DNA Damage and Repair in Ovarian Cancer: Focus on MicroRNAs
Simple Summary
Abstract
1. Introduction
2. DNA Repair Mechanisms in OvCa: Role of miRNAs
2.1. miRNAs Targeting Transcripts of DNA Repair-Related Genes: Roles in OvCa Tumorigenesis
2.2. miRNAs Targeting Transcripts of DNA Repair-Related Genes: Roles in OvCa Therapy and Chemoresistance
2.2.1. miRNAs Targeting PARP1
2.2.2. miRNAs Targeting Other Genes Involved in DNA Repair
3. miRNAs Regulated by Proteins Involved in DNA Damage Repair
4. Limitations and Challenges
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
3′UTR | 3′ untranslated region |
5mC | 5′-methylcytosine |
Ago2 | Argonaute 2 |
ATM | Ataxia Telangiectasia Mutated |
BER | base excision repair |
BRCA1 | BRCA1 DNA Repair Associated, also known as Breast Cancer Type 1 Susceptibility Protein |
BRCA2 | BRCA2 DNA Repair Associated, or Breast Cancer Type 2 Susceptibility Protein |
CHEK2 | Checkpoint Kinase 2 |
DDB2 | Damage-Specific DNA Binding Protein 2 |
DDR | DNA damage repair |
DSB | Double-strand break |
FEN1 | Flap Structure-Specific Endonuclease 1 |
HGSOC | high-grade serous ovarian carcinoma |
HR | homologous recombination |
IOT | immature ovarian teratocarcinoma |
MBD4 | Methyl-CpG Binding Domain Protein 4 |
miRNA | microRNA |
NER | nucleotide excision repair |
NHEJ | non-homologous end joining |
OvCa | Ovarian cancer |
PARP1 | Poly(ADP-Ribose) Polymerase 1 |
SSB | Single-strand break |
References
- Webb, P.M.; Jordan, S.J. Global epidemiology of epithelial ovarian cancer. Nat. Rev. Clin. Oncol. 2024, 21, 389–400. [Google Scholar] [CrossRef]
- Caruso, G.; Weroha, S.J.; Cliby, W. Ovarian Cancer: A Review. JAMA 2025. In press. [Google Scholar] [CrossRef]
- Worzfeld, T.; Pogge von Strandmann, E.; Huber, M.; Adhikary, T.; Wagner, U.; Reinartz, S.; Muller, R. The Unique Molecular and Cellular Microenvironment of Ovarian Cancer. Front. Oncol. 2017, 7, 24. [Google Scholar] [CrossRef] [PubMed]
- Bowtell, D.D.; Bohm, S.; Ahmed, A.A.; Aspuria, P.J.; Bast, R.C., Jr.; Beral, V.; Berek, J.S.; Birrer, M.J.; Blagden, S.; Bookman, M.A.; et al. Rethinking ovarian cancer II: Reducing mortality from high-grade serous ovarian cancer. Nat. Rev. Cancer 2015, 15, 668–679. [Google Scholar] [CrossRef] [PubMed]
- Alrosan, K.; Alrosan, A.Z.; Heilat, G.B.; Alrousan, A.F.; Gammoh, O.S.; Alqudah, A.; Madae’En, S.; Alrousan, M.J. Treatment of ovarian cancer: From the past to the new era (Review). Oncol. Lett. 2025, 30, 384. [Google Scholar] [CrossRef]
- Goulooze, S.C.; Cohen, A.F.; Rissmann, R. Olaparib. Br. J. Clin. Pharmacol. 2016, 81, 171–173. [Google Scholar] [CrossRef] [PubMed]
- MacGilvary, N.; Cantor, S.B. Positioning loss of PARP1 activity as the central toxic event in BRCA-deficient cancer. DNA Repair 2024, 144, 103775. [Google Scholar] [CrossRef]
- Seyhan, A.A. Trials and Tribulations of MicroRNA Therapeutics. Int. J. Mol. Sci. 2024, 25, 1469. [Google Scholar] [CrossRef]
- Badal, A.K.; Nayek, A.; Dhar, R.; Karmakar, S. MicroRNA nanoformulation: A promising approach to anti-tumour activity. Investig. New Drugs 2025, 43, 504–524. [Google Scholar] [CrossRef]
- Ovejero-Sanchez, M.; Gonzalez-Sarmiento, R.; Herrero, A.B. DNA Damage Response Alterations in Ovarian Cancer: From Molecular Mechanisms to Therapeutic Opportunities. Cancers 2023, 15, 448. [Google Scholar] [CrossRef]
- Wong, O.G.W.; Li, J.; Cheung, A.N.Y. Targeting DNA Damage Response Pathway in Ovarian Clear Cell Carcinoma. Front. Oncol. 2021, 11, 666815. [Google Scholar] [CrossRef]
- Ciccia, A.; Elledge, S.J. The DNA damage response: Making it safe to play with knives. Mol. Cell 2010, 40, 179–204. [Google Scholar] [CrossRef]
- Lukacs, J.; Soltesz, B.; Penyige, A.; Nagy, B.; Poka, R. Identification of miR-146a and miR-196a-2 single nucleotide polymorphisms at patients with high-grade serous ovarian cancer. J. Biotechnol. 2019, 297, 54–57. [Google Scholar] [CrossRef]
- Fan, Y.; Fan, J.; Huang, L.; Ye, M.; Huang, Z.; Wang, Y.; Li, Q.; Huang, J. Increased expression of microRNA-196a predicts poor prognosis in human ovarian carcinoma. Int. J. Clin. Exp. Pathol. 2015, 8, 4132–4137. [Google Scholar] [PubMed]
- Chang, H.; Zhang, X.; Li, B.; Meng, X. PARP1 Is Targeted by miR-519a-3p and Promotes the Migration, Invasion, and Tube Formation of Ovarian Cancer Cells. Cancer Biother. Radiopharm. 2022, 37, 824–836. [Google Scholar] [CrossRef]
- Wu, H.; Yan, Y.; Yuan, J.; Luo, M.; Wang, Y. miR-4324 inhibits ovarian cancer progression by targeting FEN1. J. Ovarian Res. 2022, 15, 32. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Ji, H.; Fu, Q.; Cheng, Q.; Zhang, Y.; Yang, Y. MicroRNA-134-3p inhibits ovarian cancer progression by targeting flap structure-specific endonuclease 1 in vitro. Oncol. Rep. 2021, 45, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.K.; Banerjee, A.; Cui, T.; Han, C.; Cai, S.; Liu, L.; Wu, D.; Cui, R.; Li, Z.; Zhang, X.; et al. Inhibition of miR-328-3p Impairs Cancer Stem Cell Function and Prevents Metastasis in Ovarian Cancer. Cancer Res. 2019, 79, 2314–2326. [Google Scholar] [CrossRef]
- Crosby, M.E.; Kulshreshtha, R.; Ivan, M.; Glazer, P.M. MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res. 2009, 69, 1221–1229. [Google Scholar] [CrossRef]
- Meng, X.; Muller, V.; Milde-Langosch, K.; Trillsch, F.; Pantel, K.; Schwarzenbach, H. Circulating Cell-Free miR-373, miR-200a, miR-200b and miR-200c in Patients with Epithelial Ovarian Cancer. In Circulating Nucleic Acids in Serum and Plasma–CNAPS IX; Springer: Cham, Switzerland, 2016; Volume 924, pp. 3–8. [Google Scholar] [CrossRef]
- Valeri, N.; Gasparini, P.; Fabbri, M.; Braconi, C.; Veronese, A.; Lovat, F.; Adair, B.; Vannini, I.; Fanini, F.; Bottoni, A.; et al. Modulation of mismatch repair and genomic stability by miR-155. Proc. Natl. Acad. Sci. USA 2010, 107, 6982–6987. [Google Scholar] [CrossRef]
- Altrawy, A.; Talaat, R.M.; Nasr, G.M.; Badr, E.A.E.; Arneth, R.; Arneth, B.; Sabit, H. Diagnostic and Prognostic Roles of miR-155 and miR-3173 in Breast and Ovarian Cancer: Implications for Early Detection and Personalized Treatment. Biomedicines 2025, 13, 1604. [Google Scholar] [CrossRef]
- Liu, H.Y.; Zhang, Y.Y.; Zhu, B.L.; Feng, F.Z.; Zhang, H.T.; Yan, H.; Zhou, B. MiR-203a-3p regulates the biological behaviors of ovarian cancer cells through mediating the Akt/GSK-3beta/Snail signaling pathway by targeting ATM. J. Ovarian Res. 2019, 12, 60. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Liu, Y.; Wan, G.; Choi, H.J.; Zhao, L.; Ivan, C.; He, X.; Sood, A.K.; Zhang, X.; Lu, X. The RNA-binding protein DDX1 promotes primary microRNA maturation and inhibits ovarian tumor progression. Cell Rep. 2014, 8, 1447–1460. [Google Scholar] [CrossRef] [PubMed]
- Ghafour, A.A.; Odemis, D.A.; Tuncer, S.B.; Kurt, B.; Saral, M.A.; Erciyas, S.K.; Erdogan, O.S.; Celik, B.; Saip, P.; Yazici, H. High expression level of miR-1260 family in the peripheral blood of patients with ovarian carcinoma. J. Ovarian Res. 2021, 14, 131. [Google Scholar] [CrossRef]
- Huang, Y.Z.; Zhang, J.; Shao, H.Y.; Chen, J.P.; Zhao, H.Y. MicroRNA-191 promotes osteosarcoma cells proliferation by targeting checkpoint kinase 2. Tumour Biol. 2015, 36, 6095–6101. [Google Scholar] [CrossRef]
- Takamizawa, S.; Kojima, J.; Umezu, T.; Kuroda, M.; Hayashi, S.; Maruta, T.; Okamoto, A.; Nishi, H. miR-146a-5p and miR-191-5p as novel diagnostic marker candidates for ovarian clear cell carcinoma. Mol. Clin. Oncol. 2024, 20, 14. [Google Scholar] [CrossRef]
