The Importance of Chemokines Activating CXCR1, CXCR2 and CXCR3 in Tumorigenesis as Potential Therapeutic Targets in Monoclonal Gammopathy of Undetermined Significance and Multiple Myeloma
Simple Summary
Abstract
1. Background
2. CXCR1 and CXCR2
2.1. Ligands of Receptors CXCR1 and CXCR2
2.2. Expression of CXCR1 and CXCR2 Receptors
2.2.1. CXCL1 Expression in MM
2.2.2. CXCL2 Expression in MM
2.2.3. CXCL3 Expression in MM
2.2.4. CXCL5 Expression in MM
2.2.5. CXCL6 Expression in MM
2.2.6. CXCL7 Expression in MM
2.2.7. CXCL8 Expression in MM
3. Bioinformatics Analysis of CXCR1, CXCR2, and Their Ligands in MM Tumorigenesis
4. Involvement of CXCR2 Ligands in Tumorigenesis in MM
4.1. CXCR2 Ligands and Therapy Against MM
4.2. CXCR3
4.2.1. CXCR3 and Its Ligands
4.2.2. CXCR3 Expression in MM
4.2.3. PF4 Expression in MM
4.2.4. CXCL9 Expression in MM
4.2.5. CXCL10 Expression in MM
4.2.6. CXCL11 Expression in MM
4.3. Bioinformatics Analysis of CXCR3 in MM
5. Involvement of CXCR3 Ligands in Tumorigenesis in MM: An MM-Enhancing Effect
6. Involvement of CXCR3 Ligands in Tumorigenesis in MM: An Anti-MM Effect
6.1. Anti-MM Properties for PF4
6.2. CXCR3 Ligands and Therapy Against MM
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
List of Abbreviations
References
- Alaggio, R.; Amador, C.; Anagnostopoulos, I.; Attygalle, A.D.; Araujo, I.B.O.; Berti, E.; Bhagat, G.; Borges, A.M.; Boyer, D.; Calaminici, M.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022, 36, 1720–1748. [Google Scholar] [CrossRef] [PubMed]
- Cowan, A.J.; Allen, C.; Barac, A.; Basaleem, H.; Bensenor, I.; Curado, M.P.; Foreman, K.; Gupta, R.; Harvey, J.; Hosgood, H.D.; et al. Global Burden of Multiple Myeloma: A Systematic Analysis for the Global Burden of Disease Study 2016. JAMA Oncol. 2018, 4, 1221–1227. [Google Scholar] [CrossRef] [PubMed]
- Schinke, M.; Ihorst, G.; Duyster, J.; Wäsch, R.; Schumacher, M.; Engelhardt, M. Risk of disease recurrence and survival in patients with multiple myeloma: A German Study Group analysis using a conditional survival approach with long-term follow-up of 815 patients. Cancer 2020, 126, 3504–3515. [Google Scholar] [CrossRef]
- Kysenius, K.; Anttalainen, A.; Toppila, I.; Miettinen, T.; Lassenius, M.; Lievonen, J.; Partanen, A.; Silvennoine, R.; Putkonen, M. Comorbidities and survival of multiple myeloma patients diagnosed in Finland between 2000 and 2021. Ann. Hematol. 2024, 103, 2931–2943. [Google Scholar] [CrossRef]
- Liu, J.; Liu, W.; Mi, L.; Zeng, X.; Cai, C.; Ma, J.; Wang, L. Incidence and mortality of multiple myeloma in China, 2006–2016: An analysis of the Global Burden of Disease Study 2016. J. Hematol. Oncol. 2019, 12, 136. [Google Scholar] [CrossRef]
- Kaufmann, H.; Ackermann, J.; Baldia, C.; Nösslinger, T.; Wieser, R.; Seidl, S.; Sagaster, V.; Gisslinger, H.; Jäger, U.; Pfeilstöcker, M.; et al. IGH translocations and chromosome 13q deletions are early events in monoclonal gammopathy of undetermined significance and do not evolve during transition to multiple myeloma. Leukemia 2004, 18, 1879–1882. [Google Scholar] [CrossRef]
- Manier, S.; Salem, K.Z.; Park, J.; Landau, D.A.; Getz, G.; Ghobrial, I.M. Genomic complexity of multiple myeloma and its clinical implications. Nat. Rev. Clin. Oncol. 2017, 14, 100–113. [Google Scholar] [CrossRef]
- Li, S.; Jiang, Y.; Li, A.; Liu, X.; Xing, X.; Guo, Y.; Xu, Y.; Hao, Y.; Zheng, C. Telomere length is positively associated with the expression of IL-6 and MIP-1α in bone marrow mesenchymal stem cells of multiple myeloma. Mol. Med. Rep. 2017, 16, 2497–2504. [Google Scholar] [CrossRef]
- Zhan, F.; Huang, Y.; Colla, S.; Stewart, J.P.; Hanamura, I.; Gupta, S.; Epstein, J.; Yaccoby, S.; Sawyer, J.; Burington, B.; et al. The molecular classification of multiple myeloma. Blood 2006, 108, 2020–2028. [Google Scholar] [CrossRef]
- Weinhold, N.; Heuck, C.J.; Rosenthal, A.; Thanendrarajan, S.; Stein, C.K.; Van Rhee, F.; Zangari, M.; Hoering, A.; Tian, E.; Davies, F.E.; et al. Clinical value of molecular subtyping multiple myeloma using gene expression profiling. Leukemia 2016, 30, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Saleun, J.P.; Vicariot, M.; Deroff, P.; Morin, J.F. Monoclonal gammopathies in the adult population of Finistère, France. J. Clin. Pathol. 1982, 35, 63–68. [Google Scholar] [CrossRef]
- Kyle, R.A.; Therneau, T.M.; Rajkumar, S.V.; Larson, D.R.; Plevak, M.F.; Offord, J.R.; Dispenzieri, A.; Katzmann, J.A.; Melton, L.J., 3rd. Prevalence of monoclonal gammopathy of undetermined significance. N. Engl. J. Med. 2006, 354, 1362–1369. [Google Scholar] [CrossRef] [PubMed]
