Proteomic Identification of IL4I1 as a Therapeutic Target in P53-Mutant Endometrial Cancer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Samples
2.2. Laser Capture Microdissection for Cancer Tissue Purification
2.3. Protein Extraction and Digestion
2.4. LC-MS/MS Analysis
2.5. Bioinformatics Analysis
2.6. Immunohistochemistry
2.7. POLE Mutation Analysis
2.8. Western Blotting
2.9. IL4I1 Expression in Endometrial Carcinoma from TCGA
2.10. Cell Culture and Lentiviral Infection
2.11. Cell Proliferation, Migration, and Invasion Assays
2.12. In Vivo Tumor Model
2.13. Single-Cell RNA-Seq Analysis
2.14. Data Analysis
3. Results
3.1. Molecular Subtyping of Endometrial Cancer
3.2. Selection of FIGO Stage I P53 Mutant Endometrial Cancer Samples
3.3. Proteomic and Bioinformatics Analysis
3.4. IL4I1 Expression in Endometrial Cancer Tissue
3.5. Differential Expression of IL4I1 in TP53-Mutant Endometrial Cancer
3.6. IL4I1 Expression and Prognostic Analysis in TP53-Mutant Endometrial Cancer
3.7. Generation of Stable IL4I1 Knockout HEC-1B and KLE Endometrial Cancer Cell Lines
3.8. IL4I1 Knockout Suppresses Cell Proliferation, Migration, and Invasion in TP53-Mutant Endometrial Cancer
3.9. IL4I1 Expression Profiling and Its Potential Role in the Tumor Microenvironment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henry, C.E.; Phan, K.; Orsman, E.J.; Kenwright, D.; Thunders, M.C.; Filoche, S.K. Molecular Profiling of Endometrial Cancer: An Exploratory Study in Aotearoa, New Zealand. Cancers 2021, 13, 5641. [Google Scholar] [CrossRef]
- Janowska, M.; Potocka, N.; Paszek, S.; Skrzypa, M.; Wróbel, A.; Kluz, M.; Baszuk, P.; Marciniak, W.; Gronwald, J.; Lubiński, J.; et al. An Assessment of Serum Selenium Concentration in Women with Endometrial Cancer. Nutrients 2022, 14, 958. [Google Scholar] [CrossRef]
- Samuel, N.C.; Clark, T.J. Future research into abnormal uterine bleeding. Best Pract. Res. Clin. Obstet. Gynaecol. 2007, 21, 1023–1040. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, L.; Sultana, B.; Wang, B.; Sun, H. Diagnostic value of integrated 18F-FDG PET/MRI for staging of endometrial carcinoma: Comparison with PET/CT. BMC Cancer 2022, 22, 947. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, H.-J.; Lin, Q.; Zhu, M.-J.; Yu, Y.-Y.; He, X.-Y.; Wan, X.-P. Estrogen-ERα signaling and DNA hypomethylation co-regulate expression of stem cell protein PIWIL1 in ERα-positive endometrial cancer cells. Cell Commun. Signal. 2020, 18, 84. [Google Scholar] [CrossRef] [PubMed]
- Marnitz, S.; Walter, T.; Schömig-Markiefka, B.; Engler, T.; Kommoss, S.; Brucker, S.Y. A Modern Approach to Endometrial Carcinoma: Will Molecular Classification Improve Precision Medicine in the Future? Cancers 2020, 12, 2577. [Google Scholar] [CrossRef] [PubMed]
- Dou, Y.; Kawaler, E.A.; Cui Zhou, D.; Gritsenko, M.A.; Huang, C.; Blumenberg, L.; Karpova, A.; Petyuk, V.A.; Savage, S.R.; Satpathy, S.; et al. Proteogenomic Characterization of Endometrial Carcinoma. Cell 2020, 180, 729–748.e26. [Google Scholar] [CrossRef]
- León-Castillo, A.; de Boer, S.M.; Powell, M.E.; Mileshkin, L.R.; Mackay, H.J.; Leary, A.; Nijman, H.W.; Singh, N.; Pollock, P.M.; Bessette, P.; et al. Molecular Classification of the PORTEC-3 Trial for High-Risk Endometrial Cancer: Impact on Prognosis and Benefit From Adjuvant Therapy. J. Clin. Oncol. 2020, 38, 3388–3397. [Google Scholar] [CrossRef]