- Krishnan, K.; Steptoe, A.L.; Martin, H.C.; Wani, S.; Nones, K.; Waddell, N.; Mariasegaram, M.; Simpson, P.T.; Lakhani, S.R.; Gabrielli, B.; et al. MicroRNA-182-5p targets a network of genes involved in DNA repair. RNA 2013, 19, 230–242. [Google Scholar] [CrossRef] [PubMed]
- Moskwa, P.; Buffa, F.M.; Pan, Y.; Panchakshari, R.; Gottipati, P.; Muschel, R.J.; Beech, J.; Kulshrestha, R.; Abdelmohsen, K.; Weinstock, D.M.; et al. miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Mol. Cell 2011, 41, 210–220. [Google Scholar] [CrossRef]
- Beg, A.; Parveen, R.; Fouad, H.; Yahia, M.E.; Hassanein, A.S. Identification of Driver Genes and miRNAs in Ovarian Cancer through an Integrated In-Silico Approach. Biology 2023, 12, 192. [Google Scholar] [CrossRef]
- Wu, J.; Sun, Y.; Zhang, P.Y.; Qian, M.; Zhang, H.; Chen, X.; Ma, D.; Xu, Y.; Chen, X.; Tang, K.F. The Fra-1-miR-134-SDS22 feedback loop amplifies ERK/JNK signaling and reduces chemosensitivity in ovarian cancer cells. Cell Death Dis. 2016, 7, e2384. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, J.W.; Li, M.; Cavenee, W.K.; Mitchell, P.S.; Zhou, X.; Tewari, M.; Furnari, F.B.; Taniguchi, T. MicroRNA-138 modulates DNA damage response by repressing histone H2AX expression. Mol. Cancer Res. 2011, 9, 1100–1111. [Google Scholar] [CrossRef]
- Yeh, Y.M.; Chuang, C.M.; Chao, K.C.; Wang, L.H. MicroRNA-138 suppresses ovarian cancer cell invasion and metastasis by targeting SOX4 and HIF-1alpha. Int. J. Cancer 2013, 133, 867–878. [Google Scholar] [CrossRef]
- Wang, Z.; Yin, H.; Zhang, Y.; Feng, Y.; Yan, Z.; Jiang, X.; Bukhari, I.; Iqbal, F.; Cooke, H.J.; Shi, Q. miR-214-mediated downregulation of RNF8 induces chromosomal instability in ovarian cancer cells. Cell Cycle 2014, 13, 3519–3528. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lee, J.H.; Park, S.J.; Jeong, S.Y.; Kim, M.J.; Jun, S.; Lee, H.S.; Chang, I.Y.; Lim, S.C.; Yoon, S.P.; Yong, J.; et al. MicroRNA-22 Suppresses DNA Repair and Promotes Genomic Instability through Targeting of MDC1. Cancer Res. 2015, 75, 1298–1310. [Google Scholar] [CrossRef]
- Wan, W.N.; Zhang, Y.Q.; Wang, X.M.; Liu, Y.J.; Zhang, Y.X.; Que, Y.H.; Zhao, W.J.; Li, P. Down-regulated miR-22 as predictive biomarkers for prognosis of epithelial ovarian cancer. Diagn. Pathol. 2014, 9, 178. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.K.; Zhang, Y.; Zhang, S.; Li, Y.; Tucker-Kellogg, G.; Yang, H.; Jha, S. TIP60-miR-22 axis as a prognostic marker of breast cancer progression. Oncotarget 2015, 6, 41290–41306. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Subramanian, S.; Beck, A.H.; Espinosa, I.; Senz, J.; Zhu, S.X.; Huntsman, D.; van de Rijn, M.; Gilks, C.B. MicroRNA profiling of BRCA1/2 mutation-carrying and non-mutation-carrying high-grade serous carcinomas of ovary. PLoS ONE 2009, 4, e7314. [Google Scholar] [CrossRef]
- Miles, G.D.; Seiler, M.; Rodriguez, L.; Rajagopal, G.; Bhanot, G. Identifying microRNA/mRNA dysregulations in ovarian cancer. BMC Res. Notes 2012, 5, 164. [Google Scholar] [CrossRef]
- Welponer, H.; Tsibulak, I.; Wieser, V.; Degasper, C.; Shivalingaiah, G.; Wenzel, S.; Sprung, S.; Marth, C.; Hackl, H.; Fiegl, H.; et al. The miR-34 family and its clinical significance in ovarian cancer. J. Cancer 2020, 11, 1446–1456. [Google Scholar] [CrossRef]
- Dari, M.A.G.; Jaberian Asl, B.; Dayer, D.; Azizidoost, S.; Farzaneh, M.; Salehi, A.M. miR-34 as a Critical Regulator in Ovarian Cancer. Curr. Mol. Med. 2025, 25, 1223–1230. [Google Scholar] [CrossRef]
- Pan, W.; Chai, B.; Li, L.; Lu, Z.; Ma, Z. p53/MicroRNA-34 axis in cancer and beyond. Heliyon 2023, 9, e15155. [Google Scholar] [CrossRef]
- Okada, N.; Lin, C.P.; Ribeiro, M.C.; Biton, A.; Lai, G.; He, X.; Bu, P.; Vogel, H.; Jablons, D.M.; Keller, A.C.; et al. A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev. 2014, 28, 438–450. [Google Scholar] [CrossRef]
- Yamakuchi, M.; Ferlito, M.; Lowenstein, C.J. miR-34a repression of SIRT1 regulates apoptosis. Proc. Natl. Acad. Sci. USA 2008, 105, 13421–13426. [Google Scholar] [CrossRef]
- Creighton, C.J.; Fountain, M.D.; Yu, Z.; Nagaraja, A.K.; Zhu, H.; Khan, M.; Olokpa, E.; Zariff, A.; Gunaratne, P.H.; Matzuk, M.M.; et al. Molecular profiling uncovers a p53-associated role for microRNA-31 in inhibiting the proliferation of serous ovarian carcinomas and other cancers. Cancer Res. 2010, 70, 1906–1915. [Google Scholar] [CrossRef]
- Guo, J.Y.; Wang, X.Q.; Sun, L.F. MicroRNA-488 inhibits ovarian cancer cell metastasis through regulating CCNG1 and p53 expression. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 2902–2910. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Lee, J.H.; Ha, M.; Nam, J.W.; Kim, V.N. miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat. Struct. Mol. Biol. 2009, 16, 23–29. [Google Scholar] [CrossRef]
- Teng, Y.; Zhang, Y.; Qu, K.; Yang, X.; Fu, J.; Chen, W.; Li, X. MicroRNA-29B (mir-29b) regulates the Warburg effect in ovarian cancer by targeting AKT2 and AKT3. Oncotarget 2015, 6, 40799–40814. [Google Scholar] [CrossRef] [PubMed]
- Flavin, R.; Smyth, P.; Barrett, C.; Russell, S.; Wen, H.; Wei, J.; Laios, A.; O’Toole, S.; Ring, M.; Denning, K.; et al. miR-29b expression is associated with disease-free survival in patients with ovarian serous carcinoma. Int. J. Gynecol. Cancer 2009, 19, 641–647. [Google Scholar] [CrossRef]
- Fan, X.; Wu, X. MicroRNA-122-5p promotes the development of non-small cell lung cancer via downregulating p53 and activating PI3K-AKT pathway. J. Balk. Union Oncol. 2019, 24, 273–279. [Google Scholar]
- Huang, X.; Luo, Y.; Li, X. Circ_0072995 Promotes Ovarian Cancer Progression Through Regulating miR-122-5p/SLC1A5 Axis. Biochem. Genet. 2022, 60, 153–172. [Google Scholar] [CrossRef]
- Li, X.; Lin, S.; Mo, Z.; Jiang, J.; Tang, H.; Wu, C.; Song, J. CircRNA_100395 inhibits cell proliferation and metastasis in ovarian cancer via regulating miR-1228/p53/epithelial-mesenchymal transition (EMT) axis. J. Cancer 2020, 11, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Liu, X.; Zhang, Q.; Jiang, Z.; Li, Y.; Wei, Y.; Li, Y.; Yang, Q.; Liu, J.; Wei, J.J.; et al. miR-145 inhibits tumor growth and metastasis by targeting metadherin in high-grade serous ovarian carcinoma. Oncotarget 2014, 5, 10816–10829. [Google Scholar] [CrossRef] [PubMed]
- Tamura, M.; Sasaki, Y.; Kobashi, K.; Takeda, K.; Nakagaki, T.; Idogawa, M.; Tokino, T. CRKL oncogene is downregulated by p53 through miR-200s. Cancer Sci. 2015, 106, 1033–1040. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.J.; Chao, C.H.; Xia, W.; Yang, J.Y.; Xiong, Y.; Li, C.W.; Yu, W.H.; Rehman, S.K.; Hsu, J.L.; Lee, H.H.; et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat. Cell Biol. 2011, 13, 317–323. [Google Scholar] [CrossRef]
- Ferneza, S.; Fetsych, M.; Shuliak, R.; Makukh, H.; Volodko, N.; Yarema, R.; Fetsych, T. Clinical significance of microRNA-200 and let-7 families expression assessment in patients with ovarian cancer. Ecancermedicalscience 2021, 15, 1249. [Google Scholar] [CrossRef]
- Cavallari, I.; Ciccarese, F.; Sharova, E.; Urso, L.; Raimondi, V.; Silic-Benussi, M.; D’Agostino, D.M.; Ciminale, V. The miR-200 Family of microRNAs: Fine Tuners of Epithelial-Mesenchymal Transition and Circulating Cancer Biomarkers. Cancers 2021, 13, 5874. [Google Scholar] [CrossRef]
- Sun, D.; Liu, J.; Zhou, L. Upregulation of circular RNA circ-FAM53B predicts adverse prognosis and accelerates the progression of ovarian cancer via the miR-646/VAMP2 and miR-647/MDM2 signaling pathways. Oncol. Rep. 2019, 42, 2728–2737. [Google Scholar] [CrossRef]
