Next Article in Journal
Comprehensive Assessment of Prognostic Factors for Immune-Related Adverse Events in Immune Checkpoint Inhibitor-Treated Melanoma
Previous Article in Journal
Anti-EGFR Therapy in Metastatic Colorectal Cancer: Identifying, Tracking, and Overcoming Resistance
Previous Article in Special Issue
The Fanconi Anemia Pathway Inhibits mTOR Signaling and Prevents Accelerated Translation in Head and Neck Cancer Cells
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Comparative Mechanistic Insights and Therapeutic Potential of Pembrolizumab, Durvalumab, and Ipilimumab as Immune Checkpoint Inhibitors in the Targeted Management of Oral and Head and Neck Squamous Cell Carcinoma

by
Piotr Kawczak
1,*,
Igor Jarosław Feszak
2 and
Tomasz Bączek
1,3
1
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland
2
Institute of Health Sciences, Pomeranian University in Słupsk, 76-200 Słupsk, Poland
3
Department of Nursing and Medical Rescue, Institute of Health Sciences, Pomeranian University in Słupsk, 76-200 Słupsk, Poland
*
Author to whom correspondence should be addressed.
Cancers 2025, 17(17), 2805; https://doi.org/10.3390/cancers17172805
Submission received: 3 July 2025 / Revised: 20 August 2025 / Accepted: 27 August 2025 / Published: 27 August 2025
(This article belongs to the Special Issue Targeted Therapy in Head and Neck Cancer)

Simple Summary

Oral cancer remains a significant clinical challenge, particularly in its advanced stages, where therapeutic options are limited and prognosis is often poor. Recent advancements in immunotherapy, particularly the development of immune checkpoint inhibitors, have demonstrated considerable potential by enhancing the immune system’s ability to recognize and eliminate tumor cells. This review examines three key immune checkpoint inhibitors—pembrolizumab, durvalumab, and ipilimumab—each targeting distinct immune regulatory pathways to potentiate antitumor immunity in oral cancer. The primary objective is to evaluate their therapeutic efficacy and safety profiles and to assess emerging strategies aimed at overcoming treatment resistance. Insights from this analysis may inform clinical decision-making, optimize treatment combinations, and guide future research toward minimizing adverse effects while maximizing clinical benefit.

Abstract

Immune checkpoint inhibitors (ICIs) have transformed the landscape of cancer therapy by reactivating immune surveillance mechanisms against tumor cells. In the context of oral squamous cell carcinoma (OSCC) and broader head and neck squamous cell carcinoma (HNSCC), agents such as pembrolizumab, durvalumab, and ipilimumab target PD-1, PD-L1, and CTLA-4, respectively. This review comprehensively examines their clinical efficacy, safety profiles, mechanisms of action, and therapeutic potential in OSCC management, with an emphasis on strategies to overcome therapeutic resistance. A systematic analysis of the literature was conducted, focusing on clinical outcomes, ongoing trials, and emerging combination therapies. Pembrolizumab has demonstrated significant improvements in overall survival (OS) and progression-free survival (PFS) in OSCC patients. Durvalumab, mainly utilized in locally advanced or recurrent disease, has shown survival benefit, particularly in combination or maintenance settings. Ipilimumab exhibits durable responses in advanced OSCC, with enhanced efficacy observed when used alongside nivolumab in dual checkpoint blockade regimens. Although both pembrolizumab and nivolumab target PD-1, they differ in clinical indications and regulatory approvals. Notably, ICIs are associated with immune-related adverse events (irAEs), requiring careful monitoring. Collectively, these agents represent promising therapeutic options in oral cancer, though future studies must prioritize the identification of predictive biomarkers and the development of optimized combination strategies to maximize therapeutic benefit while minimizing toxicity.

