How Many Patients with Choroidal Melanoma Would Be Eligible for Neoadjuvant Systemic Therapy to Enable Ruthenium-106 Brachytherapy?
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Proportion of Cases Eligible for Neoadjuvant Therapy to Conserve the Globe with Ruthenium-106 Brachytherapy
3.2. Proportion of Cases Eligible for Neoadjuvant Therapy to Conserve Visual Acuity with Ruthenium-106 Brachytherapy
3.3. Prevalence of Chromosome 3 Loss According to Basal Tumor Diameter and Tumor Height
4. Discussion
4.1. Main Findings
4.2. Methods
4.3. Strengths and Weaknesses
4.4. Further Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CI | Confidence Interval |
DDs | Disc Diameters |
FISH | Fluorescence In Situ Hybridization |
Gy | Grays |
LUMPO | Liverpool Uveal Melanoma Prognosticator Online |
MSA | Microsatellite Analysis |
MLPA | Multiplex Ligation-dependent Probe Amplification |
References
- Jager, M.J.; Shields, C.L.; Cebulla, C.M.; Abdel-Rahman, M.H.; Grossniklaus, H.E.; Stern, M.-H.; Carvajal, R.D.; Belfort, R.N.; Jia, R.; Shields, J.A.; et al. Uveal melanoma. Nat. Rev. Dis. Primers 2020, 6, 24. [Google Scholar] [CrossRef]
- Karimi, S.; Arabi, A.; Siavashpour, Z.; Shahraki, T.; Ansari, I. Efficacy and complications of ruthenium-106 brachytherapy for uveal melanoma: A systematic review and meta-analysis. J. Contemp. Brachyther. 2021, 13, 358–364. [Google Scholar] [CrossRef]
- Thomas, G.N.; Chou, I.-L.; Gopal, L. Plaque Radiotherapy for Ocular Melanoma. Cancers 2024, 16, 3386. [Google Scholar] [CrossRef]
- Chan, A.W.; Lin, H.; Yacoub, I.; Chhabra, A.M.; Choi, J.I.; Simone, C.B., 2nd. Proton Therapy in Uveal Melanoma. Cancers 2024, 16, 3497. [Google Scholar] [CrossRef]
- Akbaba, S.; Foerster, R.; Nicolay, N.H.; Arians, N.; Bostel, T.; Debus, J.; Hauswald, H. Linear accelerator-based stereotactic fractionated photon radiotherapy as an eye-conserving treatment for uveal melanoma. Radiat. Oncol. 2018, 13, 140. [Google Scholar] [CrossRef]
- Puthussery, J.C.; Wagner, W.; Singh, A.D. Lipid Dominant Toxic Tumor Syndrome. Ocul. Oncol. Pathol. 2024, 11, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Romano, M.R.; Catania, F.; Confalonieri, F.; Zollet, P.; Allegrini, D.; Sergenti, J.; Lanza, F.B.; Ferrara, M.; Angi, M. Vitreoretinal Surgery in the Prevention and Treatment of Toxic Tumour Syndrome in Uveal Melanoma: A Systematic Review. Int. J. Mol. Sci. 2021, 22, 10066. [Google Scholar] [CrossRef]
- AJCC Ophthalmic Oncology Task Force. International Validation of the American Joint Committee on Cancer’s 7th Edition Classification of Uveal Melanoma. JAMA Ophthalmol. 2015, 133, 376–383. [Google Scholar] [CrossRef] [PubMed]
- American Brachytherapy Society-Ophthalmic Oncology Task Force. The American Brachytherapy Society consensus guidelines for plaque brachytherapy of uveal melanoma and retinoblastoma. Brachytherapy 2014, 13, 1–14. [Google Scholar] [CrossRef]
- Fili, M.; Astrahan, M.; Stålhammar, G. Long-term outcomes after enucleation or plaque brachytherapy of choroidal melanomas touching the optic disc. Brachytherapy 2021, 20, 1245–1256. [Google Scholar] [CrossRef] [PubMed]
