Transforming the Management of Oligometastatic Non-Small Cell Lung Cancer in the Era of Immunotherapy and Targeted Therapy
Simple Summary
Abstract
1. Introduction
Potent Systemic Drugs
2. Data Source and Search Date
2.1. Core Search Keywords
2.2. Eligibility Criteria
3. ICI and LAT
4. Targeted Therapy Combined with LAT in Oncogene-Addicted Disease
5. Safety and Tolerability
6. Discussion
7. Future Perspectives
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dingemans, A.M.C.; Hendriks, L.E.L.; Berghmans, T.; Giaj Levra, N.; Giaj Levra, M.; Gridelli, C.; Reck, M.; Felip, E.; Smit, E.F.; Faivre-Finn, C.; et al. Definition of synchronous oligometastatic non-small-cell lung cancer: An IASLC–ESTRO–EORTC–ESMO consensus. J. Thorac. Oncol. 2019, 14, 2109–2119. [Google Scholar] [CrossRef]
- Wiesweg, M.; Küter, C.; Schnorbach, J.; Keyl, J.; Metzenmacher, M.; Cvetkovic, J.; Saalfeld, F.C.; Glanemann, F.; Eberhardt, W.E.E.; Oezkan, F.; et al. Oligometastatic non-small cell lung cancer: Impact of local and contemporary systemic treatment approaches on clinical outcome. Int. J. Cancer 2025, 156, 776–787. [Google Scholar] [CrossRef]
- Goldstraw, P.; Chansky, K.; Crowley, J.; Rami-Porta, R.; Asamura, H.; Eberhardt, W.E.E.; Nicholson, A.G.; Groome, P.; Mitchell, A.; Bolejack, V.; et al. IASLC lung cancer staging project: Proposals for the 8th edition TNM classification. J. Thorac. Oncol. 2016, 11, 39–51. [Google Scholar] [CrossRef]
- Wu, Y.L.; Lu, S.; Zhou, Q.; Zhang, L.; Cheng, Y.; Wang, J.; Mok, T.; Scagliotti, G.V.; Kim, D.W.; Cho, B.C.; et al. Expert consensus on treatment for stage III non-small cell lung cancer. Med. Adv. 2023, 1, 3–13. [Google Scholar] [CrossRef]
- Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; et al. Pembrolizumab for previously untreated, PD-L1–expressing, advanced non–small-cell lung cancer (KEYNOTE-024). N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef]
- Mok, T.; Wu, Y.L.; Kudaba, I.; Kowalski, D.M.; Cho, B.C.; Turna, H.Z.; Castro, G.; Srimuninnimit, V.; Zhang, L.; Lee, K.H.; et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042). Lancet 2019, 393, 1819–1830. [Google Scholar] [CrossRef]
- Herbst, R.S.; Giaccone, G.; de Marinis, F.; Reinmuth, N.; Vergnenegre, A.; Barrios, C.H.; Morise, M.; Felip, E.; Andric, Z.; Geater, S.L.; et al. Atezolizumab for first-line treatment of PD-L1–selected NSCLC (IMpower110). N. Engl. J. Med. 2020, 383, 1129–1141. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus pemetrexed and platinum in metastatic non-squamous NSCLC (KEYNOTE-189). N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Luft, A.; Vicente, D.; Tafreshi, A.; Gümüş, M.; Mazières, J.; Hermes, B.; Cay Senler, F.; Csőszi, T.; Fülöp, A.; et al. Pembrolizumab plus chemotherapy in squamous NSCLC (KEYNOTE-407). N. Engl. J. Med. 2018, 379, 2040–2051. [Google Scholar] [CrossRef]