1. Introduction

Oral squamous cell carcinoma (OSCC) is the most common oral malignancy, comprising over 90% of cases and posing a major global health challenge, especially in South and Southeast Asia, where tobacco, alcohol, and betel quid use are prevalent [1,2]. In contrast, HPV-associated squamous cell carcinoma—predominantly HPV-16–driven—is increasing mainly in the oropharynx, particularly in Western populations [3,4]. In 2020, oral cancer accounted for over 377,000 new cases and approximately 177,700 deaths worldwide [1].
OSCC typically affects middle-aged to elderly men, exhibits aggressive behavior, and has a 5-year survival rate of only 50–60%, largely due to late diagnosis and early metastasis [5,6]. Standard treatments—surgery, radiotherapy, and chemotherapy—are effective in early disease but less so in advanced or recurrent cases and often cause significant morbidity [7].
Immune checkpoint inhibitors (ICIs) have redefined cancer therapy by blocking pathways such as PD-1/PD-L1 and CTLA-4, thereby restoring antitumor immunity and altering the tumor microenvironment (TME) [8,9,10]. Systematic reviews and meta-analyses confirm ICIs improve OS and PFS in various cancers [11,12,13]. Additional evidence from meta-analyses further supports these benefits across tumor types [14,15].
In recurrent or metastatic OSCC and other head and HNSCC, PD-1 inhibitors like pembrolizumab and nivolumab provide superior outcomes [16,17]. Other clinical studies reinforce these findings in advanced HNSCC [18]. Increased PD-1/PD-L1 expression in oral potentially malignant disorders (OPMDs) suggests a role for early immunotherapy [19]. Compared with conventional therapies, ICIs offer better efficacy and lower toxicity in advanced HNSCC. EGFR-targeted therapy with cetuximab is also used but is limited by tumor heterogeneity and resistance [20,21].
Groundbreaking immune checkpoint research, awarded the 2018 Nobel Prize, led to agents such as ipilimumab and pembrolizumab, which have shown durable responses in melanoma and HNSCC [22]. CTLA-4 inhibitors (ipilimumab and tremelimumab) act during T-cell priming [23,24,25], while PD-1 inhibitors (cemiplimab, nivolumab, and pembrolizumab) counter tumor-mediated suppression [26,27]. Similarly, PD-L1 inhibitors (atezolizumab, avelumab, and durvalumab) block tumor-driven immune evasion [28,29]. Pembrolizumab (KEYNOTE-048) and nivolumab (CheckMate-141) are FDA-approved for recurrent/metastatic HNSCC, with each occupying distinct clinical niches [30,31,32,33]. Durvalumab shows promise in combination regimens (CONDOR, EAGLE) [34,35], and ipilimumab, although less effective alone in OSCC, may enhance PD-1 inhibitor activity [35,36,37].
Resistance to ICIs—primary, acquired, or adaptive—remains a major hurdle [38,39]. Strategies under investigation include combining ICIs with immunogenic cell death inducers [40]; targeting innate immune checkpoints [41]; and integrating mRNA-based cancer vaccines with anti-PD-1, anti-PD-L1, or anti-CTLA-4 antibodies [42]. Future efforts should focus on next-generation ICIs and optimized combination regimens, guided by a deeper understanding of tumor immunobiology and resistance mechanisms, to further improve outcomes [43,44,45].
Table 1 highlights pembrolizumab, durvalumab, and ipilimumab as key ICIs in cancer immunotherapy, summarizing ongoing trials and associated adverse effects.
Despite the clinical success of ICIs in OSCC and other malignancies, major challenges remain due to heterogeneous patient responses and the absence of reliable predictive biomarkers. Although PD-L1 expression, tumor mutational burden (TMB), and tumor-infiltrating lymphocytes have been explored, their prognostic and predictive value in OSCC remains uncertain [49]. Immune evasion is further promoted by regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), which suppress effective antitumor immunity [50].