- Kyle, R.A.; Therneau, T.M.; Rajkumar, S.V.; Offord, J.R.; Larson, D.R.; Plevak, M.F.; Melton, L.J., 3rd. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N. Engl. J. Med. 2002, 346, 564–569. [Google Scholar] [CrossRef] [PubMed]
- Kyle, R.A.; International Myeloma Working Group. Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: A report of the International Myeloma Working Group. Br. J. Haematol. 2003, 121, 749–757. [Google Scholar] [CrossRef]
- Mateos, M.V.; Kumar, S.; Dimopoulos, M.A.; González-Calle, V.; Kastritis, E.; Hajek, R.; De Larrea, C.F.; Morgan, G.J.; Merlini, G.; Goldschmidt, H.; et al. International Myeloma Working Group risk stratification model for smoldering multiple myeloma (SMM). Blood Cancer J. 2020, 10, 102. [Google Scholar] [CrossRef]
- Batuman, V. The pathogenesis of acute kidney impairment in patients with multiple myeloma. Adv. Chronic Kidney Dis. 2012, 19, 282–286. [Google Scholar] [CrossRef]
- Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; Blade, J.; Merlini, G.; Mateos, M.V.; Kumar, S.; Hillengass, J.; Kastritis, E.; Richardson, P.; et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014, 15, e538–e548. [Google Scholar] [CrossRef]
- Ho, P.J.; Moore, E.; Wellard, C.; Quach, H.; Blacklock, H.; Harrrison, S.J.; Ho, P.J.; King, T.; Quach, H.; Mollee, P.; et al. The impact of biomarkers of malignancy (IMWG SLiM criteria) in myeloma in a real-world population: Clinical characteristics, therapy and outcomes from the Australian and New Zealand Myeloma and Related Diseases Registry (ANZ MRDR). Br. J. Haematol. 2024, 205, 1337–1345. [Google Scholar] [CrossRef] [PubMed]
- Engelhardt, M.; Kortüm, K.M.; Goldschmidt, H.; Merz, M. Functional cure and long-term survival in multiple myeloma: How to challenge the previously impossible. Haematologica 2024, 109, 2420–2435. [Google Scholar] [CrossRef]
- Palumbo, A.; Avet-Loiseau, H.; Oliva, S.; Lokhorst, H.M.; Goldschmidt, H.; Rosinol, L.; Richardson, P.; Caltagirone, S.; Lahuerta, J.J.; Facon, T.; et al. Revised International Staging System for Multiple Myeloma: A Report From International Myeloma Working Group. J. Clin. Oncol. 2015, 33, 2863–2869. [Google Scholar] [CrossRef]
- Paiva, B.; Paino, T.; Sayagues, J.M.; Garayoa, M.; San-Segundo, L.; Martín, M.; Mota, I.; Sanchez, M.-L.; Bárcena, P.; Aires-Mejia, I.; et al. Detailed characterization of multiple myeloma circulating tumor cells shows unique phenotypic, cytogenetic, functional, and circadian distribution profile. Blood 2013, 122, 3591–3598. [Google Scholar] [CrossRef] [PubMed]
- Fernández de Larrea, C.; Kyle, R.; Rosiñol, L.; Paiva, B.; Engelhardt, M.; Usmani, S.; Caers, J.; Gonsalves, W.; Schjesvold, F.; Merlini, G.; et al. Primary plasma cell leukemia: Consensus definition by the International Myeloma Working Group according to peripheral blood plasma cell percentage. Blood Cancer J. 2021, 11, 192. [Google Scholar] [CrossRef]
- Weinstock, M.; Aljawai, Y.; Morgan, E.A.; Laubach, J.; Gannon, M.; Roccaro, A.M.; Varga, C.; Mitsiades, C.S.; Paba-Prada, C.; Schlossman, R.; et al. Incidence and clinical features of extramedullary multiple myeloma in patients who underwent stem cell transplantation. Br. J. Haematol. 2015, 169, 851–858. [Google Scholar] [CrossRef]
- Pour, L.; Sevcikova, S.; Greslikova, H.; Kupska, R.; Majkova, P.; Zahradova, L.; Sandecka, V.; Adam, Z.; Krejci, M.; Kuglik, P.; et al. Soft-tissue extramedullary multiple myeloma prognosis is significantly worse in comparison to bone-related extramedullary relapse. Haematologica 2014, 99, 360–364. [Google Scholar] [CrossRef]
- Rosiñol, L.; Beksac, M.; Zamagni, E.; Van de Donk, N.W.C.J.; Anderson, K.C.; Badros, A.; Caers, J.; Cavo, M.; Dimopoulos, M.A.; Dispenzieri, A.; et al. Expert review on soft-tissue plasmacytomas in multiple myeloma: Definition, disease assessment and treatment considerations. Br. J. Haematol. 2021, 194, 496–507. [Google Scholar] [CrossRef] [PubMed]
- Moreau, P.; Kumar, S.K.; San Miguel, J.; Davies, F.; Zamagni, E.; Bahlis, N.; Ludwig, H.; Mikhael, J.; Terpos, E.; Schjesvold, F.; et al. Treatment of relapsed and refractory multiple myeloma: Recommendations from the International Myeloma Working Group. Lancet Oncol. 2021, 22, e105–e118. [Google Scholar] [CrossRef] [PubMed]
- van de Donk, N.W.C.J.; Pawlyn, C.; Yong, K.L. Multiple myeloma. Lancet 2021, 397, 410–427. [Google Scholar] [CrossRef]