- Hellmann, M.D.; Paz-Ares, L.; Bernabe Caro, R.; Zurawski, B.; Kim, S.W.; Carcereny, E.; Park, K.; Alexandru, A.; Lupinacci, L.; de la Mora Jimenez, E.; et al. Nivolumab plus ipilimumab in first-line NSCLC (CheckMate 227). N. Engl. J. Med. 2019, 381, 2020–2031. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Ciuleanu, T.E.; Cobo, M.; Schenker, M.; Zurawski, B.; Menezes, J.; Afanasyev, A.; Kao, S.C.; Cho, B.C.; Richardet, E.; et al. First line nivolumab + ipilimumab + two-cycle chemotherapy (CheckMate 9LA). J. Thorac. Oncol. 2022, 17, 289–303. [Google Scholar] [CrossRef]
- Reck, M.; Ciuleanu, T.E.; Dols, M.C.; Schenker, M.; Zurawski, B.; Menezes, J.; Richardet, E.; Bischoff, H.; Satouchi, M.; Felip, E.; et al. Durvalumab with or without tremelimumab in combination with chemotherapy as first-line therapy for metastatic NSCLC: The Phase III POSEIDON Study. J. Clin. Oncol. 2022, 40, 1913–1928. [Google Scholar] [CrossRef]
- Soria, J.C.; Ohe, Y.; Vansteenkiste, J.; Reungwetwattana, T.; Chewaskulyong, B.; Lee, K.H.; Dechaphunkul, A.; Imamura, F.; Nogami, N.; Kurata, T.; et al. Osimertinib in untreated EGFR-mutated advanced NSCLC. N. Engl. J. Med. 2018, 378, 113–125. [Google Scholar] [CrossRef]
- Planchard, D.; Lee, J.S.; Kim, D.W.; John, T.; De Marinis, F.; Sebastian, M.; Laktionov, K.; Su, W.C.; Boyer, M.; Toyozawa, R.; et al. Osimertinib with or without chemotherapy in EGFR-mutated advanced NSCLC (FLAURA2). N. Engl. J. Med. 2023, 389, 1935–1948. [Google Scholar] [CrossRef]
- Peters, S.; Camidge, D.R.; Shaw, A.T.; Gadgeel, S.; Ahn, J.S.; Kim, D.W.; Ou, S.H.I.; Pérol, M.; Dziadziuszko, R.; Rosell, R.; et al. Alectinib versus crizotinib in untreated ALK-positive NSCLC (ALEX). N. Engl. J. Med. 2017, 377, 829–838. [Google Scholar] [CrossRef]
- Shaw, A.T.; Bauer, T.M.; de Marinis, F.; Felip, E.; Goto, Y.; Liu, G.; Mazieres, J.; Kim, D.W.; Mok, T.; Boyer, M.; et al. First-line lorlatinib or crizotinib in ALK-positive NSCLC (CROWN). N. Engl. J. Med. 2020, 383, 2018–2029. [Google Scholar] [CrossRef]
- Drilon, A.; Siena, S.; Dziadziuszko, R.; Barlesi, F.; Krebs, M.G.; Shaw, A.T.; de Marinis, F.; Patel, J.D.; Cho, B.C.; Liu, S.V.; et al. Entrectinib in ROS1 fusion-positive NSCLC: Integrated analysis. Lancet Oncol. 2020, 21, 261–270. [Google Scholar] [CrossRef]
- Drilon, A.; Oxnard, G.R.; Tan, D.S.W.; Loong, H.H.F.; Johnson, M.; Gainor, J.F.; McCoach, C.E.; Gautschi, O.; Besse, B.; Cho, B.C.; et al. Selpercatinib in RET fusion–positive NSCLC (LIBRETTO-001). N. Engl. J. Med. 2020, 383, 813–824. [Google Scholar] [CrossRef]
- Paik, P.K.; Felip, E.; Veillon, R.; Sakai, H.; Cortot, A.B.; Garassino, M.C.; Mazieres, J.; Viteri, S.; Senellart, H.; Van Meerbeeck, J.; et al. Tepotinib in NSCLC with MET exon 14 skipping (VISION). N. Engl. J. Med. 2020, 383, 931–943. [Google Scholar] [CrossRef] [PubMed]