ICI response is shaped by tumor-intrinsic and extrinsic factors beyond PD-L1 expression. The gut microbiota has emerged as a critical modulator, with taxa such as Akkermansia muciniphila and Bifidobacterium spp. linked to enhanced PD-1 blockade efficacy, while antibiotic-induced dysbiosis reduces treatment benefit [51,52,53]. High TMB correlates with increased neoantigen load, promoting immune recognition and improved survival in multiple cancers, including HNSCC [54,55,56]. Epigenetic alterations, including DNA methylation and histone modification, also facilitate immune escape; targeting these changes may restore immunogenicity and sensitize tumors to ICIs [57,58,59]. The tumor immune microenvironment (TIME) is pivotal—“hot” tumors with abundant CD8+ T cells and interferon activity respond better to ICIs than “cold” tumors with limited immune infiltration or dominant suppressive cell populations [60,61,62]. These findings support a multifactorial biomarker approach integrating microbiome composition, TMB, epigenetics, and immune contexture for personalized immunotherapy in OSCC.
Targeting oncogenic signaling offers another strategy. The PI3K/Akt/mTOR pathway promotes tumor proliferation and immune suppression [63,64]. Additionally, this pathway drives PD-L1 upregulation, contributing to ICI resistance [65,66]. Inhibiting this axis restores T-cell infiltration and enhances ICI efficacy in preclinical OSCC models [67,68], though toxicity and variable clinical responses remain limiting factors [69,70,71]. Similarly, aberrant Wnt/β-catenin signaling impairs dendritic cell recruitment, reduces T-cell priming, promotes Treg and MDSC expansion, and fosters immune exclusion, driving resistance to PD-1/PD-L1 blockade [72,73,74,75]. While targeting Wnt/β-catenin in OSCC is challenging due to pathway complexity and off-target toxicity [76,77,78], combined inhibition of PI3K/Akt/mTOR and Wnt/β-catenin holds promise for overcoming resistance [79].
Combining ICIs with chemoradiation is under investigation, but concerns persist regarding toxicity and patient selection [80,81]. While these combinations may enhance immune activation, they also heighten the risk of mucositis, dermatitis, hematologic toxicity, and irAEs such as pneumonitis, colitis, and endocrinopathies [82,83,84]. Optimizing timing and sequencing is essential to balance efficacy and safety [85], and biomarker-driven patient stratification may improve outcomes. Ongoing trials aim to define evidence-based protocols [86,87]. ICIs can also cause multi-organ irAEs [88,89,90]. These include rare but serious cases of ICI-induced diabetes [91,92,93,94] and may exacerbate pre-existing autoimmune diseases [95,96,97]. Antibiotics can impair ICI efficacy [98]. Oral-specific toxicities—such as xerostomia, lichenoid reactions, and candidiasis—are underreported but clinically important [99,100,101]. Additional studies further document these oral toxicities in patients receiving ICIs [102,103,104]. Evidence continues to accumulate across larger cohorts and case series [105,106,107], with further reports reinforcing their clinical impact [108,109,110]. More recent investigations also highlight these toxicities [111,112,113,114]. Collectively, these findings underscore the need for standardized management [115].
This review summarizes the evolving OSCC and HNSCC therapeutic landscape, focusing on ICI mechanisms, clinical outcomes, and challenges, as well as emerging molecular targets such as PI3K/Akt/mTOR and Wnt/β-catenin. The literature was identified through PubMed searches (2015–2025) using terms “pembrolizumab”, “durvalumab”, and “ipilimumab” with “oral cancer”, prioritizing clinically relevant studies. Ongoing advances in tumor immunology and precision oncology will be crucial to optimizing treatment strategies and improving OSCC outcomes.