- Wynendaele, J.; Bohnke, A.; Leucci, E.; Nielsen, S.J.; Lambertz, I.; Hammer, S.; Sbrzesny, N.; Kubitza, D.; Wolf, A.; Gradhand, E.; et al. An illegitimate microRNA target site within the 3’ UTR of MDM4 affects ovarian cancer progression and chemosensitivity. Cancer Res. 2010, 70, 9641–9649. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, M.; Xie, L.; Wu, S.; Zhong, Y. LINC00324 facilitates cell proliferation through competing for miR-214-5p in immature ovarian teratocarcinoma. Int. J. Mol. Med. 2021, 47, 397–407. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, L.; Lian, L.; Hao, M.; Chen, S.; Hong, Y. CircATP2B4 promotes hypoxia-induced proliferation and migration of pulmonary arterial smooth muscle cells via the miR-223/ATR axis. Life Sci. 2020, 262, 118420. [Google Scholar] [CrossRef]
- Barbagallo, D.; Ponti, D.; Bassani, B.; Bruno, A.; Pulze, L.; Akkihal, S.A.; George-William, J.N.; Gundamaraju, R.; Campomenosi, P. MiR-223-3p in Cancer Development and Cancer Drug Resistance: Same Coin, Different Faces. Int. J. Mol. Sci. 2024, 25, 8191. [Google Scholar] [CrossRef]
- Choi, Y.E.; Pan, Y.; Park, E.; Konstantinopoulos, P.; De, S.; D’Andrea, A.; Chowdhury, D. MicroRNAs down-regulate homologous recombination in the G1 phase of cycling cells to maintain genomic stability. Elife 2014, 3, e02445. [Google Scholar] [CrossRef][Green Version]
- Li, L.; Huang, K.; You, Y.; Fu, X.; Hu, L.; Song, L.; Meng, Y. Hypoxia-induced miR-210 in epithelial ovarian cancer enhances cancer cell viability via promoting proliferation and inhibiting apoptosis. Int. J. Oncol. 2014, 44, 2111–2120. [Google Scholar] [CrossRef]
- Ding, L.; Zhao, L.; Chen, W.; Liu, T.; Li, Z.; Li, X. miR-210, a modulator of hypoxia-induced epithelial-mesenchymal transition in ovarian cancer cell. Int. J. Clin. Exp. Med. 2015, 8, 2299–2307. [Google Scholar]
- Sundaravinayagam, D.; Kim, H.R.; Wu, T.; Kim, H.H.; Lee, H.S.; Jun, S.; Cha, J.H.; Kee, Y.; You, H.J.; Lee, J.H. miR146a-mediated targeting of FANCM during inflammation compromises genome integrity. Oncotarget 2016, 7, 45976–45994. [Google Scholar] [CrossRef][Green Version]
- Garcia, A.I.; Buisson, M.; Bertrand, P.; Rimokh, R.; Rouleau, E.; Lopez, B.S.; Lidereau, R.; Mikaelian, I.; Mazoyer, S. Down-regulation of BRCA1 expression by miR-146a and miR-146b-5p in triple negative sporadic breast cancers. EMBO Mol. Med. 2011, 3, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Zhang, M.; Peng, F.; Fang, L.; Zhang, Y.; Liang, H.; Zhou, W.; Ao, L.; Guo, Z. The BRCA1/2-directed miRNA signature predicts a good prognosis in ovarian cancer patients with wild-type BRCA1/2. Oncotarget 2015, 6, 2397–2406. [Google Scholar] [CrossRef]
- Choi, M.; Kipps, T.; Kurzrock, R. ATM Mutations in Cancer: Therapeutic Implications. Mol. Cancer Ther. 2016, 15, 1781–1791. [Google Scholar] [CrossRef]
- Tian, X.; Xu, L.; Wang, P. MiR-191 inhibits TNF-alpha induced apoptosis of ovarian endometriosis and endometrioid carcinoma cells by targeting DAPK1. Int. J. Clin. Exp. Pathol. 2015, 8, 4933–4942. [Google Scholar] [PubMed]
- Shen, J.; DiCioccio, R.; Odunsi, K.; Lele, S.B.; Zhao, H. Novel genetic variants in miR-191 gene and familial ovarian cancer. BMC Cancer 2010, 10, 47. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Kong, W.; He, L.; Zhao, J.J.; O’Donnell, J.D.; Wang, J.; Wenham, R.M.; Coppola, D.; Kruk, P.A.; Nicosia, S.V.; et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. 2008, 68, 425–433. [Google Scholar] [CrossRef]
- Palles, C.; West, H.D.; Chew, E.; Galavotti, S.; Flensburg, C.; Grolleman, J.E.; Jansen, E.A.M.; Curley, H.; Chegwidden, L.; Arbe-Barnes, E.H.; et al. Germline MBD4 deficiency causes a multi-tumor predisposition syndrome. Am. J. Hum. Genet. 2022, 109, 953–960. [Google Scholar] [CrossRef]
- Burdova, K.; Hailstone, R.; Hanzlikova, H.; Caldecott, K.W. FEN1 is critical for rapid single-strand break repair in G1 phase. Nucleic Acids Res. 2025, 53, gkaf710. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, K.; Taniguchi, Y.; Hatanaka, A.; Sonoda, E.; Hochegger, H.; Adachi, N.; Matsuzaki, Y.; Koyama, H.; van Gent, D.C.; Jasin, M.; et al. Fen-1 facilitates homologous recombination by removing divergent sequences at DNA break ends. Mol. Cell. Biol. 2005, 25, 6948–6955. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Liu, R.; Wang, M.; Kumar, A.K.; Pan, F.; He, L.; Hu, Z.; Guo, Z. MicroRNA-140 impedes DNA repair by targeting FEN1 and enhances chemotherapeutic response in breast cancer. Oncogene 2020, 39, 234–247. [Google Scholar] [CrossRef]
- Dong, S.; Xiao, Y.; Ma, X.; He, W.; Kang, J.; Peng, Z.; Wang, L.; Li, Z. miR-193b Increases the Chemosensitivity of Osteosarcoma Cells by Promoting FEN1-Mediated Autophagy. Onco Targets Ther. 2019, 12, 10089–10098. [Google Scholar] [CrossRef]
- Blasiak, J. Single-Strand Annealing in Cancer. Int. J. Mol. Sci. 2021, 22, 2167. [Google Scholar] [CrossRef]
- Wassing, I.E.; Esashi, F. RAD51: Beyond the break. Semin. Cell Dev. Biol. 2021, 113, 38–46. [Google Scholar] [CrossRef]
- Fitch, M.E.; Nakajima, S.; Yasui, A.; Ford, J.M. In vivo recruitment of XPC to UV-induced cyclobutane pyrimidine dimers by the DDB2 gene product. J. Biol. Chem. 2003, 278, 46906–46910. [Google Scholar] [CrossRef] [PubMed]
- Wakasugi, M.; Kawashima, A.; Morioka, H.; Linn, S.; Sancar, A.; Mori, T.; Nikaido, O.; Matsunaga, T. DDB accumulates at DNA damage sites immediately after UV irradiation and directly stimulates nucleotide excision repair. J. Biol. Chem. 2002, 277, 1637–1640. [Google Scholar] [CrossRef]
- Han, C.; Zhao, R.; Liu, X.; Srivastava, A.; Gong, L.; Mao, H.; Qu, M.; Zhao, W.; Yu, J.; Wang, Q.E. DDB2 suppresses tumorigenicity by limiting the cancer stem cell population in ovarian cancer. Mol. Cancer Res. 2014, 12, 784–794. [Google Scholar] [CrossRef] [PubMed]
- Cui, T.; Srivastava, A.K.; Han, C.; Wu, D.; Wani, N.; Liu, L.; Gao, Z.; Qu, M.; Zou, N.; Zhang, X.; et al. DDB2 represses ovarian cancer cell dedifferentiation by suppressing ALDH1A1. Cell Death Dis. 2018, 9, 561. [Google Scholar] [CrossRef]
- Collard, F.; Vertommen, D.; Fortpied, J.; Duester, G.; Van Schaftingen, E. Identification of 3-deoxyglucosone dehydrogenase as aldehyde dehydrogenase 1A1 (retinaldehyde dehydrogenase 1). Biochimie 2007, 89, 369–373. [Google Scholar] [CrossRef]
- Choudhary, S.; Xiao, T.; Vergara, L.A.; Srivastava, S.; Nees, D.; Piatigorsky, J.; Ansari, N.H. Role of aldehyde dehydrogenase isozymes in the defense of rat lens and human lens epithelial cells against oxidative stress. Investig. Ophthalmol. Vis. Sci. 2005, 46, 259–267. [Google Scholar] [CrossRef]
- Xiao, T.; Shoeb, M.; Siddiqui, M.S.; Zhang, M.; Ramana, K.V.; Srivastava, S.K.; Vasiliou, V.; Ansari, N.H. Molecular cloning and oxidative modification of human lens ALDH1A1: Implication in impaired detoxification of lipid aldehydes. J. Toxicol. Environ. Health Part A 2009, 72, 577–584. [Google Scholar] [CrossRef]
- Chefetz, I.; Grimley, E.; Yang, K.; Hong, L.; Vinogradova, E.V.; Suciu, R.; Kovalenko, I.; Karnak, D.; Morgan, C.A.; Chtcherbinine, M.; et al. A Pan-ALDH1A Inhibitor Induces Necroptosis in Ovarian Cancer Stem-like Cells. Cell Rep. 2019, 26, 3061–3075.e6. [Google Scholar] [CrossRef]
- Grimley, E.; Cole, A.J.; Luong, T.T.; McGonigal, S.C.; Sinno, S.; Yang, D.; Bernstein, K.A.; Buckanovich, R.J. Aldehyde dehydrogenase inhibitors promote DNA damage in ovarian cancer and synergize with ATM/ATR inhibitors. Theranostics 2021, 11, 3540–3551. [Google Scholar] [CrossRef]