- Skoulidis, F.; Li, B.T.; Dy, G.K.; Price, T.J.; Falchook, G.S.; Wolf, J.; Italiano, A.; Schuler, M.; Borghaei, H.; Barlesi, F.; et al. Sotorasib for KRAS p.G12C-mutated NSCLC (CodeBreaK 100). N. Engl. J. Med. 2021, 384, 2371–2381. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.C.; Baal, J.D.; Baal, U.; Badiyan, S.N.; Price, R.L.; Rao, Y.J.; Ma, T.M.; Samson, P.; Bradley, J.D.; Robinson, C.G. Stereotactic body radiation therapy of adrenal metastases: A pooled meta-analysis and systematic review of 39 studies with 1006 patients. Int. J. Radiat. Oncol. Biol. Phys. 2020, 107, 48–61. [Google Scholar] [CrossRef] [PubMed]
- Franzese, C.; Comito, T.; Tripoli, A.; Clerici, E.; Franceschini, D.; Navarria, P.; D’Agostino, G.; Scorsetti, M. Phase II trial of high-dose stereotactic body radiation therapy for lymph node oligometastases. Clin. Exp. Metastasis 2020, 37, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Lievens, Y.; Guckenberger, M.; Gomez, D.; Hoyer, M.; Iyengar, P.; Kindts, I.; Méndez Romero, A.; Nevens, D.; Palma, D.; Park, C.; et al. ESTRO–ASTRO consensus on local therapy for oligometastatic lung cancer. Radiother. Oncol. 2020, 148, 157–166. [Google Scholar] [CrossRef]
- Bauml, J.; Mick, R.; Ciunci, C.; Aggarwal, C.; Davis, C.; Evans, T.; Deshpande, C.; Alley, E.; Kosteva, J.; Langer, C. Pembrolizumab after LAT in oligometastatic NSCLC: Phase II study. JAMA Oncol. 2019, 5, 1286–1293. [Google Scholar] [CrossRef]
- Bassetti, B.; Morris, Z.S.; Sethakorn, N.; Wuthrick, E.J.; Ayala Peacock, D.; Suntharalingam, M.; Vora, S.A.; Rengan, R.; Urbanic, J.J.; Donahue, B.R.; et al. Dual checkpoint immunotherapy plus SBRT in oligometastatic NSCLC: Phase Ib study. Int. J. Radiat. Oncol. Biol. Phys. 2023, 117, 356–366. [Google Scholar] [CrossRef]
- Bestvina, C.M.; Pointer, K.B.; Karrison, T.; Al-Hallaq, H.; Hoffman, P.C.; Jelinek, M.J.; Kozloff, M.; Seiwert, T.Y.; Patel, J.D.; Salgia, R.; et al. A phase I trial of concurrent or sequential ipilimumab, nivolumab, and SBRT in stage IV NSCLC (COSINR). J. Thorac. Oncol. 2022, 17, 130–140. [Google Scholar] [CrossRef]
- Altan, M.; Wang, Y.; Song, J.; Li, J.; Welsh, J.W.; Guha-Thakurta, N.; Tian, S.; Parikh, N.; Subbiah, V.; Fossella, F.; et al. Nivolumab and ipilimumab with concurrent SRS for intracranial metastases from NSCLC: Safety cohort of phase I/II trial. J. Immunother. Cancer 2023, 11, e006871. [Google Scholar] [CrossRef]
- Theelen, W.S.M.E.; Peulen, H.M.U.; Lalezari, F.; van der Noort, V.; de Vries, J.F.; Aerts, J.G.J.V.; Dumoulin, D.W.; Bahce, I.; Niemeijer, A.N.; de Langen, A.J.; et al. Effect of pembrolizumab after SBRT vs pembrolizumab alone in advanced NSCLC: PEMBRO-RT randomized clinical trial. JAMA Oncol. 2019, 5, 1276–1282. [Google Scholar] [CrossRef]
- Wang, X.S.; Bai, Y.F.; Verma, V.; Yu, R.; Tian, W.; Liu, X.; Guo, C.; Zhang, H.; Wang, J.; Wang, S.Y.; et al. SINDAS: Gefitinib ± SBRT in EGFR-mutated NSCLC—Phase III trial. J. Natl. Cancer Inst. 2021, 113, 1163–1172. [Google Scholar] [CrossRef]