- Lin, Y.; Qiu, L.; Usmani, S.; Joo, C.W.; Costa, L.; Derman, B.; Du, J.; Einsele, H.; Fernandez de Larrea, C.; Hajek, R.; et al. Consensus guidelines and recommendations for the management and response assessment of chimeric antigen receptor T-cell therapy in clinical practice for relapsed and refractory multiple myeloma: A report from the International Myeloma Working Group Immunotherapy Committee. Lancet Oncol. 2024, 25, e374–e387, Erratum in Lancet Oncol. 2024, 25, e336. [Google Scholar] [CrossRef]
- Rodriguez-Otero, P.; Usmani, S.; Cohen, A.D.; van de Donk, N.W.C.J.; Leleu, X.; Gállego Pérez-Larraya, J.; Manier, S.; Nooka, A.K.; Mateos, M.V.; Einsele, H.; et al. International Myeloma Working Group immunotherapy committee consensus guidelines and recommendations for optimal use of T-cell-engaging bispecific antibodies in multiple myeloma. Lancet Oncol. 2024, 25, e205–e216, Erratum in Lancet Oncol. 2024, 25, e284. [Google Scholar] [CrossRef]
- Hughes, C.E.; Nibbs, R.J.B. A guide to chemokines and their receptors. FEBS J. 2018, 285, 2944–2971. [Google Scholar] [CrossRef]
- Zlotnik, A.; Yoshie, O. Chemokines: A new classification system and their role in immunity. Immunity 2000, 12, 121–127. [Google Scholar] [CrossRef] [PubMed]
- O’Donovan, N.; Galvin, M.; Morgan, J.G. Physical mapping of the CXC chemokine locus on human chromosome 4. Cytogenet. Cell Genet. 1999, 84, 39–42. [Google Scholar] [CrossRef]
- Nomiyama, H.; Osada, N.; Yoshie, O. Systematic classification of vertebrate chemokines based on conserved synteny and evolutionary history. Genes Cells 2013, 18, 1–16. [Google Scholar] [CrossRef]
- Ahuja, S.K.; Murphy, P.M. The CXC chemokines growth-regulated oncogene (GRO) alpha, GRO beta, GRO gamma, neutrophil-activating peptide-2, and epithelial cell-derived neutrophil-activating peptide-78 are potent agonists for the type B, but not the type A, human interleukin-8 receptor. J. Biol. Chem. 1996, 271, 20545–20550. [Google Scholar] [CrossRef]
- Wuyts, A.; Proost, P.; Lenaerts, J.P.; Ben-Baruch, A.; Van Damme, J.; Wang, J.M. Differential usage of the CXC chemokine receptors 1 and 2 by interleukin-8, granulocyte chemotactic protein-2 and epithelial-cell-derived neutrophil attractant-78. Eur. J. Biochem. 1998, 255, 67–73. [Google Scholar] [CrossRef]
- Ahuja, S.K.; Ozçelik, T.; Milatovitch, A.; Francke, U.; Murphy, P.M. Molecular evolution of the human interleukin-8 receptor gene cluster. Nat. Genet. 1992, 2, 31–36. [Google Scholar] [CrossRef]
- Kupper, R.W.; Dewald, B.; Jakobs, K.H.; Baggiolini, M.; Gierschik, P. G-protein activation by interleukin 8 and related cytokines in human neutrophil plasma membranes. Biochem. J. 1992, 282 Pt 2, 429–434. [Google Scholar] [CrossRef]
- Sinclair, A.; Park, L.; Shah, M.; Drotar, M.; Calaminus, S.; Hopcroft, L.E.; Kinstrie, R.; Guitart, A.V.; Dunn, K.; Abraham, S.A.; et al. CXCR2 and CXCL4 regulate survival and self-renewal of hematopoietic stem/progenitor cells. Blood 2016, 128, 371–383. [Google Scholar] [CrossRef] [PubMed]
- Addison, C.L.; Daniel, T.O.; Burdick, M.D.; Liu, H.; Ehlert, J.E.; Xue, Y.Y.; Buechi, L.; Walz, A.; Richmond, A.; Strieter, R.M.; et al. The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine-induced angiogenic activity. J. Immunol. 2000, 165, 5269–5277. [Google Scholar] [CrossRef]
- Pellegrino, A.; Ria, R.; Di Pietro, G.; Cirulli, T.; Surico, G.; Pennisi, A.; Morabito, F.; Ribatti, D.; Vacca, A. Bone marrow endothelial cells in multiple myeloma secrete CXC-chemokines that mediate interactions with plasma cells. Br. J. Haematol. 2005, 129, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Kline, M.; Donovan, K.; Wellik, L.; Lust, C.; Jin, W.; Moon-Tasson, L.; Xiong, Y.; Witzig, T.E.; Kumar, S.; Rajkumar, V.; et al. Cytokine and chemokine profiles in multiple myeloma; significance of stromal interaction and correlation of IL-8 production with disease progression. Leuk. Res. 2007, 31, 591–598. [Google Scholar] [CrossRef]
- Trentin, L.; Miorin, M.; Facco, M.; Baesso, I.; Carraro, S.; Cabrelle, A.; Maschio, N.; Bortoli, M.; Binotto, G.; Piazza, F.; et al. Multiple myeloma plasma cells show different chemokine receptor profiles at sites of disease activity. Br. J. Haematol. 2007, 138, 594–602. [Google Scholar] [CrossRef]
- Yang, Q.; Li, K.; Li, X.; Liu, J. Identification of Key Genes and Pathways in Myeloma side population cells by Bioinformatics Analysis. Int. J. Med. Sci. 2020, 17, 2063–2076. [Google Scholar] [CrossRef]
- Zhou, S.; Schuetz, J.D.; Bunting, K.D.; Colapietro, A.M.; Sampath, J.; Morris, J.J.; Lagutina, I.; Grosveld, G.C.; Osawa, M.; Nakauchi, H.; et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat. Med. 2001, 7, 1028–1034. [Google Scholar] [CrossRef]