2. Pembrolizumab—Programmed Cell Death Protein 1 (CD279) Blocker

Pembrolizumab is a humanized IgG4 monoclonal antibody developed by Merck & Co. that targets programmed cell death protein 1 (PD-1), a receptor expressed on activated T cells that downregulates immune responses and facilitates tumor immune evasion [116,117]. Both pembrolizumab and nivolumab are monoclonal antibodies targeting PD-1 receptor, thereby preventing PD-1 engagement with its ligands PD-L1 and PD-L2 and restoring T-cell activity. Despite their shared target, these agents differ in certain clinical and pharmacologic aspects. Pembrolizumab is a humanized IgG4κ antibody, whereas nivolumab is a fully human IgG4 antibody [118]. Clinically, pembrolizumab has demonstrated efficacy in recurrent or metastatic head and neck squamous cell carcinoma (HNSCC), particularly in patients with high PD-L1 expression, as highlighted in the KEYNOTE-048 trial, where pembrolizumab alone or in combination with chemotherapy improved OS compared with cetuximab plus chemotherapy [119]. Nivolumab, evaluated in the CheckMate 141 trial, showed survival benefits in platinum-refractory HNSCC, regardless of PD-L1 status. These differences emphasize pembrolizumab’s preferential use in first-line treatment for PD-L1-positive patients, while nivolumab remains a key option in the post-platinum setting. Moreover, dosing schedules differ slightly, with pembrolizumab commonly administered every 3 or 6 weeks, while nivolumab is typically dosed every 2 or 4 weeks [30].
Initially approved by the U.S. Food and Drug Administration (FDA) in 2014 for metastatic melanoma, pembrolizumab marked a pivotal milestone in cancer immunotherapy [120,121,122]. Its indications have since expanded to multiple malignancies—including non-small cell lung cancer, HNSCC, urothelial carcinoma, and oral cancer—driven by significant survival benefits demonstrated in clinical trials [123,124,125].
Structurally, pembrolizumab is derived from a mouse anti-human PD-1 antibody and engineered onto a human IgG4 scaffold incorporating the S228P mutation. This modification stabilizes disulfide bonds, prevents Fab-arm exchange, and enhances antibody specificity. It also contains a glycosylation site at Asn297, with glycans positioned internally to reduce effector function. These design features minimize Fc gamma receptor and C1q complement binding, thereby limiting antibody-dependent cytotoxicity and complement activation. While such refinements aim to reduce immunogenicity and off-target immune activation, irAEs remain possible and may necessitate treatment interruption, underscoring the need for vigilant safety monitoring [126,127,128].
Table 2 summarizes the effector immune responses elicited by PD-1 blockade.
Pembrolizumab is administered intravenously at 1–10 mg/mL over approximately 30 min, demonstrating dose-proportional pharmacokinetics and a terminal half-life of ~26 days [130,131,132]. Steady-state levels are typically achieved by week 18 with triweekly dosing [133,134,135]. Clearance is influenced by body weight but generally unaffected by mild hepatic or renal impairment [136,137,138]. These pharmacological properties have been characterized extensively in the KEYNOTE clinical trial program across multiple malignancies [139,140,141,142,143,144,145,146,147].
Mechanistically, pembrolizumab blocks PD-1 binding to its ligands PD-L1 and PD-L2, a checkpoint axis frequently exploited by tumors to evade immune surveillance [148]. Under physiological conditions, PD-1 signaling suppresses T-cell activity, facilitating tumor progression [149,150]. Inhibiting this interaction restores T-cell function, enabling immune-mediated tumor recognition and destruction, and has led to durable responses and improved survival in diverse cancers [151,152,153,154].
Since its initial approval for metastatic melanoma, pembrolizumab has become integral in oncology [155,156,157]. Its indications now span non-small cell lung cancer, HNSCC, urothelial carcinoma, and other malignancies [158,159,160]. Additional studies further support its use across diverse cancer types [161,162,163,164]. In metastatic melanoma, it outperforms conventional chemotherapy in survival outcomes [165,166]. In NSCLC, it is a first-line option for PD-L1–positive tumors, offering superior progression-free and overall survival [167,168]. For HNSCC, including OSCC, it is particularly effective in recurrent or metastatic disease, especially in PD-L1–expressing tumors [121,169], and is also approved for advanced urothelial carcinoma [170,171].
In OSCC, pembrolizumab has shown promise for advanced disease where standard modalities often fail [172]. Clinical studies report improved outcomes in PD-L1–positive tumors [173,174]. A phase II trial in recurrent or metastatic HNSCC, including OSCC, found an objective response rate of 16.7% [175]. As a second-line option post–platinum chemotherapy, it provides survival benefits [176,177]. However, intratumoral PD-L1 heterogeneity limits predictive accuracy [178]. Ongoing research is focused on novel biomarkers and combination strategies, including chemotherapy and radiotherapy, to overcome resistance and enhance efficacy [179,180,181,182,183].
Pembrolizumab’s safety profile in OSCC mirrors that in other cancers. irAEs—such as dermatitis, colitis, hepatitis, and pneumonitis—are the most frequent, resulting from immune activation [184,185]. These are typically manageable with corticosteroids or dose adjustments, supporting a favorable risk–benefit ratio [186,187].
As a PD-1/PD-L1 axis inhibitor, pembrolizumab has improved outcomes across multiple tumor types, yet challenges remain in patient selection and immune-related adverse event (irAE) management [188,189]. Ongoing trials are evaluating its integration with chemoradiation and its use across disease stages to improve survival and quality of life in OSCC [190,191]. Pembrolizumab is now considered a cornerstone in HNSCC therapy [192,193,194]. However, treatment response varies with PD-L1 expression, tumor mutational burden, and host immunity [195,196,197]. These factors contribute to primary resistance [198,199,200,201,202]. Acquired resistance can also diminish benefit, and real-world outcomes may differ from trial results due to patient comorbidities and performance status [203,204].
Though generally tolerable, pembrolizumab can cause multi-organ irAEs—including thyroiditis, hypophysitis, and pneumonitis—that may require immunosuppression or treatment discontinuation [205,206,207,208]. Patients with pre-existing autoimmune disease face higher complication risks [209,210,211]. The absence of robust predictive biomarkers and standardized selection criteria underscores the need for personalized strategies and improved toxicity management protocols.
Figure 1 displays the molecular structure and key characteristics of pembrolizumab.