- Wang, T.; Hao, D.; Yang, S.; Ma, J.; Yang, W.; Zhu, Y.; Weng, M.; An, X.; Wang, X.; Li, Y.; et al. miR-211 facilitates platinum chemosensitivity by blocking the DNA damage response (DDR) in ovarian cancer. Cell Death Dis. 2019, 10, 495. [Google Scholar] [CrossRef]
- Xiao, M.; Guo, J.; Xie, L.; Yang, C.; Gong, L.; Wang, Z.; Cai, J. Let-7e Suppresses DNA Damage Repair and Sensitizes Ovarian Cancer to Cisplatin through Targeting PARP1. Mol. Cancer Res. 2020, 18, 436–447. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Niu, Z.; Lin, X.; Tian, Y. MiR-216b increases cisplatin sensitivity in ovarian cancer cells by targeting PARP1. Cancer Gene Ther. 2017, 24, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Gralewska, P.; Biegala, L.; Gajek, A.; Szymczak-Pajor, I.; Marczak, A.; Sliwinska, A.; Rogalska, A. Olaparib Combined with DDR Inhibitors Effectively Prevents EMT and Affects miRNA Regulation in TP53-Mutated Epithelial Ovarian Cancer Cell Lines. Int. J. Mol. Sci. 2025, 26, 693. [Google Scholar] [CrossRef]
- Shukla, D.; Mishra, S.; Mandal, T.; Charan, M.; Verma, A.K.; Khan, M.M.A.; Chatterjee, N.; Dixit, A.K.; Ganesan, S.K.; Ganju, R.K.; et al. MicroRNA-379-5p attenuates cancer stem cells and reduces cisplatin resistance in ovarian cancer by regulating RAD18/Poleta axis. Cell Death Dis. 2025, 16, 140. [Google Scholar] [CrossRef]
- Dang, Y.; Wang, X.; Hao, Y.; Zhang, X.; Zhao, S.; Ma, J.; Qin, Y.; Chen, Z.J. MicroRNA-379-5p is associate with biochemical premature ovarian insufficiency through PARP1 and XRCC6. Cell Death Dis. 2018, 9, 106. [Google Scholar] [CrossRef]
- Liu, R.L.; Dong, Y.; Deng, Y.Z.; Wang, W.J.; Li, W.D. Tumor suppressor miR-145 reverses drug resistance by directly targeting DNA damage-related gene RAD18 in colorectal cancer. Tumour Biol. 2015, 36, 5011–5019. [Google Scholar] [CrossRef]
- Hua, M.; Qin, Y.; Sheng, M.; Cui, X.; Chen, W.; Zhong, J.; Yan, J.; Chen, Y. miR-145 suppresses ovarian cancer progression via modulation of cell growth and invasion by targeting CCND2 and E2F3. Mol. Med. Rep. 2019, 19, 3575–3583. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, Y.; Pei, M.; Wu, L.; Li, J. miR-145 inhibits mitochondrial function of ovarian cancer by targeting ARL5B. J. Ovarian Res. 2021, 14, 8. [Google Scholar] [CrossRef]
- Fredes-Garrido, A.; Cruz, A.A.; Calaf, G.M.; Garrido, M.P.; Romero, C. miR-145 and miR-23b co-transfection decreases proliferation, migration, invasion and protein levels of c-MYC, ZEB1 and ABCB1 in epithelial ovarian cancer cell lines. Mol. Med. Rep. 2025, 32, 246. [Google Scholar] [CrossRef] [PubMed]
- Huan, L.C.; Wu, J.C.; Chiou, B.H.; Chen, C.H.; Ma, N.; Chang, C.Y.; Tsen, Y.K.; Chen, S.C. MicroRNA regulation of DNA repair gene expression in 4-aminobiphenyl-treated HepG2 cells. Toxicology 2014, 322, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.T.; Gao, J.Y.; Wang, H.L.; Wang, Y.; Wang, H.; Li, P.L. Downregulation of microRNA-630 inhibits cell proliferation and invasion and enhances chemosensitivity in human ovarian carcinoma. Genet. Mol. Res. 2015, 14, 8766–8777. [Google Scholar] [CrossRef] [PubMed]
- Eoh, K.J.; Lee, S.H.; Kim, H.J.; Lee, J.Y.; Kim, S.; Kim, S.W.; Kim, Y.T.; Nam, E.J. MicroRNA-630 inhibitor sensitizes chemoresistant ovarian cancer to chemotherapy by enhancing apoptosis. Biochem. Biophys. Res. Commun. 2018, 497, 513–520. [Google Scholar] [CrossRef]
- Wang, Z.; Pu, T.; Miao, W.; Gao, Y.; Gao, J.; Zhang, X. Olaparib increases chemosensitivity by upregulating miR-125a-3p in ovarian cancer cells. Discov. Oncol. 2025, 16, 291. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Yu, X.; Ding, Y.; Zhao, J.; Wang, G.; Wu, X.; Jiang, J.; Peng, C.; Guo, G.Z.; Cui, S. MiR-770-5p inhibits cisplatin chemoresistance in human ovarian cancer by targeting ERCC2. Oncotarget 2016, 7, 53254–53268. [Google Scholar] [CrossRef]
- He, J.; Yu, J.J.; Xu, Q.; Wang, L.; Zheng, J.Z.; Liu, L.Z.; Jiang, B.H. Downregulation of ATG14 by EGR1-MIR152 sensitizes ovarian cancer cells to cisplatin-induced apoptosis by inhibiting cyto-protective autophagy. Autophagy 2015, 11, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Xu, X.; Zheng, L.; Jiang, X.; Lin, J.; Zhang, G. MiR-590-5p promotes cisplatin resistance via targeting hMSH2 in ovarian cancer. Mol. Biol. Rep. 2023, 50, 6819–6827. [Google Scholar] [CrossRef]
- Valeri, N.; Gasparini, P.; Braconi, C.; Paone, A.; Lovat, F.; Fabbri, M.; Sumani, K.M.; Alder, H.; Amadori, D.; Patel, T.; et al. MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proc. Natl. Acad. Sci. USA 2010, 107, 21098–21103. [Google Scholar] [CrossRef]
- Jiang, N.J.; Yin, Y.N.; Lin, J.; Li, W.Y.; Long, D.R.; Mei, L. MicroRNA-21 in gynecological cancers: From molecular pathogenesis to clinical significance. Pathol. Res. Pract. 2023, 248, 154630. [Google Scholar] [CrossRef] [PubMed]
- Lal, A.; Pan, Y.; Navarro, F.; Dykxhoorn, D.M.; Moreau, L.; Meire, E.; Bentwich, Z.; Lieberman, J.; Chowdhury, D. miR-24-mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nat. Struct. Mol. Biol. 2009, 16, 492–498. [Google Scholar] [CrossRef]
- Liu, W.; Wang, S.; Zhou, S.; Yang, F.; Jiang, W.; Zhang, Q.; Wang, L. A systems biology approach to identify microRNAs contributing to cisplatin resistance in human ovarian cancer cells. Mol. Biosyst. 2017, 13, 2268–2276. [Google Scholar] [CrossRef]
- Zhang, W.; Fei, J.; Yu, S.; Shen, J.; Zhu, X.; Sadhukhan, A.; Lu, W.; Zhou, J. LINC01088 inhibits tumorigenesis of ovarian epithelial cells by targeting miR-24-1-5p. Sci. Rep. 2018, 8, 2876. [Google Scholar] [CrossRef]
- Choi, Y.E.; Meghani, K.; Brault, M.E.; Leclerc, L.; He, Y.J.; Day, T.A.; Elias, K.M.; Drapkin, R.; Weinstock, D.M.; Dao, F.; et al. Platinum and PARP Inhibitor Resistance Due to Overexpression of MicroRNA-622 in BRCA1-Mutant Ovarian Cancer. Cell Rep. 2016, 14, 429–439. [Google Scholar] [CrossRef]
- Jones, M.; Lal, A. MicroRNAs, wild-type and mutant p53: More questions than answers. RNA Biol. 2012, 9, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Agostini, A.; Brunetti, M.; Davidson, B.; Trope, C.G.; Eriksson, A.G.Z.; Heim, S.; Panagopoulos, I.; Micci, F. The microRNA miR-192/215 family is upregulated in mucinous ovarian carcinomas. Sci. Rep. 2018, 8, 11069. [Google Scholar] [CrossRef]
- Khella, H.W.; Bakhet, M.; Allo, G.; Jewett, M.A.; Girgis, A.H.; Latif, A.; Girgis, H.; Von Both, I.; Bjarnason, G.A.; Yousef, G.M. miR-192, miR-194 and miR-215: A convergent microRNA network suppressing tumor progression in renal cell carcinoma. Carcinogenesis 2013, 34, 2231–2239. [Google Scholar] [CrossRef]
- Nakamura, K.; Sawada, K.; Miyamoto, M.; Kinose, Y.; Yoshimura, A.; Ishida, K.; Kobayashi, M.; Shimizu, A.; Nakatsuka, E.; Hashimoto, K.; et al. Downregulation of miR-194-5p induces paclitaxel resistance in ovarian cancer cells by altering MDM2 expression. Oncotarget 2019, 10, 673–683. [Google Scholar] [CrossRef]
- Xie, Q.H.; He, X.X.; Chang, Y.; Sun, S.Z.; Jiang, X.; Li, P.Y.; Lin, J.S. MiR-192 inhibits nucleotide excision repair by targeting ERCC3 and ERCC4 in HepG2.2.15 cells. Biochem. Biophys. Res. Commun. 2011, 410, 440–445. [Google Scholar] [CrossRef]
- Wang, J.; He, J.; Su, F.; Ding, N.; Hu, W.; Yao, B.; Wang, W.; Zhou, G. Repression of ATR pathway by miR-185 enhances radiation-induced apoptosis and proliferation inhibition. Cell Death Dis. 2013, 4, e699. [Google Scholar] [CrossRef]