- Asami, Y.; Kobayashi Kato, M.; Hiranuma, K.; Matsuda, M.; Shimada, Y.; Ishikawa, M.; Koyama, T.; Komatsu, M.; Hamamoto, R.; Nagashima, M.; et al. Utility of molecular subtypes and genetic alterations for evaluating clinical outcomes in 1029 patients with endometrial cancer. Br. J. Cancer 2023, 128, 1582–1591. [Google Scholar] [CrossRef] [PubMed]
- Seddigh, P.; Bracht, T.; Molinier-Frenkel, V.; Castellano, F.; Kniemeyer, O.; Schuster, M.; Weski, J.; Hasenberg, A.; Kraus, A.; Poschet, G.; et al. Quantitative Analysis of Proteome Modulations in Alveolar Epithelial Type II Cells in Response to Pulmonary Aspergillus fumigatus Infection. Mol. Cell Proteom. 2017, 16, 2184–2198. [Google Scholar] [CrossRef]
- Carbonnelle-Puscian, A.; Copie-Bergman, C.; Baia, M.; Martin-Garcia, N.; Allory, Y.; Haioun, C.; Crémades, A.; Abd-Alsamad, I.; Farcet, J.P.; Gaulard, P.; et al. The novel immunosuppressive enzyme IL4I1 is expressed by neoplastic cells of several B-cell lymphomas and by tumor-associated macrophages. Leukemia 2009, 23, 952–960. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Li, Y.; Lv, X. IL4I1 enhances PD-L1 expression through JAK/STAT signaling pathway in lung adenocarcinoma. Immunogenetics 2023, 75, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Mazzoni, A.; Capone, M.; Ramazzotti, M.; Vanni, A.; Locatello, L.G.; Gallo, O.; De Palma, R.; Cosmi, L.; Liotta, F.; Annunziato, F.; et al. IL4I1 Is Expressed by Head-Neck Cancer-Derived Mesenchymal Stromal Cells and Contributes to Suppress T Cell Proliferation. J. Clin. Med. 2021, 10, 2111. [Google Scholar] [CrossRef]
- Lasoudris, F.; Cousin, C.; Prevost-Blondel, A.; Martin-Garcia, N.; Abd-Alsamad, I.; Ortonne, N.; Farcet, J.-P.; Castellano, F.; Molinier-Frenkel, V. IL4I1: An inhibitor of the CD8+ antitumor T-cell response in vivo. Eur. J. Immunol. 2011, 41, 1629–1638. [Google Scholar] [CrossRef]
- Wu, C.C.; MacCoss, M.J.; Howell, K.E.; Yates, J.R. A method for the comprehensive proteomic analysis of membrane proteins. Nat. Biotechnol. 2003, 21, 532–538. [Google Scholar] [CrossRef]
- Chen, A.; Hansen, T.H.; Olsen, L.I.; Palmgren, M.; Husted, S.; Schjoerring, J.K.; Persson, D.P. Towards single-cell ionomics: A novel micro-scaled method for multi-element analysis of nanogram-sized biological samples. Plant Methods 2020, 16, 31. [Google Scholar] [CrossRef]
- León-Castillo, A.; Gilvazquez, E.; Nout, R.; Smit, V.T.; McAlpine, J.N.; McConechy, M.; Kommoss, S.; Brucker, S.Y.; Carlson, J.W.; Epstein, E.; et al. Clinicopathological and molecular characterisation of ‘multiple-classifier’ endometrial carcinomas. J. Pathol. 2020, 250, 312–322. [Google Scholar] [CrossRef]
- Yano, M.; Ito, K.; Yabuno, A.; Ogane, N.; Katoh, T.; Miyazawa, M.; Miyazawa, M.; Hasegawa, K.; Narahara, H.; Yasuda, M. Impact of TP53 immunohistochemistry on the histological grading system for endometrial endometrioid carcinoma. Mod. Pathol. 2019, 32, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Piskorz, A.M.; Bosse, T.; Jimenez-Linan, M.; Rous, B.; Brenton, J.D.; Gilks, C.B.; Köbel, M. p53 immunohistochemistry is an accurate surrogate for TP53 mutational analysis in endometrial carcinoma biopsies. J. Pathol. 2020, 250, 336–345. [Google Scholar] [CrossRef]