- Driscoll, J.J.; Pelluru, D.; Lefkimmiatis, K.; Fulciniti, M.; Prabhala, R.H.; Greipp, P.R.; Barlogie, B.; Tai, Y.T.; Anderson, K.C.; Shaughnessy, J.D., Jr.; et al. The sumoylation pathway is dysregulated in multiple myeloma and is associated with adverse patient outcome. Blood 2010, 115, 2827–2834. [Google Scholar] [CrossRef]
- Győrffy, B. Integrated analysis of public datasets for the discovery and validation of survival-associated genes in solid tumors. Innovation 2024, 5, 100625. [Google Scholar] [CrossRef]
- Pappa, C.A.; Tsirakis, G.; Kanellou, P.; Kaparou, M.; Stratinaki, M.; Xekalou, A.; Alegakis, A.; Boula, A.; Stathopoulos, E.N.; Alexandrakis, M.G.; et al. Monitoring serum levels ELR+ CXC chemokines and the relationship between microvessel density and angiogenic growth factors in multiple myeloma. Cytokine 2011, 56, 616–620. [Google Scholar] [CrossRef] [PubMed]
- Pappa, C.A.; Tsirakis, G.; Devetzoglou, M.; Zafeiri, M.; Vyzoukaki, R.; Androvitsanea, A.; Xekalou, A.; Sfiridaki, K.; Alexandrakis, M.G. Bone marrow mast cell density correlates with serum levels of VEGF and CXC chemokines ENA-78 and GRO-α in multiple myeloma. Tumour Biol. 2014, 35, 5647–5651. [Google Scholar] [CrossRef] [PubMed]
- De Veirman, K.; Wang, J.; Xu, S.; Leleu, X.; Himpe, E.; Maes, K.; De Bruyne, E.; Van Valckenborgh, E.; Vanderkerken, K.; Menu, E.; et al. Induction of miR-146a by multiple myeloma cells in mesenchymal stromal cells stimulates their pro-tumoral activity. Cancer Lett. 2016, 377, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.H.; Ng, M.H.; Lau, K.M.; Liu, H.S.; Chan, J.C.; Hui, A.B.; Lo, K.W.; Jiang, W.; Hou, J.; Chu, R.W.; et al. 4q loss is potentially an important genetic event in MM tumorigenesis: Identification of a tumor suppressor gene regulated by promoter methylation at 4q13.3, platelet factor 4. Blood 2007, 109, 2089–2099. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, J.; Zhang, P.; Luo, J.; Cheng, P.; Miao, L.; Lai, Y. Integrated analysis of hub gene expression in multiple myeloma. J. BUON 2021, 26, 2040–2052. [Google Scholar]
- Mosevoll, K.A.; Akkök, Ç.A.; Hervig, T.; Melve, G.K.; Bruserud, Ø.; Reikvam, H. Stem cell mobilization and harvesting by leukapheresis alters systemic cytokine levels in patients with multiple myeloma. Cytotherapy 2013, 15, 850–860. [Google Scholar] [CrossRef]
- Kobari, L.; Auclair, M.; Piau, O.; Ferrand, N.; Zaoui, M.; Delhommeau, F.; Fève, B.; Sabbah, M.; Garderet, L. Circulating cytokines present in multiple myeloma patients inhibit the osteoblastic differentiation of adipose stem cells. Leukemia 2022, 36, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Moreaux, J.; Hose, D.; Kassambara, A.; Reme, T.; Moine, P.; Requirand, G.; Goldschmidt, H.; Klein, B. Osteoclast-gene expression profiling reveals osteoclast-derived CCR2 chemokines promoting myeloma cell migration. Blood 2011, 117, 1280–1290. [Google Scholar] [CrossRef] [PubMed]
- Geng, S.; Wang, J.; Zhang, X.; Zhang, J.J.; Wu, F.; Pang, Y.; Zhong, Y.; Wang, J.; Wang, W.; Lyu, X.; et al. Single-cell RNA sequencing reveals chemokine self-feeding of myeloma cells promotes extramedullary metastasis. FEBS Lett. 2020, 594, 452–465. [Google Scholar] [CrossRef] [PubMed]
- Gregorova, J.; Vychytilova-Faltejskova, P.; Kramarova, T.; Knechtova, Z.; Almasi, M.; Stork, M.; Pour, L.; Kohoutek, J.; Sevcikova, S. Proteomic analysis of the bone marrow microenvironment in extramedullary multiple myeloma patients. Neoplasma 2022, 69, 412–424. [Google Scholar] [CrossRef]
- Kuku, I.; Bayraktar, M.R.; Kaya, E.; Erkurt, M.A.; Bayraktar, N.; Cikim, K.; Aydogdu, I. Serum proinflammatory mediators at different periods of therapy in patients with multiple myeloma. Mediat. Inflamm. 2005, 2005, 171–174. [Google Scholar] [CrossRef]
- Goodyear, O.C.; Essex, S.; Seetharam, A.; Basu, S.; Moss, P.; Pratt, G. Neoplastic plasma cells generate an inflammatory environment within bone marrow and markedly alter the distribution of T cells between lymphoid compartments. Oncotarget 2017, 8, 30383–30394. [Google Scholar] [CrossRef]
- Saltarella, I.; Morabito, F.; Giuliani, N.; Terragna, C.; Omedè, P.; Palumbo, A.; Bringhen, S.; De Paoli, L.; Martino, E.; Larocca, A.; et al. Prognostic or predictive value of circulating cytokines and angiogenic factors for initial treatment of multiple myeloma in the GIMEMA MM0305 randomized controlled trial. J. Hematol. Oncol. 2019, 12, 4. [Google Scholar] [CrossRef]