3. Durvalumab—Programmed Death-Ligand 1 (CD274) Blocker

Durvalumab is a fully human monoclonal antibody developed by AstraZeneca that targets programmed death-ligand 1 (PD-L1), a critical immune checkpoint protein expressed on tumor and antigen-presenting cells [213,214]. By binding PD-L1 and preventing its interaction with PD-1, durvalumab counteracts tumor-induced immune suppression, restoring T-cell activity and enhancing antitumor immune responses [215,216,217]. This mechanism directly disrupts the PD-1/PD-L1 axis—a major pathway exploited by tumors to evade immune surveillance [218,219,220]. In 2017, durvalumab received U.S. Food and Drug Administration (FDA) approval for locally advanced or metastatic urothelial carcinoma after platinum-based chemotherapy, following evidence of improved PFS and OS [221,222,223]. This milestone highlighted the therapeutic relevance of PD-L1 inhibitors and spurred their integration into combination regimens across multiple malignancies [224,225,226,227,228,229,230,231,232,233].
PD-L1 mediates immune escape primarily through PD-1 engagement, which inhibits T-cell activation. Its expression is driven by oncogenic signaling pathways (e.g., AKT, STAT) and genetic alterations, as well as inflammatory stimuli such as interferon-γ. In the TME, immune cells—including dendritic cells and monocytes—also express PD-L1, further contributing to T-cell suppression and regulatory T-cell induction. Beyond immune inhibition, PD-L1 may transmit intracellular signals that increase tumor resistance to cytotoxic T-cell-mediated killing [126].
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous disease arising from the oral cavity, oropharynx, larynx, and hypopharynx. While tobacco and alcohol remain the predominant risk factors, a subset—especially oropharyngeal cancers of the tonsils and base of tongue—is associated with human papillomavirus (HPV) and exhibits distinct immunologic features. HNSCC typically presents with an immunosuppressive microenvironment characterized by dysregulated immune cell composition and high immune checkpoint expression. PD-1/PD-L1 blockade with agents such as nivolumab, pembrolizumab, durvalumab, and atezolizumab has shown efficacy in select patient subsets, and ongoing trials are exploring their use alongside chemotherapy, radiotherapy, and other immunomodulators, including CTLA-4 and IDO-1 inhibitors [234,235,236].
Durvalumab’s therapeutic effect stems from PD-L1 blockade, which restores T-cell function and promotes tumor destruction, yielding durable responses across cancer types [237,238]. While mechanistically similar to PD-1 inhibitors, its direct PD-L1 targeting may confer advantages in tumors where PD-L1 expression is the primary immune escape mechanism [239,240,241]. After approval in urothelial carcinoma, durvalumab was further indicated for non-small cell lung cancer (NSCLC), particularly as consolidation therapy for patients with locally advanced disease remaining progression-free after chemoradiation. In this setting, durvalumab significantly improves PFS and OS, cementing its role as a standard maintenance therapy [242,243,244,245]. Combination regimens with chemotherapy have expanded durvalumab’s antitumor potential in multiple malignancies [246,247]. Ongoing studies are investigating its role in head and neck, cervical, and hepatocellular carcinomas [248,249,250], with promising preliminary results [251,252,253].
In OSCC, durvalumab is emerging as a viable treatment option, particularly in recurrent or metastatic disease. OSCC often presents at advanced stages with high recurrence rates, making effective systemic therapy crucial. PD-L1 overexpression is common in OSCC, providing a strong rationale for PD-L1 blockade. Early clinical trials in advanced HNSCC, including oral cavity tumors, have demonstrated tumor regression and survival improvement with durvalumab-based regimens [254,255]. PD-L1 has also been proposed as a prognostic biomarker, with evidence suggesting that HGF/Met signaling can upregulate PD-L1, reinforcing its role in immune evasion [256]. Durvalumab is currently under evaluation as a second-line therapy for patients who fail surgery, radiotherapy, or chemotherapy, offering a potential alternative in refractory OSCC [257,258].
The clinical impact of durvalumab in OSCC is linked to disruption of PD-1/PD-L1-mediated immune suppression, a recognized driver of OSCC pathogenesis. High PD-L1 expression correlates with poorer prognosis, supporting the rationale for PD-L1-targeted therapy [259,260]. A multicenter trial showed that durvalumab combined with chemotherapy improved survival and response rates in advanced HNSCC, underscoring the potential value of combination regimens [261]. Such strategies may be particularly useful in OSCC to overcome resistance mechanisms [262].
However, therapeutic response to durvalumab varies, largely due to differences in PD-L1 expression. This underscores the need for biomarker-guided patient selection [263]. Immune-related adverse events remain a concern, with toxicities affecting the skin, gastrointestinal tract, liver, nervous system, muscles, eyes, and salivary glands. Reported events include dermatitis, colitis, hepatitis, encephalitis, myopathy, limbal stem cell deficiency, corneal perforation, IgG4-related pleural disease, hyposalivation, Sjögren’s syndrome, and immune thrombocytopenia. Notably, some irAEs have occurred in patients receiving ICIs after mRNA COVID-19 vaccination [264,265,266]. Others have also been reported in this context [265,266,267], with additional cases described in recent studies [268,269,270,271]. While often manageable with immunosuppression, severe irAEs may require treatment interruption or discontinuation [272,273].
Research efforts now focus on enhancing durvalumab’s efficacy through combination strategies with chemotherapy, radiotherapy, cytokine-based therapies, and other checkpoint inhibitors [274,275,276]. Preliminary clinical data support these approaches in advanced OSCC [254,277]. As understanding of the OSCC immune microenvironment deepens, integrating PD-L1 status and other biomarkers into treatment decision-making is expected to refine patient selection and optimize outcomes [278,279].
Durvalumab remains a cornerstone of modern immuno-oncology. Its blockade of the PD-L1/PD-1 axis has delivered clear clinical benefit in multiple malignancies, including OSCC. Yet, challenges persist—such as heterogeneous PD-L1 expression, irAE management, and the absence of validated predictive biomarkers. These issues limit its precision in clinical practice but also drive ongoing research to maximize survival and quality-of-life benefits in advanced disease. In NSCLC, durvalumab’s greatest impact is seen in unresectable stage III disease following chemoradiotherapy; however, its efficacy diminishes in patients with low or absent PD-L1 expression [246,280]. Real-world outcomes may also be lower than in trials due to older age, comorbidities, and reduced performance status [281,282]. Treatment timing is critical, as delays between chemoradiotherapy and durvalumab initiation correlate with worse outcomes [84]. Safety concerns—particularly pneumonitis, colitis, hepatitis, and endocrine disorders such as thyroid dysfunction and adrenal insufficiency—necessitate vigilant monitoring, especially in patients with prior thoracic radiation or pre-existing autoimmune or pulmonary disease [283,284,285,286].
Regulatory influences of the TME on PD-L1 expression are shown in Table 3.