- Xiang, Y.; Ma, N.; Wang, D.; Zhang, Y.; Zhou, J.; Wu, G.; Zhao, R.; Huang, H.; Wang, X.; Qiao, Y.; et al. MiR-152 and miR-185 co-contribute to ovarian cancer cells cisplatin sensitivity by targeting DNMT1 directly: A novel epigenetic therapy independent of decitabine. Oncogene 2014, 33, 378–386. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, Z.; Wei, X.; Gu, L.; Zheng, M.; Zhang, Y.; Cheng, X.; Fu, Y.; Lu, W. CircSLC39A8 attenuates paclitaxel resistance in ovarian cancer by regulating the miR-185-5p/BMF axis. Transl. Oncol. 2023, 36, 101746. [Google Scholar] [CrossRef]
- Sun, C.; Li, N.; Yang, Z.; Zhou, B.; He, Y.; Weng, D.; Fang, Y.; Wu, P.; Chen, P.; Yang, X.; et al. miR-9 regulation of BRCA1 and ovarian cancer sensitivity to cisplatin and PARP inhibition. J. Natl. Cancer Inst. 2013, 105, 1750–1758. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, J.W.; Calses, P.; Kemp, C.J.; Taniguchi, T. MiR-96 downregulates REV1 and RAD51 to promote cellular sensitivity to cisplatin and PARP inhibition. Cancer Res. 2012, 72, 4037–4046. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhang, J.; Yang, D. miR-96-5p promotes the proliferation and migration of ovarian cancer cells by suppressing Caveolae1. J. Ovarian Res. 2019, 12, 57. [Google Scholar] [CrossRef]
- Tsai, Y.S.; Lin, C.S.; Chiang, S.L.; Lee, C.H.; Lee, K.W.; Ko, Y.C. Areca nut induces miR-23a and inhibits repair of DNA double-strand breaks by targeting FANCG. Toxicol. Sci. 2011, 123, 480–490. [Google Scholar] [CrossRef]
- Todeschini, P.; Salviato, E.; Romani, C.; Raimondi, V.; Ciccarese, F.; Ferrari, F.; Tognon, G.; Marchini, S.; D’Incalci, M.; Zanotti, L.; et al. Comprehensive Profiling of Hypoxia-Related miRNAs Identifies miR-23a-3p Overexpression as a Marker of Platinum Resistance and Poor Prognosis in High-Grade Serous Ovarian Cancer. Cancers 2021, 13, 3358. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Liu, M. Correlation analysis on the expression levels of microRNA-23a and microRNA-23b and the incidence and prognosis of ovarian cancer. Oncol. Lett. 2018, 16, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Ng, W.L.; Zhang, X.; Wang, P.; Zhang, Z.; Mo, Y.Y.; Mao, H.; Hao, C.; Olson, J.J.; Curran, W.J.; et al. Targeting DNA-PKcs and ATM with miR-101 sensitizes tumors to radiation. PLoS ONE 2010, 5, e11397. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Jin, H.; Yang, S.; Li, Z.; Wang, X.; Li, L.; Jia, Y.; Cui, M. MicroRNA-101 inhibits growth and metastasis of human ovarian cancer cells by targeting PI3K/AKT. Arch. Med. Sci. 2021, 17, 127–134. [Google Scholar] [CrossRef]
- Liu, G.; Yang, D.; Rupaimoole, R.; Pecot, C.V.; Sun, Y.; Mangala, L.S.; Li, X.; Ji, P.; Cogdell, D.; Hu, L.; et al. Augmentation of response to chemotherapy by microRNA-506 through regulation of RAD51 in serous ovarian cancers. J. Natl. Cancer Inst. 2015, 107. [Google Scholar] [CrossRef]
- Bagnoli, M.; Nicoletti, R.; Valitutti, M.; Rizzo, A.; Napoli, A.; Montalvao De Azevedo, R.; Tomassetti, A.; Mezzanzanica, D. Impairment of RAD17 Functions by miR-506-3p as a Novel Synthetic Lethal Approach Targeting DNA Repair Pathways in Ovarian Cancer. Front. Oncol. 2022, 12, 923508. [Google Scholar] [CrossRef]
- Vajen, B.; Bhowmick, R.; Greiwe, L.; Schaffer, V.; Eilers, M.; Reinkens, T.; Stalke, A.; Schmidt, G.; Fiedler, J.; Thum, T.; et al. MicroRNA-449a Inhibits Triple Negative Breast Cancer by Disturbing DNA Repair and Chromatid Separation. Int. J. Mol. Sci. 2022, 23, 5131. [Google Scholar] [CrossRef]
- Liu, J.; Yu, F.; Wang, S.; Zhao, X.; Jiang, F.; Xie, J.; Deng, M. circGFRA1 Promotes Ovarian Cancer Progression By Sponging miR-449a. J. Cancer 2019, 10, 3908–3913. [Google Scholar] [CrossRef]
- Chin Sang, C.; Moore, G.; Tereshchenko, M.; Zhang, H.; Nosella, M.L.; Dasovich, M.; Alderson, T.R.; Leung, A.K.L.; Finkelstein, I.J.; Forman-Kay, J.D.; et al. PARP1 condensates differentially partition DNA repair proteins and enhance DNA ligation. EMBO Rep. 2024, 25, 5635–5666. [Google Scholar] [CrossRef] [PubMed]
- Pazzaglia, S.; Pioli, C. Multifaceted Role of PARP-1 in DNA Repair and Inflammation: Pathological and Therapeutic Implications in Cancer and Non-Cancer Diseases. Cells 2019, 9, 41. [Google Scholar] [CrossRef]
- Zhu, T.; Zheng, J.Y.; Huang, L.L.; Wang, Y.H.; Yao, D.F.; Dai, H.B. Human PARP1 substrates and regulators of its catalytic activity: An updated overview. Front. Pharmacol. 2023, 14, 1137151. [Google Scholar] [CrossRef]
- Liu, J.; Matulonis, U.A. Update on PARP inhibitors for the treatment of ovarian cancer. Clin. Adv. Hematol. Oncol. 2025, 23, 100–110. [Google Scholar] [PubMed]
- Prakash, R.; Zhang, Y.; Feng, W.; Jasin, M. Homologous recombination and human health: The roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb. Perspect. Biol. 2015, 7, a016600. [Google Scholar] [CrossRef]
- Nielsen, F.C.; van Overeem Hansen, T.; Sorensen, C.S. Hereditary breast and ovarian cancer: New genes in confined pathways. Nat. Rev. Cancer 2016, 16, 599–612. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.; Feng, W.; Lim, P.X.; Kass, E.M.; Jasin, M. Homology-Directed Repair and the Role of BRCA1, BRCA2, and Related Proteins in Genome Integrity and Cancer. Annu. Rev. Cancer Biol. 2018, 2, 313–336. [Google Scholar] [CrossRef]
- Arun, B.; Couch, F.J.; Abraham, J.; Tung, N.; Fasching, P.A. BRCA-mutated breast cancer: The unmet need, challenges and therapeutic benefits of genetic testing. Br. J. Cancer 2024, 131, 1400–1414. [Google Scholar] [CrossRef]
- Ma, X.; Fu, H.; Sun, C.; Wu, W.; Hou, W.; Zhou, Z.; Zheng, H.; Gong, Y.; Wu, H.; Qin, J.; et al. RAD18 O-GlcNAcylation promotes translesion DNA synthesis and homologous recombination repair. Cell Death Dis. 2024, 15, 321. [Google Scholar] [CrossRef]
- Hoege, C.; Pfander, B.; Moldovan, G.L.; Pyrowolakis, G.; Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 2002, 419, 135–141. [Google Scholar] [CrossRef]
- Zeng, X.; Zheng, W.; Sheng, Y.; Ma, H. UBE2B promotes ovarian cancer growth via promoting RAD18 mediated ZMYM2 monoubiquitination and stabilization. Bioengineered 2022, 13, 8000–8012. [Google Scholar] [CrossRef]
- Wassing, I.E.; Graham, E.; Saayman, X.; Rampazzo, L.; Ralf, C.; Bassett, A.; Esashi, F. The RAD51 recombinase protects mitotic chromatin in human cells. Nat. Commun. 2021, 12, 5380. [Google Scholar] [CrossRef]
- Wang, Q.; Goldstein, M.; Alexander, P.; Wakeman, T.P.; Sun, T.; Feng, J.; Lou, Z.; Kastan, M.B.; Wang, X.F. Rad17 recruits the MRE11-RAD50-NBS1 complex to regulate the cellular response to DNA double-strand breaks. EMBO J. 2014, 33, 862–877. [Google Scholar] [CrossRef]
- Kim, H.; Xu, H.; George, E.; Hallberg, D.; Kumar, S.; Jagannathan, V.; Medvedev, S.; Kinose, Y.; Devins, K.; Verma, P.; et al. Combining PARP with ATR inhibition overcomes PARP inhibitor and platinum resistance in ovarian cancer models. Nat. Commun. 2020, 11, 3726. [Google Scholar] [CrossRef]
- Kim, H.; George, E.; Ragland, R.; Rafail, S.; Zhang, R.; Krepler, C.; Morgan, M.; Herlyn, M.; Brown, E.; Simpkins, F. Targeting the ATR/CHK1 Axis with PARP Inhibition Results in Tumor Regression in BRCA-Mutant Ovarian Cancer Models. Clin. Cancer Res. 2017, 23, 3097–3108. [Google Scholar] [CrossRef]
- Ma, Z.; Dang, R.; Wu, G. KU60019 inhibits ovarian cancer progression by targeting DGAT1/has-miR-1273g-3p axis. PLoS ONE 2025, 20, e0325213. [Google Scholar] [CrossRef]