- Allegra, A.; Pace, E.; Tartarisco, G.; Innao, V.; Di Salvo, E.; Allegra, A.G.; Ferraro, M.; Musolino, C.; Gangemi, S. Changes in serum interleukin-8 and sRAGE levels in multiple myeloma patients. Anticancer Res. 2020, 40, 1443–1449. [Google Scholar] [CrossRef]
- Kohsari, M.; Khadem-Ansari, M.H.; Rasmi, Y.; Sayyadi, H. Serum levels of interleukin-8 and soluble interleukin-6 receptor in patients with stage-I multiple myeloma: A case-control study. Asian Pac. J. Cancer Prev. 2020, 21, 127–132. [Google Scholar] [CrossRef]
- Robak, P.; Węgłowska, E.; Dróżdż, I.; Mikulski, D.; Jarych, D.; Ferlińska, M.; Wawrzyniak, E.; Misiewicz, M.; Smolewski, P.; Fendler, W.; et al. Cytokine and chemokine profile in patients with multiple myeloma treated with bortezomib. Mediat. Inflamm. 2020, 2020, 1835836. [Google Scholar] [CrossRef]
- Mielnik, M.; Szudy-Szczyrek, A.; Homa-Mlak, I.; Mlak, R.; Podgajna-Mielnik, M.; Gorący, A.; Małecka-Massalska, T.; Hus, M. The clinical relevance of selected cytokines in newly diagnosed multiple myeloma patients. Biomedicines 2023, 11, 3012. [Google Scholar] [CrossRef]
- Merico, F.; Bergui, L.; Gregoretti, M.G.; Ghia, P.; Aimo, G.; Lindley, I.J.; Caligaris-Cappio, F. Cytokines involved in the progression of multiple myeloma. Clin. Exp. Immunol. 1993, 92, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Tsirakis, G.; Pappa, C.A.; Kaparou, M.; Katsomitrou, V.; Hatzivasili, A.; Alegakis, T.; Xekalou, A.; Stathopoulos, E.N.; Alexandrakis, M.G. Assessment of proliferating cell nuclear antigen and its relationship with proinflammatory cytokines and parameters of disease activity in multiple myeloma patients. Eur. J. Histochem. 2011, 55, e21. [Google Scholar] [CrossRef] [PubMed]
- Pappa, C.A.; Tsirakis, G.; Boula, A.; Sfiridaki, A.; Psarakis, F.E.; Alexandrakis, M.G.; Stathopoulos, E.N. The significance of non correlation between interleukin-8 serum levels with bone marrow microvascular density in patients with multiple myeloma. Pathol. Oncol. Res. 2013, 19, 539–543. [Google Scholar] [CrossRef]
- Zingone, A.; Wang, W.; Corrigan-Cummins, M.; Wu, S.P.; Plyler, R.; Korde, N.; Kwok, M.; Manasanch, E.E.; Tageja, N.; Bhutani, M.; et al. Altered cytokine and chemokine profiles in multiple myeloma and its precursor disease. Cytokine 2014, 69, 294–297. [Google Scholar] [CrossRef]
- Herrero, A.B.; García-Gómez, A.; Garayoa, M.; Corchete, L.A.; Hernández, J.M.; San Miguel, J.; Gutierrez, N.C. Effects of IL-8 up-regulation on cell survival and osteoclastogenesis in multiple myeloma. Am. J. Pathol. 2016, 186, 2171–2182. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Pan, J.; Zhang, N.; Wei, W.; Yu, S.; Ai, L. Knockdown of long non-coding RNA H19 inhibits multiple myeloma cell growth via NF-κB pathway. Sci. Rep. 2017, 7, 18079. [Google Scholar] [CrossRef]
- Robillard, N.; Jego, G.; Pellat-Deceunynck, C.; Pineau, D.; Puthier, D.; Mellerin, M.P.; Barillé, S.; Rapp, M.J.; Harousseau, J.L.; Amiot, M.; et al. CD28, a marker associated with tumoral expansion in multiple myeloma. Clin. Cancer Res. 1998, 4, 1521–1526. [Google Scholar]
- Shapiro, V.S.; Mollenauer, M.N.; Weiss, A. Endogenous CD28 expressed on myeloma cells up-regulates interleukin-8 production: Implications for multiple myeloma progression. Blood 2001, 98, 187–193. [Google Scholar] [CrossRef]
- Beider, K.; Bitner, H.; Leiba, M.; Gutwein, O.; Koren-Michowitz, M.; Ostrovsky, O.; Abraham, M.; Wald, H.; Galun, E.; Peled, A.; et al. Multiple myeloma cells recruit tumor-supportive macrophages through the CXCR4/CXCL12 axis and promote their polarization toward the M2 phenotype. Oncotarget 2014, 5, 11283–11296. [Google Scholar] [CrossRef] [PubMed]
- Jurczyszyn, A.; Zebzda, A.; Czepiel, J.; Gdula-Argasińska, J.; Perucki, W.; Skotnicki, A.B.; Majka, M. The Analysis of the Relationship between Multiple Myeloma Cells and Their Microenvironment. J. Cancer 2015, 6, 160–168. [Google Scholar] [CrossRef]
- Maharaj, L.; Popat, R.; Gribben, J.G.; Joel, S. IL-6, IL-8 and VEGF Neutralisation Restores Drug Sensitivity to Conventional and Novel Treatment Combinations in a Multiple Myeloma Bone Marrow Micro-Environment Model. Blood 2012, 120, 2949. [Google Scholar] [CrossRef]
- Xie, J.Y.; Li, M.X.; Xiang, D.B.; Mou, J.H.; Qing, Y.; Zeng, L.L.; Yang, Z.Z.; Guan, W.; Wang, D. Elevated expression of APE1/Ref-1 and its regulation on IL-6 and IL-8 in bone marrow stromal cells of multiple myeloma. Clin. Lymphoma Myeloma Leuk. 2010, 10, 385–393. [Google Scholar] [CrossRef]