4. Ipilimumab—Cytotoxic T-Lymphocyte-Associated Protein 4 (CD152) Blocker

Ipilimumab, a monoclonal antibody developed by Bristol-Myers Squibb, represents a landmark advancement in cancer immunotherapy. In 2011, it became the first immune checkpoint inhibitor to receive U.S. Food and Drug Administration (FDA) approval—initially for the treatment of metastatic melanoma—marking a pivotal shift in oncology. This approval established immunotherapy as a viable treatment option for malignancies unresponsive to conventional approaches such as chemotherapy and radiation [178,288,289].
The therapeutic rationale for ipilimumab centers on its selective inhibition of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), a critical immune checkpoint that downregulates T-cell activation to maintain immune homeostasis and prevent autoimmunity. Tumors frequently exploit this pathway to evade immune surveillance. CTLA-4, expressed on activated T cells, competes with the co-stimulatory receptor CD28 for binding to B7-1 (CD80) and B7-2 (CD86) on antigen-presenting cells. By blocking CTLA-4, ipilimumab lifts this inhibitory signal, thereby promoting T-cell activation, proliferation, and the generation of a durable antitumor immune response [289,290].
The clinical success of ipilimumab in metastatic melanoma solidified the therapeutic potential of immune checkpoint blockade and positioned it as a cornerstone in the evolution of modern immuno-oncology [288,289,290].
Immune-modulating receptor–related drug targets are summarized in Table 4.
Combining ICIs—particularly CTLA-4 and PD-1 blockers such as ipilimumab and nivolumab—has shown synergistic antitumor activity in numerous clinical studies [291,292,293], leading to improved outcomes across a range of malignancies [294,295,296]. Additional trials further support this benefit [297,298,299], with subsequent studies confirming efficacy across tumor types [300,301,302] and highlighting long-term outcomes [303,304,305,306]. Ipilimumab is now approved by the U.S. Food and Drug Administration (FDA) for multiple cancer types, including melanoma, non-small cell lung cancer (NSCLC), renal cell carcinoma (RCC), genitourinary malignancies, and hepatocellular carcinoma [307,308,309], with further approvals documented in later studies [310,311,312]. In melanoma, landmark trials have demonstrated significant improvements in OS and PFS [313,314,315], firmly establishing ipilimumab as a mainstay therapy [316,317]. The combination of ipilimumab with nivolumab further enhances clinical benefit by increasing response rates and survival across tumor types [168,318]. Beyond melanoma, ipilimumab has been evaluated in NSCLC, RCC, and castration-resistant prostate cancer (CRPC) [319,320,321], often in combination with chemotherapy [322,323,324], underscoring its broad immunomodulatory potential [325,326,327].
Emerging evidence suggests a potential role for ipilimumab in oral cancers, particularly OSCC—a malignancy characterized by aggressive clinical behavior, high recurrence rates, and frequent late-stage presentation. Like other solid tumors, OSCC employs immune evasion strategies, including CTLA-4 upregulation [328]. Targeting CTLA-4 may therefore represent a novel therapeutic strategy for advanced or treatment-refractory OSCC [329,330,331,332]. Early-phase studies in HNSCC—which encompasses OSCC—have shown that ipilimumab, either alone or combined with chemotherapy and radiation, can induce immune activation and, in certain cases, tumor regression [333,334,335,336,337]. Notably, neoadjuvant checkpoint blockade with nivolumab, alone or with a single dose of ipilimumab prior to surgery, has been reported as feasible and potentially active in HNSCC [338,339,340,341].
The therapeutic potential of ipilimumab in OSCC is particularly evident when combined with PD-1 inhibitors such as pembrolizumab or nivolumab. These regimens may overcome immune resistance in patients who do not respond to conventional therapy, offering the possibility of durable tumor control [342,343]. Some clinical reports have documented sustained responses in OSCC patients receiving ipilimumab-based regimens, highlighting its potential utility in high-risk disease [37,344].
