myeloma cells. Oncotarget 2016, 7, 73497–73508. [Google Scholar] [CrossRef]
- Ferro, A.; Graikioti, D.; Gezer, E.; Athanassopoulos, C.M.; Cuendet, M. Entinostat-Bortezomib Hybrids against Multiple Myeloma. Molecules 2023, 28, 1456. [Google Scholar] [CrossRef]
- Bash, L.D.; Turzhitsky, V.; Black, W.; Urman, R.D. Neuromuscular Blockade and Reversal Agent Practice Variability in the US Inpatient Surgical Settings. Adv. Ther. 2021, 38, 4736–4755. [Google Scholar] [CrossRef]
- Yabasin, I.B.; Ibrahim, M.M.; Adam, A.; Wilfred, S.-A.; Ziem, J.B.; Gao, P.; Kampo, S.; Qingping, W. Anticancer effects of vecuronium bromide and cisatracurium besylate on lung cancer cells (A549), in vitro. Biomed. Aging Pathol. 2014, 4, 349–353. [Google Scholar] [CrossRef]
- Han, H.; Yang, Y.; Olesen, S.H.; Becker, A.; Betzi, S.; Schönbrunn, E. The Fungal Product Terreic Acid Is a Covalent Inhibitor of the Bacterial Cell Wall Biosynthetic Enzyme UDP-N-Acetylglucosamine 1-Carboxyvinyltransferase (MurA). Biochemistry 2010, 49, 4276–4282. [Google Scholar] [CrossRef]
- Kong, C.; Huang, H.; Xue, Y.; Liu, Y.; Peng, Q.; Liu, Q.; Xu, Q.; Zhu, Q.; Yin, Y.; Zhou, X.; et al. Heterologous pathway assembly reveals molecular steps of fungal terreic acid biosynthesis. Sci. Rep. 2018, 8, 2116. [Google Scholar] [CrossRef]
- Liang, J.; Wu, Y.-L.; Chen, B.-J.; Zhang, W.; Tanaka, Y.; Sugiyama, H. The C-Kit Receptor-Mediated Signal Transduction and Tumor-Related Diseases. Int. J. Biol. Sci. 2013, 9, 435–443. [Google Scholar] [CrossRef]
- Liang, L.-Y.; Patel, O.; Janes, P.W.; Murphy, J.M.; Lucet, I.S. Eph receptor signalling: From catalytic to non-catalytic functions. Oncogene 2019, 38, 6567–6584. [Google Scholar] [CrossRef]
- Lu, Q.; Yang, D.; Li, H.; Niu, T.; Tong, A. Multiple myeloma: Signaling pathways and targeted therapy. Mol. Biomed. 2024, 5, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Podar, K.; Tai, Y.-T.; Lin, B.K.; Narsimhan, R.P.; Sattler, M.; Kijima, T.; Salgia, R.; Gupta, D.; Chauhan, D.; Anderson, K.C. Vascular Endothelial Growth Factor-induced Migration of Multiple Myeloma Cells Is Associated with β1 Integrin- and Phosphatidylinositol 3-Kinase-dependent PKCα Activation. J. Biol. Chem. 2002, 277, 7875–7881. [Google Scholar] [CrossRef] [PubMed]
- Graziani, V.; Rodriguez-Hernandez, I.; Maiques, O.; Sanz-Moreno, V. The amoeboid state as part of the epithelial-to-mesenchymal transition programme. Trends Cell Biol. 2022, 32, 228–242. [Google Scholar] [CrossRef]
- Saltarella, I.; Altamura, C.; Lamanuzzi, A.; Apollonio, B.; Vacca, A.; Frassanito, M.A.; Desaphy, J.-F. Ion Channels in Multiple Myeloma: Pathogenic Role and Therapeutic Perspectives. Int. J. Mol. Sci. 2022, 23, 7302. [Google Scholar] [CrossRef] [PubMed]
- Caprio, C.; Sacco, A.; Giustini, V.; Roccaro, A.M. Epigenetic Aberrations in Multiple Myeloma. Cancers 2020, 12, 2996. [Google Scholar] [CrossRef]
- Eisinger-Mathason, T.K.; Andrade, J.; Lannigan, D.A. RSK in tumorigenesis: Connections to steroid signaling. Steroids 2010, 75, 191–202. [Google Scholar] [CrossRef][Green Version]
- Achladas, T.; Lafara, K.; Tsioni, K.; Kyrka, K.; Koktsidis, G.; Dimou, T.; Lafaras, C.; Barmpouti, A.; Mandala, E. Oxidative Stress in Multiple Myeloma Pathophysiology and Treatment. J. Biol. Regul. Homeost. Agents 2024, 38, 4505–4519. [Google Scholar] [CrossRef]
- Kul, A.N.; Kurt, B.O. Multiple Myeloma from the Perspective of Pro- and Anti-Oxidative Parameters: Potential for Diagnostic and/or Follow-Up Purposes? J. Pers. Med. 2024, 14, 221. [Google Scholar] [CrossRef] [PubMed]