- Hu, H.J.; Lu, H.; Fei, X.M.; Li, J.X.; Li, J.Y. Chemotaxis-related factors are expressed abnormally in bone marrow mesenchymal stem cells of multiple myeloma patients. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2011, 19, 59–63. [Google Scholar]
- Ren, L.; Xu, J.; Li, J.; Xu, T.; Yang, Y.; Wang, W.; Ren, Y.; Gu, S.; Chen, C.; Wei, Z.; et al. A prognostic model incorporating inflammatory cells and cytokines for newly diagnosed multiple myeloma patients. Clin. Exp. Med. 2023, 23, 2583–2591. [Google Scholar] [CrossRef]
- Mielnik, M.; Podgajna-Mielnik, M.; Szudy-Szczyrek, A.; Homa-Mlak, I.; Mlak, R.; Gorący, A.; Hus, M. Predicting chemotherapy toxicity in multiple myeloma: The prognostic value of pre-treatment serum cytokine levels of interleukin-6, interleukin-8, monocyte chemoattractant protein-1, and vascular endothelial growth factor. Front. Immunol. 2024, 15, 1377546. [Google Scholar] [CrossRef]
- Li, L.; Tong, M.; Zhao, Y.T.; He, Y.; Zhou, H.Y.; Zhang, G.F.; Zhang, Y.J. Membrane translocation of Bruton kinase in multiple myeloma cells is associated with osteoclastogenic phenotype in bone metastatic lesions. Medicine 2018, 97, e9482. [Google Scholar] [CrossRef] [PubMed]
- Mekhloufi, A.; Kosta, A.; Stabile, H.; Molfetta, R.; Zingoni, A.; Soriani, A.; Cippitelli, M.; Paolini, R.; Gismondi, A.; Ricciardi, M.R.; et al. Bone Marrow Stromal Cell-Derived IL-8 Upregulates PVR Expression on Multiple Myeloma Cells via NF-κB Transcription Factor. Cancers 2020, 12, 440. [Google Scholar] [CrossRef]
- Mulligan, G.; Mitsiades, C.; Bryant, B.; Zhan, F.; Chng, W.J.; Roels, S.; Koenig, E.; Fergus, A.; Huang, Y.; Richardson, P.; et al. Gene expression profiling and correlation with outcome in clinical trials of the proteasome inhibitor bortezomib. Blood 2007, 109, 3177–3188. [Google Scholar] [CrossRef]
- Skorda, A.; Sklirou, A.D.; Sakellaropoulos, T.; Gianniou, D.D.; Kastritis, E.; Terpos, E.; Tsitsilonis, O.E.; Florea, B.I.; Overkleeft, H.F.; Dimopoulos, M.A.; et al. Non-lethal proteasome inhibition activates pro-tumorigenic pathways in multiple myeloma cells. J. Cell Mol. Med. 2019, 23, 8010–8018. [Google Scholar] [CrossRef] [PubMed]
- Maïga, S.; Gomez-Bougie, P.; Bonnaud, S.; Gratas, C.; Moreau, P.; Le Gouill, S.; Pellat-Deceunynck, C.; Amiot, M. Paradoxical effect of lenalidomide on cytokine/growth factor profiles in multiple myeloma. Br. J. Cancer 2013, 108, 1801–1806. [Google Scholar] [CrossRef]
- Zumwalt, T.J.; Arnold, M.; Goel, A.; Boland, C.R. Active secretion of CXCL10 and CCL5 from colorectal cancer microenvironments associates with GranzymeB+ CD8+ T-cell infiltration. Oncotarget 2015, 6, 2981–2991. [Google Scholar] [CrossRef]
- Gomes-Santos, I.L.; Amoozgar, Z.; Kumar, A.S.; Ho, W.W.; Roh, K.; Talele, N.P.; Curtis, H.; Kawaguchi, K.; Jain, R.K.; Fukumura, D.; et al. Exercise Training Improves Tumor Control by Increasing CD8+ T-cell Infiltration via CXCR3 Signaling and Sensitizes Breast Cancer to Immune Checkpoint Blockade. Cancer Immunol. Res. 2021, 9, 765–778. [Google Scholar] [CrossRef]
- Li, Y.; Han, S.; Wu, B.; Zhong, C.; Shi, Y.; Lv, C.; Fu, L.; Zhang, Y.; Lang, Q.; Liang, Z.; et al. CXCL11 Correlates with Immune Infiltration and Impacts Patient Immunotherapy Efficacy: A Pan-Cancer Analysis. Front. Immunol. 2022, 13, 951247. [Google Scholar] [CrossRef]
- Redjimi, N.; Raffin, C.; Raimbaud, I.; Pignon, P.; Matsuzaki, J.; Odunsi, K.; Fu, L.; Zhang, Y.; Lang, Q.; Liang, Z.; et al. CXCR3+ T regulatory cells selectively accumulate in human ovarian carcinomas to limit type I immunity. Cancer Res. 2012, 72, 4351–4360. [Google Scholar] [CrossRef] [PubMed]
- Romagnani, P.; Annunziato, F.; Lasagni, L.; Lazzeri, E.; Beltrame, C.; Francalanci, M.; Uguccioni, M.; Galli, M.; Cosmi, L.; Maurenzig, L.; et al. Cell cycle-dependent expression of CXC chemokine receptor 3 by endothelial cells mediates angiostatic activity. J. Clin. Investig. 2001, 107, 53–63. [Google Scholar] [CrossRef]
- Möller, C.; Strömberg, T.; Juremalm, M.; Nilsson, K.; Nilsson, G. Expression and function of chemokine receptors in human multiple myeloma. Leukemia 2003, 17, 203–210. [Google Scholar] [CrossRef]
- Giuliani, N.; Bonomini, S.; Romagnani, P.; Lazzaretti, M.; Morandi, F.; Colla, S.; Tagliaferri, S.; Lasagni, L.; Annunziato, F.; Crugnola, M.; et al. CXCR3 and its binding chemokines in myeloma cells: Expression of isoforms and potential relationships with myeloma cell proliferation and survival. Haematologica 2006, 91, 1489–1497. [Google Scholar] [PubMed]