- Gollrad, J.; Böker, A.; Vitzthum, S.; Besserer, A.; Heufelder, J.; Gauger, U.; Böhmer, D.; Budach, V.; Zeitz, O.; Joussen, A.M.; et al. Proton Therapy for 166 Patients with Iris Melanoma: Side Effects and Oncologic Outcomes. Ophthalmol. Retina 2023, 7, 266–274. [Google Scholar] [CrossRef]
- Russo, A.; Laguardia, M.; Damato, B. Eccentric ruthenium plaque radiotherapy of posterior choroidal melanoma. Graefe’s Arch. Clin. Exp. Ophthalmol. 2012, 250, 1533–1540. [Google Scholar] [CrossRef] [PubMed]
- Pors, L.; Marinkovic, M.; Deuzeman, H.; Vu, T.; Kerkhof, E.; van Wieringen-Warmenhoven, K.M.; Rasch, C.; Bleeker, J.; Koetsier, L.; Beenakker, J.; et al. Clinical outcomes and risk factors for local failure and visual impairment in patients treated with Ru-106 brachytherapy for uveal melanoma. Clin. Transl. Radiat. Oncol. 2025, 52, 100939. [Google Scholar] [CrossRef] [PubMed]
- Banou, L.; Tsani, Z.; Arvanitogiannis, K.; Pavlaki, M.; Dastiridou, A.; Androudi, S. Radiotherapy in Uveal Melanoma: A Review of Ocular Complications. Curr. Oncol. 2023, 30, 6374–6396. [Google Scholar] [CrossRef] [PubMed]
- Finn, A.P.; Materin, M.A.; Mruthyunjaya, P. CHOROIDAL TUMOR BIOPSY: A Review of the Current State and a Glance Into Future Techniques. Retina 2018, 38 (Suppl. 1), S79–S87. [Google Scholar] [CrossRef]
- Frizziero, L.; Midena, E.; Trainiti, S.; Londei, D.; Bonaldi, L.; Bini, S.; Parrozzani, R. Uveal Melanoma Biopsy: A Review. Cancers 2019, 11, 1075. [Google Scholar] [CrossRef]
- Damato, B.; Duke, C.; Coupland, S.E.; Hiscott, P.; Smith, P.A.; Campbell, I.; Douglas, A.; Howard, P. Cytogenetics of uveal melanoma: A 7-year clinical experience. Ophthalmology 2007, 114, 1925–1931. [Google Scholar] [CrossRef]
- Damato, B.; Dopierala, J.A.; Coupland, S.E. Genotypic Profiling of 452 Choroidal Melanomas with Multiplex Ligation-Dependent Probe Amplification. Clin. Cancer Res. 2010, 16, 6083–6092. [Google Scholar] [CrossRef]
- Thomas, S.; Pütter, C.; Weber, S.; Bornfeld, N.; Lohmann, D.R.; Zeschnigk, M. Prognostic significance of chromosome 3 alterations determined by microsatellite analysis in uveal melanoma: A long-term follow-up study. Br. J. Cancer 2012, 106, 1171–1176. [Google Scholar] [CrossRef]
- Wilson, E.B. Probable Inference, the Law of Succession, and Statistical Inference. J. Am. Stat. Assoc. 1927, 22, 209. [Google Scholar] [CrossRef]
- Kaiserman, N.; Kaiserman, I.; Hendler, K.; Frenkel, S.; Pe’er, J. Ruthenium-106 plaque brachytherapy for thick posterior uveal melanomas. Br. J. Ophthalmol. 2009, 93, 1167–1171. [Google Scholar] [CrossRef]
- Damato, B.; Eleuteri, A.; Hussain, R.; Kalirai, H.; Thornton, S.; Taktak, A.; Heimann, H.; Coupland, S.E. Parsimonious Models for Predicting Mortality from Choroidal Melanoma. Investig. Opthalmol. Vis. Sci. 2020, 61, 35. [Google Scholar] [CrossRef]
- Rola, A.C.; Taktak, A.; Eleuteri, A.; Kalirai, H.; Heimann, H.; Hussain, R.; Bonnett, L.J.; Hill, C.J.; Traynor, M.; Jager, M.J.; et al. Multicenter External Validation of the Liverpool Uveal Melanoma Prognosticator Online: An OOG Collaborative Study. Cancers 2020, 12, 477. [Google Scholar] [CrossRef]
- Sorrentino, F.S.; Culiersi, C.; Florido, A.; Nadai, K.D.; Adamo, G.G.; Nasini, F.; Vivarelli, C.; Mura, M.; Parmeggiani, F. Genetic Features of Uveal Melanoma. Genes 2024, 15, 1356. [Google Scholar] [CrossRef] [PubMed]