Despite these promising findings, several challenges complicate the integration of ipilimumab into OSCC treatment. Variable CTLA-4 expression and ligand heterogeneity limit efficacy to certain patient subgroups [345,346,347], and reliable predictive biomarkers for response are lacking [348,349,350]. Furthermore, ipilimumab is associated with a relatively high incidence of irAEs affecting the skin, gastrointestinal tract, liver, endocrine organs, and cardiovascular system, necessitating careful monitoring [351,352,353], with additional studies detailing incidence and management strategies [354,355,356,357,358,359]. Most irAEs are manageable with immunosuppressive therapy, and early detection through proactive monitoring can improve patient outcomes [293,360].
Combination strategies may enhance therapeutic benefit in OSCC. Radiotherapy, for instance, can increase tumor immunogenicity and upregulate immune checkpoint targets, potentially augmenting ipilimumab efficacy in locally advanced or recurrent disease [37,361]. Similarly, ipilimumab–chemotherapy combinations have produced higher response rates in select studies [362,363]. Neoadjuvant use of ipilimumab—administered before surgical resection—has shown promise in improving resectability and reducing recurrence risk in OSCC, with early trials reporting improved tumor control and favorable surgical outcomes [339,364]. Ongoing research is also investigating multi-agent immunotherapy and targeted therapy combinations to address resistance mechanisms and optimize outcomes [365,366].
Ipilimumab’s CTLA-4 blockade has been transformative in the evolution of cancer immunotherapy, reshaping treatment paradigms for difficult-to-treat malignancies. Although its role in OSCC remains under active investigation, preliminary data are encouraging. Advances in biomarker discovery and rational combination strategies may broaden its applicability and improve patient selection [367,368].
Nevertheless, notable limitations remain. Compared with PD-1/PD-L1 inhibitors, ipilimumab generally has a lower objective response rate and slower onset of action—potentially problematic in rapidly progressing disease [178,369]. Its higher toxicity burden can limit use in elderly patients or those with significant comorbidities [370]. While combination therapy improves efficacy, it also increases the likelihood of severe irAEs—particularly colitis, hepatitis, and hypophysitis [345,371,372,373]—as well as dermatitis, which often requires corticosteroid therapy or treatment discontinuation [374,375,376]. Additional reports highlight management strategies and outcomes in affected patients [377,378,379]. These adverse effects are typically more severe than those seen with PD-1 blockade. In addition, patients with pre-existing autoimmune diseases—often excluded from pivotal trials—represent a high-risk group with unpredictable safety outcomes [213,380]. The absence of validated biomarkers for predicting both efficacy and toxicity continues to hinder personalized therapy [381,382].
Management of irAEs, including oral mucosal toxicities such as xerostomia and candidiasis, requires a multidisciplinary approach. Coordination among dental specialists, nutritionists, and infectious disease experts is crucial to preserve oral health, prevent complications, and maintain nutritional status [383,384]. Dental interventions can mitigate mucosal injury, nutritional support can address swallowing and dietary limitations, and infectious disease management ensures prompt treatment of opportunistic infections, which are common in immunocompromised patients [385].
Personalized care protocols—including irAE severity grading, therapy modification, and standardized monitoring frameworks—are essential to optimize the risk–benefit profile of ipilimumab [386]. Early intervention protocols reduce the incidence of severe complications [387]. Incorporating biomarker-guided strategies, such as PD-L1 assessment or liquid biopsy monitoring of tumor and immune dynamics, may further enable precise and adaptive treatment approaches, improving both safety and efficacy in ipilimumab-based regimens [388].
Figure 2 illustrates the primary modes of action of selected ICIs.