- Pellegrino, A.; Antonaci, F.; Russo, F.; Merchionne, F.; Ribatti, D.; Vacca, A.; Dammacco, F. CXCR3-binding chemokines in multiple myeloma. Cancer Lett. 2004, 207, 221–227. [Google Scholar] [CrossRef]
- Bai, J.; Wang, J.; Yang, Y.; Zhang, W.; Wang, F.; Zhang, L.; Chen, H.; Wang, X.; Feng, Y.; Shen, Y.; et al. Serum platelet factor 4 is a promising predictor in newly diagnosed patients with multiple myeloma treated with thalidomide and VAD regimens. Hematology 2019, 24, 387–391. [Google Scholar] [CrossRef]
- Bolomsky, A.; Schreder, M.; Hübl, W.; Zojer, N.; Hilbe, W.; Ludwig, H. Monokine induced by interferon gamma (MIG/CXCL9) is an independent prognostic factor in newly diagnosed myeloma. Leuk. Lymphoma 2016, 57, 2516–2525. [Google Scholar] [CrossRef]
- Cao, Y.; Luetkens, T.; Kobold, S.; Hildebrandt, Y.; Gordic, M.; Lajmi, N.; Meyer, S.; Bartels, K.; Zander, A.R.; Bokemeyer, C.; et al. The cytokine/chemokine pattern in the bone marrow environment of multiple myeloma patients. Exp. Hematol. 2010, 38, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Menu, E.; De Becker, A.; Van Camp, B.; Vanderkerken, K.; Van Riet, I. Bone marrow-derived mesenchymal stromal cells are attracted by multiple myeloma cell-produced chemokine CCL25 and favor myeloma cell growth in vitro and in vivo. Stem Cells 2012, 30, 266–279. [Google Scholar] [CrossRef] [PubMed]
- Freire-de-Lima, L.; Nardy, A.F.F.R.; Ramos-Junior, E.S.; Conde, L.; Santos Lemos, J.; da Fonseca, L.M.; Lima, J.E.; Maiolino, A.; Morrot, A. Multiple myeloma cells express key immunoregulatory cytokines and modulate the monocyte migratory response. Front. Med. 2017, 4, 92. [Google Scholar] [CrossRef]
- Uranishi, M.; Iida, S.; Sanda, T.; Ishida, T.; Tajima, E.; Ito, M.; Komatsu, H.; Inagaki, H.; Ueda, R. Multiple myeloma oncogene 1 (MUM1)/interferon regulatory factor 4 (IRF4) upregulates monokine induced by interferon-gamma (MIG) gene expression in B-cell malignancy. Leukemia 2005, 19, 1471–1478. [Google Scholar] [CrossRef]
- Yoshida, S.; Nakazawa, N.; Iida, S.; Hayami, Y.; Sato, S.; Wakita, A.; Shimizu, S.; Taniwaki, M.; Ueda, R. Detection of MUM1/IRF4-IgH fusion in multiple myeloma. Leukemia 1999, 13, 1812–1816. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Peng, Z.; Guo, J.; Wang, Y.; Wang, S.; Jiang, H.; Wang, M.; Xie, Y.; Li, X.; Hu, M.; et al. CXCL10 recruitment of γδ T cells into the hypoxic bone marrow environment leads to IL-17 expression and multiple myeloma progression. Cancer Immunol. Res. 2023, 11, 1384–1399. [Google Scholar] [CrossRef]
- Danziger, S.A.; McConnell, M.; Gockley, J.; Young, M.H.; Rosenthal, A.; Schmitz, F.; Reiss, D.J.; Farmer, P.; Alapat, D.V.; Singh, A.; et al. Bone marrow microenvironments that contribute to patient outcomes in newly diagnosed multiple myeloma: A cohort study of patients in the Total Therapy clinical trials. PLoS Med. 2020, 17, e1003323. [Google Scholar] [CrossRef]
- Wang, H.; Shao, R.; Liu, W.; Peng, S.; Bai, S.; Fu, B.; Zhao, C.; Lu, Y. Integrative analysis identifies CXCL11 as an immune-related prognostic biomarker correlated with cell proliferation and immune infiltration in multiple myeloma microenvironment. Cancer Cell Int. 2022, 22, 187. [Google Scholar] [CrossRef]
- Prabhala, R.H.; Pelluru, D.; Fulciniti, M.; Prabhala, H.K.; Nanjappa, P.; Song, W.; Pai, C.; Amin, S.; Tai, Y.T.; Richardson, P.G.; et al. Elevated IL-17 produced by TH17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma. Blood 2010, 115, 5385–5392. [Google Scholar] [CrossRef]
- Noonan, K.; Marchionni, L.; Anderson, J.; Pardoll, D.; Roodman, G.D.; Borrello, I. A novel role of IL-17-producing lymphocytes in mediating lytic bone disease in multiple myeloma. Blood 2010, 116, 3554–3563. [Google Scholar] [CrossRef]
- Ponzetta, A.; Benigni, G.; Antonangeli, F.; Sciumè, G.; Sanseviero, E.; Zingoni, A.; Ricciardi, M.R.; Petrucci, M.T.; Santoni, A.; Bernardini, G.; et al. Multiple myeloma impairs bone marrow localization of effector natural killer cells by altering the chemokine microenvironment. Cancer Res. 2015, 75, 4766–4777. [Google Scholar] [CrossRef]
- Bernardini, G.; Vulpis, E.; Bonanni, V.; Stabile, H.; Ricciardi, M.R.; Petrucci, M.T.; Gismondi, A.; Santoni, A.; Zingoni, A. High expression levels of IP10/CXCL10 are associated with modulation of the natural killer cell compartment in multiple myeloma. Leuk. Lymphoma 2017, 58, 2493–2496. [Google Scholar] [CrossRef]
- Villard, M.; Viel, S.; Karlin, L.; Avet-Loiseau, H.; Martinet, L.; Marçais, A.; Walzer, T. NK Cell Immaturity and NKp30 Expression Positively Correlate with Clinical Outcome in Multiple Myeloma Patients from the IFM2009 Clinical Trial. Eur. J. Immunol. 2025, 55, e202451191. [Google Scholar] [CrossRef]