- Sun, H.; Li, M.; Huang, W.; Zhang, J.; Wei, S.; Yang, Y.; Wang, Z.; Ye, S.; Gong, H.; Zhang, Y.; et al. Thoracic Radiotherapy Improves the Survival in Patients with EGFR-Mutated Oligo-Organ Metastatic Non–Small Cell Lung Cancer Treated with Epidermal Growth Factor Receptor– Tyrosine Kinase Inhibitors: A Multicenter, Randomized, Controlled, Phase III Trial. J. Clin. Oncol. 2025, 43, 412–421. [Google Scholar] [CrossRef]
- Dai, Y.; Tian, X.; Ye, X.; Gong, Y.; Xu, L.; Jiao, L. Role of the TME in immune checkpoint blockade resistance of non-small cell lung cancer. Cancer Drug Resist. 2024, 7, 52. [Google Scholar] [CrossRef]
- Gainor, J.F.; Shaw, A.T. Emerging Paradigms in the Development of Resistance to Tyrosine Kinase Inhibitors in Lung Cancer. J. Clin. Oncol. 2013, 31, 3987–3996. [Google Scholar] [CrossRef]
- Li, J.; Gu, A.; Tang, N.; Zengin, G.; Li, M.Y.; Liu, Y. Patient-derived xenograft models in pan-cancer: From bench to clinic. Interdiscip. Med. 2025, 3, e20250016. [Google Scholar] [CrossRef]
- Wahl, R.L.; Jacene, H.; Kasamon, Y.; Lodge, M.A. From RECIST to PERCIST: Evolving PET response criteria in solid tumours. J. Nucl. Med. 2009, 50 (Suppl. 1), 122S–150S. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, A.A.; Lee, J.; Li, Y.; Thapar, D.; Collisson, E.A.; Jablons, D.M.; Chabon, J.J.; Lovejoy, A.F.; Newman, A.M.; Stehr, H.; et al. Early detection of molecular residual disease in localized lung cancer by circulating tumour DNA profiling. Cancer Discov. 2017, 7, 1394–1403. [Google Scholar] [CrossRef] [PubMed]
- Khorrami, M.; Prasanna, P.; Gupta, A.; Patil, P.; Velu, P.D.; Thawani, R.; Corredor, G.; Alilou, M.; Bera, K.; Fu, P.; et al. Changes in CT radiomic features associated with lymphocyte distribution predict overall survival and response to immunotherapy in non–small cell lung cancer. Cancer Immunol. Res. 2020, 8, 108–119. [Google Scholar] [CrossRef] [PubMed]
Lead Author/Year (Trial) | Design | Number of Metastases | Systemic Therapy | LAT | Primary Endpoint |
---|---|---|---|---|---|
Bauml 2019 [24] | Phase II, single-arm | ≤5 lesions/≤3 organs | Pembrolizumab | Surgery or SBRT | 2-yr PFS rate |
Bassetti 2023 [25] | Phase Ib, dose-expansion | ≤5 lesions | Tremelimumab + Durvalumab | SBRT | Grade ≥ 3 treatment-related AEs |
Bestvina 2022 [26] | Randomised Phase I | No limit | Nivolumab + Ipilimumab | SBRT | Dose-limiting-toxicity rate |
Altan 2023 [27] | Phase I/II | Not mentioned | Nivolumab + Ipilimumab | SRS to brain metastases | Intracranial PFS |
Theelen 2019 (PEMBRO-RT) [28] | Randomised Phase II | No limit (1 lesion irradiated) | Pembrolizumab | SBRT | 12-wk ORR |
Wang/Bai 2021 (SINDAS) [29] | Phase III | ≤5 lesions/≤2 organs | Gefitinib/Erlotinib | SBRT | PFS |
Sun 2024 [30] | Phase III | ≤5 lesions/≤2 organs | Osimertinib | Thoracic RT | PFS |
Lead Author/Year (Trial) | Study Design | PFS | OS | Grade ≥ 3 Toxicity |
---|---|---|---|---|
Bauml 2019 [24] | Pembrolizumab consolidation after complete LAT | mPFS; 19.1 mo | 2-yr OS 77.5% | 12.2% |
Bassetti 2023 [25] | Tremelimumab + Durvalumab with multisite SBRT | mPFS; 42 mo | NR | 40% |