- Yu, S.; Shao, H.; Ban, X.; Zhang, H.; You, Y.; Zhou, N.; Mao, X.; Zhao, H.; Chen, J.; Lu, Z. Detection of POLE Subtypes in High-Grade Endometrioid Carcinoma by BaseScope-ISH Assay. Front. Oncol. 2019, 9, 831. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, Z.; Ozark, P.A.; Fantini, D.; Marshall, S.A.; Rendleman, E.J.; Cozzolino, K.A.; Louis, N.; He, X.; Morgan, M.A.; et al. Resetting the epigenetic balance of Polycomb and COMPASS function at enhancers for cancer therapy. Nat. Med. 2018, 24, 758–769. [Google Scholar] [CrossRef]
- Liu, L.; Wu, Y.; Li, Q.; Liang, J.; He, Q.; Zhao, L.; Chen, J.; Cheng, M.; Huang, Z.; Ren, H.; et al. METTL3 Promotes Tumorigenesis and Metastasis through BMI1 m6A Methylation in Oral Squamous Cell Carcinoma. Mol. Ther. 2020, 28, 2177–2190. [Google Scholar] [CrossRef]
- Wu, T.D.; Madireddi, S.; de Almeida, P.E.; Banchereau, R.; Chen, Y.-J.J.; Chitre, A.S.; Chiang, E.Y.; Iftikhar, H.; O’Gorman, W.E.; Au-Yeung, A.; et al. Peripheral T cell expansion predicts tumour infiltration and clinical response. Nature 2020, 579, 274–278. [Google Scholar] [CrossRef]
- Oaknin, A.; Bosse, T.J.; Creutzberg, C.L.; Giornelli, G.; Harter, P.; Joly, F.; Lorusso, D.; Marth, C.; Makker, V.; Mirza, M.R.; et al. Endometrial cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2022, 33, 860–877. [Google Scholar] [CrossRef]
- Sadik, A.; Somarribas Patterson, L.F.; Öztürk, S.; Mohapatra, S.R.; Panitz, V.; Secker, P.F.; Pfänder, P.; Loth, S.; Salem, H.; Prentzell, M.T.; et al. IL4I1 Is a Metabolic Immune Checkpoint that Activates the AHR and Promotes Tumor Progression. Cell 2020, 182, 1252–1270.e34. [Google Scholar] [CrossRef]
- Guo, D.; Wang, Y.; Wu, X.; Gao, Y.; Wang, A.; Zhang, Z.; Zhao, K.; Wang, X.; Liu, M.; Zhang, Y.; et al. Expression of Tryptophan Metabolism Enzymes in Patients with Diffuse Large B-cell Lymphoma and NK/T-cell Lymphoma. Cancer Med. 2023, 12, 12139–12148. [Google Scholar] [CrossRef]
- Vari, F.; Arpon, D.; Keane, C.; Hertzberg, M.S.; Talaulikar, D.; Jain, S.; Cui, Q.; Han, E.; Tobin, J.; Bird, R.; et al. Immune evasion via PD-1/PD-L1 on NK cells and monocyte/macrophages is more prominent in Hodgkin lymphoma than DLBCL. Blood 2018, 131, 1809–1819. [Google Scholar] [CrossRef] [PubMed]
- Molinier-Frenkel, V.; Prévost-Blondel, A.; Castellano, F. The IL4I1 Enzyme: A New Player in the Immunosuppressive Tumor Microenvironment. Cells 2019, 8, 757. [Google Scholar] [CrossRef]
- Rao, D.; Yu, C.; Wang, T.; Sheng, J.; Lv, E.; Liang, H.; Huang, W.; Dong, H. Pan-cancer analysis combined with experimental validation revealed IL4I1 as an immunological and prognostic biomarker. Int. Immunopharmacol. 2022, 111, 109091. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Liu, J.; Xia, Y.; Wang, Z.; Li, X.; Gao, Q. Integrated analysis reveals the participation of IL4I1, ITGB7, and FUT7 in reshaping the TNBC immune microenvironment by targeting glycolysis. Ann. Med. 2021, 53, 916–928. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Teng, Y.; Hao, W.; Li, J.; Li, Z.; Chen, Q.; Yin, C.; Yue, W. Single-cell analysis revealed that IL4I1 promoted ovarian cancer progression. J. Transl. Med. 2021, 19, 454. [Google Scholar] [CrossRef]