- Locati, M.; Curtale, G.; Mantovani, A. Diversity, mechanisms, and significance of macrophage plasticity. Annu. Rev. Pathol. 2020, 15, 123–147. [Google Scholar] [CrossRef] [PubMed]
- Strieter, R.M.; Polverini, P.J.; Kunkel, S.L.; Arenberg, D.A.; Burdick, M.D.; Kasper, J.; Dzuiba, J.; Van Damme, J.; Walz, A.; Marriott, D.; et al. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J. Biol. Chem. 1995, 270, 27348–27357. [Google Scholar] [CrossRef] [PubMed]
- Barash, U.; Zohar, Y.; Wildbaum, G.; Beider, K.; Nagler, A.; Karin, N.; Ilan, N.; Vlodavsky, I. Heparanase enhances myeloma progression via CXCL10 downregulation. Leukemia 2014, 28, 2178–2187. [Google Scholar] [CrossRef] [PubMed]
- Liang, P.; Cheng, S.H.; Cheng, C.K.; Lau, K.M.; Lin, S.Y.; Chow, E.Y.; Chan, N.P.H.; Ip, R.K.L.; Wong, R.S.M.; Ng, M.H.L.; et al. Platelet factor 4 induces cell apoptosis by inhibition of STAT3 via up-regulation of SOCS3 expression in multiple myeloma. Haematologica 2013, 98, 288–295. [Google Scholar] [CrossRef]
- Yang, L.; Du, J.; Hou, J.; Jiang, H.; Zou, J. Platelet factor-4 and its p17-70 peptide inhibit myeloma proliferation and angiogenesis in vivo. BMC Cancer 2011, 11, 261. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Long, X.; Zhang, Y.; Jin, J.; Chen, L.; Liu, A. IP-10 enhances the amplification capacity and antitumor activity of CAR-T cells in vitro and could influence positive outcomes in MM patients treated with CAR-T cell therapy. Int. Immunopharmacol. 2022, 112, 109253. [Google Scholar] [CrossRef] [PubMed]
- Bonanni, V.; Antonangeli, F.; Santoni, A.; Bernardini, G. Targeting of CXCR3 improves anti-myeloma efficacy of adoptively transferred activated natural killer cells. J. Immunother. Cancer 2019, 7, 290. [Google Scholar] [CrossRef] [PubMed]
Gene | In All Patients | CD1 | CD2 | PR | HY | LB | MF | MS | MY |
---|---|---|---|---|---|---|---|---|---|
CXCR1 | ↓ | - | ↓ p = 0.055 | - | ↓ | - | - | - | ↓ |
CXCR2 | ↑ | ↑ p = 0.051 | - | - | ↑ p = 0.054 | - | - | - | - |
CXCL1 | ↑ | - | - | ↑ | ↑ | - | - | ↓ p = 0.099 | - |
CXCL2 | ↑ | - | - | - | - | - | - | ↓ p = 0.10 | ↑ p = 0.096 |
CXCL3 | - | - | - | - | ↑ | ↓ | - | ↓ p = 0.090 | - |
CXCL5 | ↑ | - | - | ↑ | - | - | - | - | ↓ |
CXCL6 | - | ↑ p = 0.10 | - | - | - | - | - | ↓ | - |
PPBP | ↑ | - | - | - | ↑ | - | - | - | ↑ p = 0.10 |
CXCL8 | ↑ | ↑ | - | - | - | - | - | ↓ p = 0.086 | - |
Gene | In All Patients | CD1 | CD2 | PR | HY | LB | MF | MS | MY |
---|---|---|---|---|---|---|---|---|---|
CXCR3 | - | ↑ | - | ↑ p = 0.056 | - | - | - | ↓ p = 0.071 | ↑ p = 0.094 |
PF4 | ↑ | - | - | ↓ p = 0.053 | ↑ | - | - | - | - |
CXCL9 | ↓ | - | - | ↑ | ↓ | - | ↓ | ↑ | ↓ |
CXCL10 | - | - | - | ↑ | - | - | - | - | ↓ |
CXCL11 | - | - | - | ↓ p = 0.10 | - | - | - | - | ↑ p = 0.099 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korbecki, J.; Barczak, K.; Bosiacka, B.; Surówka, A.; Duchnik, E.; Skarbiński, M.; Snarski, E.; Chlubek, D.; Bosiacki, M. The Importance of Chemokines Activating CXCR1, CXCR2 and CXCR3 in Tumorigenesis as Potential Therapeutic Targets in Monoclonal Gammopathy of Undetermined Significance and Multiple Myeloma. Cancers 2025, 17, 2888. https://doi.org/10.3390/cancers17172888
Korbecki J, Barczak K, Bosiacka B, Surówka A, Duchnik E, Skarbiński M, Snarski E, Chlubek D, Bosiacki M. The Importance of Chemokines Activating CXCR1, CXCR2 and CXCR3 in Tumorigenesis as Potential Therapeutic Targets in Monoclonal Gammopathy of Undetermined Significance and Multiple Myeloma. Cancers. 2025; 17(17):2888. https://doi.org/10.3390/cancers17172888
Chicago/Turabian StyleKorbecki, Jan, Katarzyna Barczak, Beata Bosiacka, Anna Surówka, Ewa Duchnik, Maciej Skarbiński, Emilian Snarski, Dariusz Chlubek, and Mateusz Bosiacki. 2025. "The Importance of Chemokines Activating CXCR1, CXCR2 and CXCR3 in Tumorigenesis as Potential Therapeutic Targets in Monoclonal Gammopathy of Undetermined Significance and Multiple Myeloma" Cancers 17, no. 17: 2888. https://doi.org/10.3390/cancers17172888
APA StyleKorbecki, J., Barczak, K., Bosiacka, B., Surówka, A., Duchnik, E., Skarbiński, M., Snarski, E., Chlubek, D., & Bosiacki, M. (2025). The Importance of Chemokines Activating CXCR1, CXCR2 and CXCR3 in Tumorigenesis as Potential Therapeutic Targets in Monoclonal Gammopathy of Undetermined Significance and Multiple Myeloma. Cancers, 17(17), 2888. https://doi.org/10.3390/cancers17172888