- Gupta, S.; Gellert, M.; Yang, W. Mechanism of mismatch recognition revealed by human MutSbeta bound to unpaired DNA loops. Nat. Struct. Mol. Biol. 2011, 19, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Wu, Y.; Wang, Y.; Zhao, Y.; Li, Y.; Hao, S.; Lin, L.; Zhang, S.; Xu, X.; Wang, H. CtIP suppresses primary microRNA maturation and promotes metastasis of colon cancer cells in a xenograft mouse model. J. Biol. Chem. 2021, 296, 100707. [Google Scholar] [CrossRef]
- Kawai, S.; Amano, A. BRCA1 regulates microRNA biogenesis via the DROSHA microprocessor complex. J. Cell Biol. 2012, 197, 201–208. [Google Scholar] [CrossRef] [PubMed]
- What will it take to get miRNA therapies to market? Nat. Biotechnol. 2024, 42, 1623–1624. [CrossRef]
- Zhang, S.; Lu, Z.; Unruh, A.K.; Ivan, C.; Baggerly, K.A.; Calin, G.A.; Li, Z.; Bast, R.C., Jr.; Le, X.F. Clinically relevant microRNAs in ovarian cancer. Mol. Cancer Res. 2015, 13, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Chorley, B.N.; Atabakhsh, E.; Doran, G.; Gautier, J.C.; Ellinger-Ziegelbauer, H.; Jackson, D.; Sharapova, T.; Yuen, P.S.T.; Church, R.J.; Couttet, P.; et al. Methodological considerations for measuring biofluid-based microRNA biomarkers. Crit. Rev. Toxicol. 2021, 51, 264–282. [Google Scholar] [CrossRef] [PubMed]
- Condrat, C.E.; Thompson, D.C.; Barbu, M.G.; Bugnar, O.L.; Boboc, A.; Cretoiu, D.; Suciu, N.; Cretoiu, S.M.; Voinea, S.C. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020, 9, 276. [Google Scholar] [CrossRef] [PubMed]
miRNA | Targeted Gene/Protein(s) | Related DNA Repair Pathway(s) | Effect | miRNA-Target Gene Interaction Validation | References |
---|---|---|---|---|---|
miR-196a-2 | MBD4 (Methyl-CpG Binding Domain-4, DNA Glycosylase) | Base excision repair | miR-196a-2 rs11614913 SNP is frequent in high-grade serous OvCa. Network analysis predicted MBD4 as its target. miR-196a is upregulated in OvCa. | Not validated—based on network analysis. | [13,14] |
miR-519a-3p | PARP1 (Poly(ADP-Ribose) Polymerase-1) | Mainly single-strand break repair, but also other repair pathways | Downregulated in OvCa. Targets PARP1 to inhibit malignant traits of OvCa cells. | Validated—dual luciferase reporter and biotinylated miRNA pull-down assays in OvCa cells. | [15] |
miR-43 2 4 | FEN1 (Flap Structure-Specific Endonuclease-1) | Single-strand break repair, homologous recombination | Downregulated in OvCa tissues and cells. Targets FEN1 to repress OvCa cell growth and cancer progression. | Validated—dual luciferase reporter assay in OvCa cells. | [16] |
miR-13 4-3 p | Downregulated in OvCa tissues and cells. Targets FEN1 to inhibit malignant traits of OvCa cells. | Validated—dual luciferase reporter assay in OvCa cells. | [17] | ||
miR-328-3 p | DDB2/XPE (Damage Specific DNA Binding Protein-2) | Nucleotide excision repair | Highly expressed in OvCa stem cells. Targets and thus downregulates DDB2 to support stemness phenotype. | Validated—dual luciferase reporter assay in OvCa cells. | [18] |
miR-373 | RAD23B (UV excision repair protein RAD23 homolog-B); RAD52/RDM1 (RAD52 Homolog, DNA Repair Protein) | Nucleotide excision repair; homologous recombination | Upregulated by HIF1α and targets RAD23B and RAD52 in breast cancer cells. Elevated in OvCa patient’s serum. | Validated—dual luciferase reporter assay in breast cancer cells. | [19,20] |
miR-155 | MSH2 (MutS Homolog-2), MSH6(MutS Homolog-6), MLH1(MutL Homolog-1) | Mismatch repair | Downregulates MSH2, MSH6 and MLH1, thus inducing microsatellite instability in colorectal cancer. Overexpressed in OvCa tissues and correlates with malignant potential. | Validated—dual luciferase reporter assay in colorectal cancer cells. | [21,22] |
miR-203a-3p | ATM (Ataxia Telangiectasia Mutated) | DNA damage response | Downregulated in OvCa tissues. Targets ATM to compromise malignant traits of OvCa cells. | Validated—dual luciferase reporter assay in OvCa cells. | [23] |
miR-200a, miR-200b, miR-200c, miR-141, miR-429, miR-200a, miR-29c, miR-141 and miR-101 | DDX1 (DEAD-Box Helicase 1) | Clearance of RNA at DNA double-strand breaks | DDX1 regulates post-transcriptional processing and induction of several miRNAs after DNA damage in OvCa cells. | Not applicable. | [24] |
miR-1260b | CHK2/CHEK2 (Checkpoint Kinase-2) | DNA damage response | Increased in OvCa serum samples. Predicted to target CHEK2. | Not validated—based on TargetScan, followed by String analysis prediction. | [25] |
miR-191 | Targets CHEK2 to promote osteosarcoma cell proliferation. Upregulated in ovarian clear cell carcinoma serum samples and suggested as a diagnostic marker. | Validated—dual luciferase reporter assay in osteosarcoma cells. | [26,27] | ||
miR-182-5p | CHK2/CHEK2 (Checkpoint Kinase-2); BRCA1/FANCS(DNA Repair Associated/Breast Cancer Type 1 Susceptibility Protein); RAD17 (Checkpoint Clamp Loader Component) | DNA damage response; homologous recombination; Fanconi anaemia pathway | Targets CHEK2, RAD17 and TP53BP1 in breast cancer cells. Also targets BRCA1 in HeLa cells. Upregulated in OvCa tissue samples. | Validated—dual luciferase reporter assay for CHEK2, RAD17 and TP53BP1 in breast cancer cells. Dual luciferase reporter assay and RNA immunoprecipitation for BRCA1 in HeLa cells. | [28,29,30] |
miR-134 | H2AX (H2A Histone Family Member X) | DNA damage response | Induced by DNA damage in OvCa cells. Facilitates accumulation of phosphorylated H2AX (γH2AX) and stimulates DNA repair via NHEJ. Promotes OvCa cell survival and xenograft tumour growth in murine model. Also upregulated in OvCa tissues and correlates with poor prognosis. | Interaction with SDS22, regulatory subunit of serine/threonine phosphatase required for mitosis, verified using dual luciferase reporter assay in OvCa cells. | [31] |
miR-138 | Targets and represses H2AX expression, inhibits HR and triggers chromosomal instability after DNA damage in osteosarcoma cells. Downregulated in invasive OvCa cells. Low expression in patient tissues is correlated with malignant phenotype. | Validated—dual luciferase reporter assay in osteosarcoma cells. | [32,33] | ||
miR-214 | RNF8 (Ring Finger Protein-8) | DNA damage response | Targets RNF8, thus suppressing DDR and contributing to chromosomal instability in OvCa cells. | Validated—dual luciferase reporter assay in OvCa cells. | [34] |
miR-22 | MDC1 (Mediator of DNA Damage Checkpoint-1) | DNA damage response | Targets MDC1 and thus inhibits DNA Repair and triggers genomic instability in several cancer cell models. Targets also TIP-60 in breast cancer cells, and its high expression correlates with metastatic potential. Downregulated in OvCa and low levels correlated with poor prognosis. | Validated—dual luciferase reporter assay for MDC1 in human embryonic kidney cells and for TIP60 in breast cancer cells. | [35,36,37] |
miR-34 | TP53/p53 (Tumour Protein P53) | DNA damage response; cell cycle checkpoints; apoptosis | TP53 induces miR-34 family after DNA damage. In OvCa, frequent TP53 mutations reduce miR-34a/b/c expression. miR-34s act as tumour suppressors in OvCa, with low levels linked to poor outcome. They also enhance p53 by targeting SIRT1 and MDMX. | Validated—dual luciferase reporter assay for miR-34a and MDMX in colorectal cancer cells, and miR-34a and SIRT1 in human embryonic kidney cells. | [38,39,40,41,42,43,44] |
miR-31 | Regulated by TP53 and suppressed in TP53-mutated OvCa cells. Predicted to interact with multiple targets among DDR and cell cycle regulatory genes, and higher levels correlated with better prognosis. | Interaction not validated. Predicted from global expression profiling after miR-31 mimic. | [45] | ||