- Barbagallo, C.; Stella, M.; Broggi, G.; Russo, A.; Caltabiano, R.; Ragusa, M. Genetics and RNA Regulation of Uveal Melanoma. Cancers 2023, 15, 775. [Google Scholar] [CrossRef] [PubMed]
- Muen, W.J.; Damato, B.E. Uveal malignant melanoma with extrascleral extension, treated with plaque radiotherapy. Eye 2006, 21, 307–308. [Google Scholar] [CrossRef]
- Espensen, C.A.; Kiilgaard, J.F.; Klemp, K.; Gothelf, A.; Appelt, A.L.; Fog, L.S. 3D image-guided treatment planning for Ruthenium-106 brachytherapy of choroidal melanomas. Acta Ophthalmol. 2021, 99, e654–e660. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.Y.; Kamrava, M.; Demanes, D.J.; Leu, M.; Agazaryan, N.; Lamb, J.; Moral, J.N.; Almanzor, R.; McCannel, T.A. Intraoperative ultrasonography-guided positioning of iodine 125 plaque brachytherapy in the treatment of choroidal melanoma. Ophthalmology 2012, 119, 1073–1077. [Google Scholar] [CrossRef]
- Yang, X.; Dalvin, L.A.; Mazloumi, M.; Chang, M.; Shields, J.A.; Mashayekhi, A.; Shields, C.L. Impact of uveal melanoma thickness on post-plaque radiotherapy outcomes in the prophylactic anti-vascular endothelial growth factor era in 1131 patients. Clin. Exp. Ophthalmol. 2020, 48, 610–623. [Google Scholar] [CrossRef]
- Fallico, M.; Chronopoulos, A.; Schutz, J.S.; Reibaldi, M. Treatment of radiation maculopathy and radiation-induced macular edema: A systematic review. Surv. Ophthalmol. 2021, 66, 441–460. [Google Scholar] [CrossRef]
- Cao, L.; Chen, S.; Sun, R.; Ashby, C.R., Jr.; Wei, L.; Huang, Z.; Chen, Z.S. Darovasertib, a novel treatment for metastatic uveal mela-noma. Front. Pharmacol. 2023, 14, 1232787. [Google Scholar] [CrossRef] [PubMed]
- AlBarakat, M.M.; Wadaa-Allah, A.; Altawalbeh, R.B.; Hamam, K.M.; Tarawneh, D.Y.; Momani, A.A.; Alshwayyat, S.; Kunadi, A. Efficacy and Safety of Tebentafusp in Uveal Melanoma: A Systematic Review and Single-Arm Meta-Analysis. Asian Pac. J. Cancer Prev. 2025, 26, 2267–2275. [Google Scholar] [CrossRef] [PubMed]
Exclusion Criteria | Maximum Tumor Height = 8 mm | Maximum Tumor Height = 10 mm | Maximum Tumor Height = 12 mm |
---|---|---|---|
Percent remaining (95% CI) | Percent remaining (95% CI) | Percent remaining (95% CI) | |
Height > maximum limit | 81.8% (80.8%, 82.8%) | 91.0% (90.3%, 91.7%) | 96.5% (96.0%, 97.0%) |
Extraocular spread | 79.5% (78.5%, 80.5%) | 88.0% (87.1%, 88.8%) | 93.0% (92.3%, 93.6%) |
Disc involved | 66.6% (65.4%, 67.8%) | 74.2% (73.1%, 75.3%) | 78.8% (77.7%, 79.8%) |
Iris/Angle involvement > 2 clock hrs | 65.3% (64.0%, 66.5%) | 72.4% (71.2%, 73.5%) | 76.5% (75.4%, 77.6%) |
Diameter > 16 mm | 60.5% (59.2%, 61.7%) | 65.1% (63.9%, 66.3%) | 67.6% (66.4%, 68.8%) |
Exclusion Criteria | Maximum Tumor Height = 8 mm | Maximum Tumor Height = 10 mm | Maximum Tumor Height = 12 mm |
---|---|---|---|
Percent remaining (95% CI) | Percent remaining (95% CI) | Percent remaining (95% CI) | |
Thickness ≤ 3 mm | 25.4% (24.3%, 26.5%) | 30.0% (28.9%, 31.2%) | 32.5% (31.3%, 33.7%) |
Initial vision worse than 20/200 | 22.8% (21.8%, 23.9%) | 26.2% (25.1%, 27.4%) | 27.9% (26.7%, 29.0%) |
Initial vision worse than 20/80 | 20.4% (19.4%, 21.5%) | 22.9% (21.9%, 24.0%) | 24.0% (22.9%, 25.1%) |