- Di Costanzo, A.; del Gaudio, N.; Conte, L.; Altucci, L. The ubiquitin proteasome system in hematological malignancies: New insight into its functional role and therapeutic options. Cancers 2020, 12, 1898. [Google Scholar] [CrossRef] [PubMed]
- Podar, K.; Anderson, K.C. Targeting the Ubiquitin-proteasome System for the Treatment of Multiple Myeloma and Other Human Diseases. Clin. Med. Insights Ther. 2010, 2. [Google Scholar] [CrossRef]
MGUS | sMM | MM | |
---|---|---|---|
GSE36474 | MAB21L1 XG EMX2 HOXB-AS3 FAM3A | ||
GSE5900 | KIT IGLC1 PRR15 C7orf55 LOC100293211 | KIT CYAT1 LOC100293211 IGHV3-73 C7orf55 | |
GSE6477 | CLC PRG2 LOC100293211 RNASE2 PRG3 | IGHD IGLJ3 LOC100293211 CKAP2 IGHA1 | IGHD IGLJ3 LOC100293211 CKAP2 IGHA1 |
GSE13591 | IGLV1-44 IGLC1 LOC100293211 IGK CKAP2 | IGHD LOC100293211 AbParts IGLV1-44 IGHM | |
GSE47552 | IGKV2D-40 SNORD115-1 SNORD115-6 GPR15 SNORD115-44 | IGKV2D-40 IGKV2D-26 IGKV1D-27 IGHV1OR15-1 IGKV1OR2-3 | IGKV2D-40 IGKV2D-26 IGKV1OR2-3 IGKV6-21 IGKV1D-27 |
GSE80608 | SFRP2 H19 SLC14A1 F2R SCIN | FLG H19 SLC14A1 F2R SCIN |
Pathway Family | Representative Targets/Mechanisms | Example Candidates from Our Shortlist | Key References |
---|---|---|---|
HSP90/proteostasis | HSP90AA1/HSP90AB1 chaperoning of oncogenic clients; stabilisation of FOXM1; stress-survival under hypoxia/chemo | Geldanamycin, Radicicol, Luminespib, Radicicol, and derivative KF55823 | [35,36,37,38,39] |
DNA damage—response effectors | DNA damage response activation; topoisomerase II inhibition; CDK2/7/9 blockade; apoptosis with MCL1 down-regulation; ↓ IL-6 transcription/expression; metabolised to an alkylating agent | Daunorubicin, Seliciclib (Roscovitine), CGP-60474, and Mitomycin C | [40,41,42,43,44,45] |
Oxidative stress | ↑ ROS leading to mitochondria-dependent apoptosis; direct inhibition of STAT3 (Cys712) | Piperlongumine | [46,47,48] |
Epigenetic modulation—HDAC inhibition | HDAC1/2/6 inhibition; epigenetic reprogramming; synergy with proteasome inhibition | Entinostat (MS-275/SNDX-275) | [49], NCT00015925 |
Neuromuscular nicotinic AChR antagonism | Muscle-type nAChR (CHRNs) blockade; preclinical anti-metastatic effects with cisatracurium | Vecuronium bromide | [50,51] |
BTK/B cell receptor signalling | BTK catalytic inhibition; impacts mast-cell activation and B cell development | Terreic acid | [52,53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savva, K.; Bourdakou, M.M.; Stellas, D.; Zoidakis, J.; Spyrou, G.M. Computational Drug Repurposing Across the Multiple Myeloma Spectrum: From MGUS to MM. Cancers 2025, 17, 3045. https://doi.org/10.3390/cancers17183045
Savva K, Bourdakou MM, Stellas D, Zoidakis J, Spyrou GM. Computational Drug Repurposing Across the Multiple Myeloma Spectrum: From MGUS to MM. Cancers. 2025; 17(18):3045. https://doi.org/10.3390/cancers17183045
Chicago/Turabian StyleSavva, Kyriaki, Marilena M. Bourdakou, Dimitris Stellas, Jerome Zoidakis, and George M. Spyrou. 2025. "Computational Drug Repurposing Across the Multiple Myeloma Spectrum: From MGUS to MM" Cancers 17, no. 18: 3045. https://doi.org/10.3390/cancers17183045
APA StyleSavva, K., Bourdakou, M. M., Stellas, D., Zoidakis, J., & Spyrou, G. M. (2025). Computational Drug Repurposing Across the Multiple Myeloma Spectrum: From MGUS to MM. Cancers, 17(18), 3045. https://doi.org/10.3390/cancers17183045