miR-488 | Promotes TP53 expression. | Interaction not validated. TP53 upregulated by miR-488 mimic. | [46] | ||
mi R - 29a/b/c | Upregulate TP53 and induce p53-dependent apoptosis through targeting negative p53 regulators p85 alpha and CDC42. Downregulated in OvCa. | Validated—dual luciferase reporter assay for miR-29a/b/c and p85 alpha or CDC42 in HeLa cells. | [47,48,49] | ||
miR-122 | Targets and downregulates TP53, thus supporting cancerous phenotype in non-small cell lung cancer cells. Downregulated in OvCa. | Validated—dual luciferase reporter assay in non-small cell lung cancer cells. | [50,51] | ||
miR-1228 | Targets and negatively regulates TP53 in OvCa cells, thus acting as tumour suppressor. circRNA_100395 supports OvCa malignant potential through sponging miR-1228. | Validated—dual luciferase reporter assay in OvCa cells. | [52] | ||
miR-145 | Regulated by p53 and downregulated in OvCa cells and tissues, supporting cancerous phenotype. | Not applicable. | [53] | ||
miR-200 family | p53 regulates miR-200 family (miR-200a/b/c, miR-141, miR-429). In OvCa, they show redundant tumour suppressor and oncomiR roles. Elevated serum/exosomal levels are suggested as diagnostic biomarkers. | Not applicable. | [54,55,56,57] | ||
miR-647 | MDM2 (Mouse Double Minute 2, Human Homolog) | DNA damage response; cell cycle checkpoints; apoptosis | Targets and negatively regulates MDM2 in OvCa cells. Sponged by circ-FAM53B. | Validated—dual luciferase reporter assay in OvCa cells. | [58] |
miR-191 | MDMX/MDM4 (Mouse Double Minute 4, Human Homolog) | DNA damage response; cell cycle checkpoints; apoptosis | MDMX 3’-UTR SNP34091 generates miR-191 site, lowering MDMX levels. This SNP occurs more often in low-grade OvCa. | Validated—dual luciferase and biotinylated miRNApull-down assays show miR-191 binds only the C, not A, variant of SNP34091 in OvCa cells. | [59] |
miR-214-5p | Targets and downregulates MDMX and MDM2 in immature ovarian teratocarcinoma. LINC00324 sponges miR-214-5p to derepress MDMX and MDM2 expression. | Validated—dual luciferase reporter assay and RNA Immunoprecipitation in OvCa cells. | [60] | ||
miR-223 | ATR (Ataxia Telangiectasia and Rad3-Related Protein) | DNA damage response | Targets ATR and is sponged by circATP2B4, in pulmonary arterial smooth muscle cells. In OvCa upregulated and serves as oncomiR. | Validated—dual luciferase reporter assay and RNA immunoprecipitation in pulmonary arterial smooth muscle cells. | [61,62] |
miR-1255b; miR-193b; miR-148b | BRCA1/FANCS (Breast Cancer Type 1 Susceptibility Protein); BRCA2/FANCD1 (Breast Cancer Type 2 Susceptibility Protein); RAD51/FANCR (RAD51 Recombinase) | Homologous recombination; Fanconi anaemia pathway | Deletion of miR-1255b, miR-193b, and miR-148b in OvCa correlates with genomic copy number alterations from HR proteins upregulation in G1 cell cycle phase. | Validated—dual luciferase reporter assay confirms miR-1255b binds BRCA1/2, miR-193b binds BRCA1/2 and RAD51, and miR-148b binds RAD51 in breast cancer cells. | [63] |
miR-210 | RAD52/RDM1 (RAD52 Homolog, DNA Repair) | Homologous recombination | Induced under hypoxia by HIF1α and targets RAD52 in breast cancer cells. Upregulated in OvCa tissues and promotes EMT and tumour growth. | Validated—dual luciferase reporter assay in breast cancer cells. | [19,64,65] |
miR-146 | FANCM (FA Complementation Group M) | Fanconi anaemia pathway | Targets and/or downregulates FANCM and BRCA1, induces DNA damage in cervical, gastric or breast cancer cells. Upregulated expression correlates with favourable prognosis in OvCa. | Validated—dual luciferase reporter assay confirms miR-146a binds FANCM, and miR-146a/miR-146b-5p bind BRCA1 in HeLa cells. | [66,67,68] |
miRNA | Targeted Gene/Protein(s) | Related DNA Repair Pathway(s) | Effect | miRNA-Target Gene Interaction Validation | References |
---|---|---|---|---|---|
miR-211 | TDP1 (Tyrosyl-DNA Phosphodiesterase-1); POLH/RAD30A (DNA Polymerase Eta); ATRX (ATP-Dependent Helicase); ERCC6L2 (ERCC Excision Repair 6 Like 2) | Single-strand break repair; translesion synthesis; transcriptional regulation and chromatin remodelling; double-strand break repair | Targets DDR genes’ transcripts, including POLH, TDP1, ATRX, and ERCC6L2 in human embryonic kidney cells. In OvCa cells, promotes platinum chemosensitivity. | Validated—dual luciferase reporter assay in human embryonic kidney cells. | [89] |
let-7e | PARP1 (Poly(ADP-Ribose) Polymerase-1) | Mainly single-strand break repair, but also other repair pathways | Targets PARP1 to enhance cisplatin sensitivity in OvCa cells. | Validated—dual luciferase reporter assay in OvCa cells. | [90] |
miR-216b | Downregulated in cisplatin-resistant OvCa cells; targets PARP1 to suppress malignancy, enhance cisplatin sensitivity, and inhibit tumour growth in xenograft models. | Validated—dual luciferase reporter assay in OvCa cells. | [91] | ||
miR-100-5p | PARP1 (Poly(ADP-Ribose) Polymerase-1)ATR (Ataxia Telangiectasia And Rad3-Related Protein)CHK1/CHEK1 (Checkpoint Kinase-1) | Single-strand break repair and DNA damage response | Downregulated by PARP1 inhibitor (Olaparib) + ATR inhibitor (ceralasertib), or by CHEK1 inhibitor (MK-8776) alone treatment in OvCa cells. | Not applicable. | [92] |
miR-26a-5p | Downregulated by PARP1 inhibitor (Olaparib) + ATR inhibitor (ceralasertib), or by CHEK1 inhibitor (MK-8776) alone treatment in OvCa cells. | Not applicable. | [92] | ||
miR-33a-3p | Downregulated by PARP1 inhibitor (Olaparib) + ATR inhibitor (ceralasertib) treatment in OvCa cells. | Not applicable. | [92] | ||
miR-99b-5p | Downregulated by PARP1 inhibitor (Olaparib) + ATR inhibitor (ceralasertib), or by CHEK1 inhibitor (MK-8776) alone treatment in OvCa cells. | Not applicable. | [92] | ||
miR-486-5p | Downregulated by PARP1 inhibitor (Olaparib) + ATR inhibitor (ceralasertib), or by PARP1 inhibitor (Olaparib) + CHEK1 inhibitor (MK-8776), or by CHEK1 inhibitor (MK-8776) alone treatment in OvCa cells. | Not applicable. | [92] | ||
miR-1275 | Downregulated by PARP1 inhibitor (Olaparib) + CHEK1 inhibitor (MK-8776), or by CHEK1 inhibitor (MK-8776) alone treatment in OvCa cells. | Not applicable. | [92] | ||
miR-1290 | Upregulated by PARP1 inhibitor (Olaparib) + CHEK1 inhibitor (MK-8776) treatment in OvCa cells. | Not applicable. | [92] | ||
miR-100-3p, miR-320b, miR-628-5p | CHK1/CHEK1 (Checkpoint Kinase-1) | Downregulated by CHEK1 inhibitor (MK-8776) treatment in OvCa cells. | Not applicable. | [92] | |
miR-379-5p | RAD18 (RAD18 E3 Ubiquitin Protein Ligase) | Translesion synthesis, homologous recombination repair | Inhibits OvCa stem cells and reduces cisplatin resistance through targeting RAD18. Also, targets PARP1 and XRCC6 in the context of premature ovarian insufficiency, where it impairs DNA repair and leads to cell death. | Validated—dual luciferase reporter assay confirmed binding with RAD18 in OvCa cells and binding with PARP1 and XRCC6 in steroidogenic human granulosa-like tumour cells. | [93,94] |
miR-145 | Targets RAD18 and thus controls cell sensitivity to 5-fluorouracil treatment in colorectal cancer cells. In OvCa tissues and cells, downregulated and shown to regulate targets shaping malignant potential. | Validated—dual luciferase reporter assay in human embryonic kidney cells. | [95,96,97,98] | ||