Initial vision worse than 20/40 | 16.7% (15.8%, 17.7%) | 18.5% (17.5%, 19.5%) | 19.1% (18.1%, 20.2%) |
Tumor within 2DD of disc or fovea | 15.6% (14.7%, 16.6%) | 19.3% (18.3%, 20.4%) | 21.4% (20.4%, 22.5%) |
Initial vision worse than 20/200 | 14.6% (13.7%, 15.5%) | 17.4% (16.4%, 18.3%) | 18.8% (17.8%, 19.8%) |
Initial vision worse than 20/80 | 13.6% (12.7%, 14.5%) | 15.8% (14.8%, 16.7%) | 16.7% (15.7%, 17.6%) |
Initial vision worse than 20/40 | 11.8% (11.0%, 12.7%) | 13.3% (12.5%, 14.2%) | 13.9% (13.0%, 14.8%) |
Exclusion Criteria | Maximum Tumor Height = 8 mm | Maximum Tumor Height = 10 mm | Maximum Tumor Height = 12 mm |
---|---|---|---|
Percent remaining (95% CI) | Percent remaining (95% CI) | Percent remaining (95% CI) | |
Thickness ≤ 5 mm | 10.9% (10.2%, 11.7%) | 15.6% (14.7%, 16.6%) | 18.0% (17.1%, 19.0%) |
Initial vision worse than 20/200 | 9.2% (8.5%, 10.0%) | 12.6% (11.8%, 13.5%) | 14.3% (13.4%, 15.2%) |
Initial vision worse than 20/80 | 8.0% (7.3%, 8.7%) | 10.5% (9.7%, 11.3%) | 11.6% (10.8%, 12.4%) |
Initial vision worse than 20/40 | 6.2% (5.6%, 6.8%) | 8.0% (7.3%, 8.7%) | 8.6% (7.9%, 9.3%) |
Tumor within 2DD of disc or fovea | 7.3% (6.6%, 8.0%) | 11.0% (10.2%, 11.8%) | 13.1% (12.2%, 13.9%) |
Initial vision worse than 20/200 | 6.5% (5.9%, 7.2%) | 9.3% (8.6%, 10.1%) | 10.7% (10.0%, 11.5%) |
Initial vision worse than 20/80 | 5.9% (5.3%, 6.5%) | 8.0% (7.4%, 8.7%) | 8.9% (8.2%, 9.7%) |
Initial vision worse than 20/40 | 4.8% (4.2%, 5.3%) | 6.3% (5.7%, 6.9%) | 6.8% (6.2%, 7.5%) |
Max. Tumor Ht. (mm) | Largest Basal Diameter (mm) | Chromosome 3 * | |
---|---|---|---|
Disomy (95% CI) | Monosomy (95% CI) | ||
8 | 11–12 | 69% (62%, 74%) | 31% (26%, 38%) |
13–14 | 50% (44%, 57%) | 50% (43%, 56%) | |
15–16 | 46% (39%, 53%) | 54% (47%, 61%) | |
10 | 11–12 | 68% (62%, 73%) | 32% (27%, 38%) |
13–14 | 49% (43%, 55%) | 51% (45%, 57%) | |
15–16 | 44% (38%, 51%) | 56% (49%, 62%) | |
12 | 11–12 | 67% (61%, 72%) | 33% (28%, 39%) |
13–14 | 48% (42%, 53%) | 52% (47%, 58%) | |
15–16 | 44% (38%, 50%) | 56% (50%, 62%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damato, B.; Eleuteri, A.; Coupland, S.E.; Kalirai, H.; Heimann, H. How Many Patients with Choroidal Melanoma Would Be Eligible for Neoadjuvant Systemic Therapy to Enable Ruthenium-106 Brachytherapy? Cancers 2025, 17, 3022. https://doi.org/10.3390/cancers17183022
Damato B, Eleuteri A, Coupland SE, Kalirai H, Heimann H. How Many Patients with Choroidal Melanoma Would Be Eligible for Neoadjuvant Systemic Therapy to Enable Ruthenium-106 Brachytherapy? Cancers. 2025; 17(18):3022. https://doi.org/10.3390/cancers17183022
Chicago/Turabian StyleDamato, Bertil, Antonio Eleuteri, Sarah E. Coupland, Helen Kalirai, and Heinrich Heimann. 2025. "How Many Patients with Choroidal Melanoma Would Be Eligible for Neoadjuvant Systemic Therapy to Enable Ruthenium-106 Brachytherapy?" Cancers 17, no. 18: 3022. https://doi.org/10.3390/cancers17183022
APA StyleDamato, B., Eleuteri, A., Coupland, S. E., Kalirai, H., & Heimann, H. (2025). How Many Patients with Choroidal Melanoma Would Be Eligible for Neoadjuvant Systemic Therapy to Enable Ruthenium-106 Brachytherapy? Cancers, 17(18), 3022. https://doi.org/10.3390/cancers17183022