Bestvina 2022 [26] | Concurrent vs. sequential Nivolumab + Ipilimumab + multisite SBRT | mPFS; 5.8 mo (concurrent)/4.7 mo (sequential) | NR | 73% |
Altan 2023 [27] | Brain SRS + Nivolumab/Ipilimumab | 1-yr intracranial PFS; 35.4% | NR | 8% |
Theelen 2019 (PEMBRO-RT) [28] | Pembrolizumab + single-site SBRT vs. Pembrolizumab | mPFS; 6.6 mo vs. 1.9 mo | mOS; 15.9 mo vs. 7.6 mo | 46% |
Wang/Bai 2021 (SINDAS) [29] | 1st generation TKI ± up-front SBRT | mPFS; 20.2 mo vs. 12.5 mo | mOS; 25.5 mo vs. 17.4 mo | 7.4% (pneumonitis) |
Sun 2024 [30] | Osimertinib + concurrent thoracic RT vs. Osimertinib | mPFS; 17.1 mo vs. 10.6 mo | mOS; 34.4 mo vs. 26.2 mo | 11.9% vs. 5.1% |
NCT Number (Trial) | Systemic Treatment Regimen | Timing of LAT | Maximum No. of Metastatic Lesions | Primary Endpoint |
---|---|---|---|---|
NCT03391869 (LONESTAR) | Nivolumab + Ipilimumab | After two induction ICI cycles (≈12 weeks): randomized to continue ICI ± definitive surgery or high-dose RT to all sites | ≤3 lesions | OS |
NCT03827577 (OMEGA) | Biomarker-driven standard therapy: platinum doublet, EGFR-TKI, or ICI | If progression-free after ~3 months, randomized to continue systemic therapy ± consolidative LAT (surgery, SBRT, RFA) | ≤3 lesions | OS |
NCT03774732 (NIRVANA-Lung) | Pembrolizumab + platinum-based chemotherapy | Multisite hypofractionated RT delivered early (cycle 2) vs. none | ≤5 lesions | 1-year OS |
NCT05278052 (TARGET-02) | Standard maintenance therapy (e.g., pemetrexed ± pembrolizumab) after induction chemo(±ICI) | During maintenance phase: systemic therapy ± SBRT to every residual lesion | ≤5 lesions (≤3 per organ) | OS |
NCT06141070 (ANDROMEDA) | Chemo-immunotherapy or ICI alone | Up-front high-dose SBRT to all lesions within first two systemic cycles vs. none | ≤5 lesions | OS and PFS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawaguchi, Y.; Takahashi, S.; Shimada, Y.; Kudo, Y.; Ikeda, N. Transforming the Management of Oligometastatic Non-Small Cell Lung Cancer in the Era of Immunotherapy and Targeted Therapy. Cancers 2025, 17, 2982. https://doi.org/10.3390/cancers17182982
Kawaguchi Y, Takahashi S, Shimada Y, Kudo Y, Ikeda N. Transforming the Management of Oligometastatic Non-Small Cell Lung Cancer in the Era of Immunotherapy and Targeted Therapy. Cancers. 2025; 17(18):2982. https://doi.org/10.3390/cancers17182982
Chicago/Turabian StyleKawaguchi, Yohei, Satoshi Takahashi, Yoshihisa Shimada, Yujin Kudo, and Norihiko Ikeda. 2025. "Transforming the Management of Oligometastatic Non-Small Cell Lung Cancer in the Era of Immunotherapy and Targeted Therapy" Cancers 17, no. 18: 2982. https://doi.org/10.3390/cancers17182982
APA StyleKawaguchi, Y., Takahashi, S., Shimada, Y., Kudo, Y., & Ikeda, N. (2025). Transforming the Management of Oligometastatic Non-Small Cell Lung Cancer in the Era of Immunotherapy and Targeted Therapy. Cancers, 17(18), 2982. https://doi.org/10.3390/cancers17182982