miR-630 | Downregulates RAD18 in liver cancer cells. Upregulated in OvCa tissues and cells, and supports malignant traits, as well as paclitaxel resistance. | Interaction not validated. RAD18 is downregulated by miR-630 mimic and upregulated by miR-630 inhibitor in liver cancer cells. | [99,100,101] | ||
miR-125a-3p | BOK (BCL2 Family Apoptosis Regulator) | Apoptosis | Upregulated by combination of olaparib and cisplatin in OvCa cells. Promotes DNA damage and inhibits malignant traits of OvCa cells. | Interaction not validated. BOK is upregulated by miR-125a-3p mimic and downregulated by anti-miR-125a-3p in OvCa cells. | [102] |
PARP1 (Poly(ADP-Ribose) Polymerase-1)CHK1/CHEK1 (Checkpoint Kinase-1) | Single-strand break repair and DNA damage response | Downregulated by PARP1 inhibitor (Olaparib) + CHEK1 (MK-8776), or by CHEK1 inhibitor (MK-8776) alone treatment in OvCa cells. | Not applicable. | [92] | |
miR-770-5p | ERCC2/XPD (ERCC Excision Repair 2, TFIIH Core Complex Helicase Subunit/Xeroderma Pigmentosum, Complementation Group D) | Nucleotide excision repair | Downregulated in OvCa tissues of platinum-resistant patients. Predicted to target ERCC2 in OvCa cells, inducing DNA damage and increasing cisplatin sensitivity. | Interaction not validated. ERCC2 is downregulated by miR-770-5p mimic and downregulated by anti-miR-770-5p in OvCa cells. | [103] |
miR-152 | ERCC1 (Excision Repair Cross-Complementation Group-1) | Nucleotide excision repair | Downregulated in cisplatin-resistant OvCa tissues and inversely correlated with ERCC1 expression. | Interaction not validated. Higher miR-152 expression correlates with lower ERCC1 levels in OvCa tissues. | [104] |
miR-590-5p | MSH2 (MutS Homolog-2) | Mismatch repair | Targets MSH2 in OvCa cells and thus increases cisplatin resistance. | Validated—dual luciferase reporter assay in OvCa cells. | [105] |
miR-21 | MSH2 (MutS Homolog-2), MSH6 (MutS Homolog-6) | Mismatch repair | Targets and downregulates MSH2 and MSH6 and thus reduces 5-FU sensitivity in colon cancer cells. Upregulated in OvCa tissues and cells, where it contributes to cisplatin resistance. | Validated—dual luciferase reporter assay in colon cancer cells. | [106,107] |
miR-24 | H2AX (H2A Histone Family Member X) | DNA damage response | Targets and downregulates H2AX levels in terminally differentiated blood cells, thus compromising their survival after DNA damage. miR-24-3p expression contributes to cisplatin resistance in OvCa cells. Elevated miR-24-1-5p expression supports OvCa cell proliferation and tumour growth in xenograft model. | Validated—dual luciferase reporter assay in terminally differentiated blood cells. | [108,109,110] |
miR-622 | Ku70/XRCC6 (X-Ray Repair Cross Complementing-6) and Ku80/XRCC5 (X-Ray Repair Cross Complementing-5) | Non-homologous end joining | Targets Ku heterodimer (Ku70/Ku80), thus inhibiting NHEJ and inducing platinum and PARP inhibitor resistance in BRCA1-mutant OvCa cells. | Validated—dual luciferase reporter and biotinylated miRNA pull-down assays in BRCA1-mutant OvCa cells. | [111] |
miR-192, miR-194, miR-215 | TP53/p53 (Tumour Protein P53);MDM2(Mouse Double Minute 2, Human Homolog); XPB/ERCC3 (Xeroderma Pigmentosum, Complementation Group B);XPF/ERCC4/FANCQ(Xeroderma Pigmentosum, Complementation Group F) | DNA damage response; cell cycle checkpoints; apoptosis | p53 upregulates the miR-194/215 cluster (miR-192, -194, -215), which is upregulated in mucinous OvCa, but downregulated in other subtypes. miR-194-5p targets MDM2 in OvCa, with its downregulation causing paclitaxel resistance. miR-192, -194, and -215 also target MDM2 in renal cancer cells; miR-192 targets XPB/XPF in liver cancer cells. | Validated—dual luciferase reporter assay confirms miR-192, -194, and -215 binding to MDM2 in renal cell carcinoma cells, miR-194-5p binding to MDM2 in OvCa cells, and miR-192 binding to XPB and XPF in liver cancer cells. | [112,113,114,115,116] |
miR-185 | ATR (Ataxia Telangiectasia And Rad3-Related Protein) | DNA damage response | Targets ATR and is downregulated upon ionising radiation to support DDR in renal cell carcinoma. Downregulated in cisplatin and paclitaxel-resistant OvCa cells. | Validated—dual luciferase reporter assay in renal cell carcinoma. | [117,118,119] |
miR-9 | BRCA1/FANCS (Breast Cancer Type 1 Susceptibility Protein) | DNA Damage Response; Homologous recombination; Fanconi anaemia pathway | Targets and downregulates BRCA1 and thus improves sensitivity to chemotherapeutics in OvCa cells. | Validated—dual luciferase reporter assay in OvCa cells. | [120] |
miR-96 | RAD51 (RAD51 Recombinase); REV1/REV1L (REV1 DNA Directed Polymerase) | Homologous recombination; translesion synthesis | Targets and downregulates REV1 and RAD51 in osteosarcoma cells, increasing sensitivity to cisplatin and PARP inhibition. Upregulated in OvCa cells and tissues and supports malignant phenotype. | Validated—dual luciferase reporter assay in osteosarcoma cells | [121,122] |
miR-23a | FANCG/XRCC9 (FA Complementation Group G) | Fanconi anaemia pathway | Downregulates FANCG, thus inducing DNA damage in normal human oral fibroblasts. Overexpressed in OvCa tissue samples, and its overexpression correlates with platinum resistance. | Interaction not validated. FANCG is downregulated by miR-23a mimic. | [123,124,125] |
miR-101 | DNA-PKc/PRKDC/XRCC7 (DNA-Dependent Protein Kinase Catalytic Subunit); ATM (Ataxia Telangiectasia Mutated) | DNA damage response | Targets and downregulates DNA-PKcs and ATM, thus increasing radiosensitivity in lung and glioma cells. Downregulated in OvCa cells, and its overexpression compromises cell survival. | Validated—dual luciferase reporter assay in human embryonic kidney cells. | [126,127] |
miR-506 | RAD50 (Homolog of S. cerevisiae Rad50)RAD17 (Checkpoint Clamp Loader Component RAD17) | Homologous recombinationDNA damage response | miR-506 targets RAD51, and miR-506-3p targets RAD17, thus sensitising OvCa cells to chemotherapy. | Validated—dual luciferase reporter assay in HeLa or human embryonic kidney cells. | [128,129] |
miR-449a | EME1 (Essential Meiotic Structure-Specific Endonuclease-1); BRCA2/FANCD1 (Breast Cancer Type 2 Susceptibility Protein/BRCA2 DNA Repair Associated); RAD51/FANCR (RAD51 Recombinase) | Homologous recombination; Fanconi anaemia pathway | Targets EME1, downregulates BRCA2 and RAD51 and induces apoptosis in breast cancer cells. Potentiates PARP inhibitor effectiveness in BRCA1-mutated cells. Downregulated by circGFRA1-mediated sponging in OvCa. | Validated—dual luciferase reporter and RNA immunoprecipitation assays for EME1 in human embryonic kidney cells. | [130,131] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arczewska, K.D.; Piekiełko-Witkowska, A. DNA Damage and Repair in Ovarian Cancer: Focus on MicroRNAs. Cancers 2025, 17, 3011. https://doi.org/10.3390/cancers17183011
Arczewska KD, Piekiełko-Witkowska A. DNA Damage and Repair in Ovarian Cancer: Focus on MicroRNAs. Cancers. 2025; 17(18):3011. https://doi.org/10.3390/cancers17183011
Chicago/Turabian StyleArczewska, Katarzyna D., and Agnieszka Piekiełko-Witkowska. 2025. "DNA Damage and Repair in Ovarian Cancer: Focus on MicroRNAs" Cancers 17, no. 18: 3011. https://doi.org/10.3390/cancers17183011
APA StyleArczewska, K. D., & Piekiełko-Witkowska, A. (2025). DNA Damage and Repair in Ovarian Cancer: Focus on MicroRNAs. Cancers, 17(18), 3011. https://doi.org/10.3390/cancers17183011