- Liu, M.; Pan, Q.; Xiao, R.; Yu, Y.; Lu, W.; Wang, L. A cluster of metabolism-related genes predict prognosis and progression of clear cell renal cell carcinoma. Sci. Rep. 2020, 10, 12949. [Google Scholar] [CrossRef] [PubMed]
- Harjunpää, H.; Llort Asens, M.; Guenther, C.; Fagerholm, S.C. Cell Adhesion Molecules and Their Roles and Regulation in the Immune and Tumor Microenvironment. Front. Immunol. 2019, 10, 1078. [Google Scholar] [CrossRef] [PubMed]
- Nourshargh, S.; Alon, R. Leukocyte migration into inflamed tissues. Immunity 2014, 41, 694–707. [Google Scholar] [CrossRef] [PubMed]
- Sorbe, B.G.; Horvath, G.; Andersson, H.; Boman, K.; Lundgren, C.; Pettersson, B. External pelvic and vaginal irradiation versus vaginal irradiation alone as postoperative therapy in medium-risk endometrial carcinoma: A prospective, randomized study—Quality-of-life analysis. Int. J. Gynecol. Cancer 2012, 22, 1281–1288. [Google Scholar] [CrossRef]
- Lee, H.; Na, K.J.; Choi, H. Differences in Tumor Immune Microenvironment in Metastatic Sites of Breast Cancer. Front. Oncol. 2021, 11, 649004. [Google Scholar] [CrossRef]
Clinical Information | n (%) | |
---|---|---|
Age | ≤60 | 353 (71.3) |
>60 | 142 (28.7) | |
FIGO | I | 400 (80.8) |
II | 42 (8.5) | |
III | 47 (9.5) | |
IV | 6 (1.2) | |
Tumor Grade | Low grade | 415 (83.8) |
High grade | 80 (16.2) | |
Histological Type | Endometrioid adenocarcinoma | 407 (82.2) |
Serous carcinoma | 51 (10.3) | |
Clear cell carcinoma | 6 (1.2) | |
Carcinosarcoma | 20 (4.0) | |
Others | 11 (2.2) | |
Myometrial Invasion Depth | <1/2 | 374 (75.6) |
≥1/2 | 121 (24.4) | |
Lymph Node Metastasis | No | 462 (93.3) |
Yes | 33 (6.7) | |
Molecular Subtype | POLE mutation | 60 (12.1) |
MMRd | 147 (29.7) | |
NSMP | 226 (45.7) | |
P53 mutation | 62 (12.5) | |
LVSI | No | 442 (89.3) |
Yes | 53 (10.7) |
Clinical Information | Death n (%) | Survival n (%) | χ2 | p | |
---|---|---|---|---|---|
Age | <60 | 2 (15.4) | 6 (30) | 0.293 | 0.588 |
≥60 | 11 (84.6) | 14 (70) | |||
Myometrial Invasion Depth | <50% | 7 (53.8) | 16 (80) | 1.464 | 0.226 |
≥50% | 6 (46.2) | 4 (20) | |||
LVSI | No | 12 (92.3) | 15 (75) | 0.636 | 0.425 |
Yes | 1 (7.7) | 5 (25) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Zhang, R.; Sui, T.; Wang, K.; Li, Y.; Luo, X.; He, Q. Proteomic Identification of IL4I1 as a Therapeutic Target in P53-Mutant Endometrial Cancer. Cancers 2025, 17, 2986. https://doi.org/10.3390/cancers17182986
Li H, Zhang R, Sui T, Wang K, Li Y, Luo X, He Q. Proteomic Identification of IL4I1 as a Therapeutic Target in P53-Mutant Endometrial Cancer. Cancers. 2025; 17(18):2986. https://doi.org/10.3390/cancers17182986
Chicago/Turabian StyleLi, Hu, Ruonan Zhang, Tiantian Sui, Kai Wang, Yiran Li, Xuezhen Luo, and Qizhi He. 2025. "Proteomic Identification of IL4I1 as a Therapeutic Target in P53-Mutant Endometrial Cancer" Cancers 17, no. 18: 2986. https://doi.org/10.3390/cancers17182986
APA StyleLi, H., Zhang, R., Sui, T., Wang, K., Li, Y., Luo, X., & He, Q. (2025). Proteomic Identification of IL4I1 as a Therapeutic Target in P53-Mutant Endometrial Cancer. Cancers, 17(18), 2986. https://doi.org/10.3390/cancers17182986