5. Implications and Observations: Toward a Research Outlook

Although many pivotal immunotherapy trials have been conducted in the broader HNSCC population, recent subgroup analyses have yielded important insights for OSCC. In the KEYNOTE-048 study, pembrolizumab with or without chemotherapy improved survival in recurrent/metastatic HNSCC, and subgroup analyses confirmed consistent efficacy in oral cavity cancers, though benefit varied across subsites [119,390]. A phase II trial of perioperative pembrolizumab in locally advanced resectable HNSCC, which included a substantial proportion of OSCC patients, showed promising pathological response rates, underscoring the relevance of ICIs for this disease [391]. OSCC-focused studies have also tested neoadjuvant immunotherapy, where early biomarker-driven strategies are being explored [392,393]. Together, these findings highlight the importance of accounting for OSCC-specific biology and clinical outcomes in therapeutic development.
Because of the heterogeneity of head and neck cancers, we prioritized studies specifically addressing OSCC. Where available, oral cavity subgroup data from broader HNSCC trials are included to increase disease-specific relevance. For example, subgroup analyses from KEYNOTE-048 and perioperative pembrolizumab studies demonstrated consistent benefit in oral cavity cancers [119,391]. This ensures that therapeutic interpretations and biomarker considerations remain directly applicable to OSCC, rather than extrapolated from mixed HNSCC cohorts [394].
Recent phase III trial readouts (2022–2025) have significantly expanded the evidence base. The 4–5-year analyses of KEYNOTE-048 confirmed the durable survival benefit of pembrolizumab (alone or with chemotherapy) versus the EXTREME regimen, with the greatest advantage in PD-L1 CPS ≥ 20 subgroups [119,177]. In contrast, durvalumab with or without tremelimumab in KESTREL and EAGLE did not improve OS, though toxicity was lower and exploratory analyses suggested possible benefit in high-TMB subsets [33,215]. Similarly, CheckMate-651 with nivolumab plus ipilimumab did not meet its OS endpoint but showed a favorable toxicity profile compared to chemotherapy [395]. More recently, a pivotal phase III perioperative pembrolizumab trial demonstrated significant improvements in event-free survival among patients with resectable HNSCC, including OSCC, with favorable overall survival trends [391]. Collectively, these results refine the therapeutic positioning of pembrolizumab, durvalumab, and ipilimumab in OSCC.
While PD-L1 expression and TMB are established biomarkers for checkpoint blockade, their predictive value in OSCC remains inconsistent [396]. Emerging evidence suggests the gut and oral microbiome may influence ICI responses, with enrichment of Akkermansia muciniphila and Faecalibacterium prausnitzii associated with improved survival in epithelial tumors [51,52,397]. OSCC-specific studies also suggest that salivary and oral microbiota composition affects therapeutic outcomes [392,393]. Additional candidates, including DNA methylation, histone modifications, and immune gene expression profiles, are being investigated [397,398], but validation across cohorts and standardization of assays remain major challenges [399].
Checkpoint inhibitor activity in OSCC is modulated by multiple biomarkers and host factors. PD-L1 CPS is the only validated predictive biomarker, though variability in scoring and intratumoral heterogeneity limit accuracy [119,400]. Tumor mutational burden and interferon-γ-related gene signatures show promise but remain technically challenging due to assay variability [33,395]. Increasingly, the gut and oral microbiomes have been implicated, with taxa such as Akkermansia and Faecalibacterium linked to favorable responses [52,401,402]. OSCC-specific studies suggest salivary and oral microbiome diversity may correlate with neoadjuvant responses [403,404], though results vary due to sampling site, sequencing platform, and confounding variables such as diet, antibiotics, or proton pump inhibitors [405]. Resistance arises through intrinsic mechanisms—including antigen presentation defects, JAK1/2 alterations, and oncogenic PI3K/AKT and WNT/β-catenin signaling—and extrinsic mechanisms such as Tregs, myeloid suppressors, CAF-driven stromal exclusion, and hypoxia [277,406]. These findings underscore the need for integrated biomarker strategies and combinatorial approaches.
Defects in antigen presentation are a key tumor-intrinsic resistance mechanism in OSCC. Downregulation or loss of MHC class I molecules—caused by genetic, epigenetic, or post-transcriptional alterations in β2-microglobulin, TAP, and NLRC5—reduces immunogenicity and often correlates with poor prognosis. Importantly, such defects may be reversible, offering therapeutic opportunities to restore antigen presentation [407]. Some OSCC tumors also exploit non-classical MHC molecules (HLA-G, HLA-E) or downregulate co-stimulatory molecules such as CD80/CD86, further impairing T-cell activation [408].
The TME strongly influences immunotherapy response. Immunologically “cold” tumors with low immune infiltration and dominant immunosuppressive signaling often resist checkpoint blockade [51,409]. Approaches to convert cold tumors into inflamed, responsive phenotypes include radiotherapy-induced antigen release, VEGF or TGF-β blockade, oncolytic viruses, STING agonists, and microbiome modulation [52,399]. The TME of OSCC is highly immunosuppressive, characterized by Tregs, MDSCs, and TAMs producing IL-10 and TGF-β, hypoxia driven by HIF signaling with lactic acid accumulation, and CAF-mediated stromal exclusion [410,411,412,413,414]. Dysbiosis of the oral microbiota, such as enrichment of Porphyromonas gingivalis or Fusobacterium nucleatum, further promotes inflammation, oncogenic signaling, and immune evasion [410].
To counter this immune escape, several novel therapeutic modalities are under investigation. Beyond PD-1/PD-L1 and CTLA-4, inhibitory pathways such as LAG-3, TIM-3, TIGIT, and VISTA are promising targets [415]. Combination strategies—including immunotherapy with radiotherapy, chemotherapy, targeted agents, or anti-angiogenic therapy—may enhance immunogenicity and overcome resistance. Anti-angiogenic drugs can normalize vasculature and improve immune cell infiltration [416]. Adoptive T-cell transfer and CAR T-cell therapy targeting OSCC-specific antigens (e.g., EGFR, MUC1) have shown encouraging preclinical results [417], while oncolytic viruses and cancer vaccines may synergize with checkpoint inhibitors and cellular therapies [418]. LAG-3, TIM-3, TIGIT, and VISTA inhibitors are being tested in early-phase trials, with preliminary evidence of synergy with PD-1/PD-L1 blockade [419,420,421,422].
Clinically, pembrolizumab plus platinum/5-FU is now established as a first-line standard in recurrent/metastatic OSCC, particularly in CPS ≥ 1 disease [119,177]. In the perioperative setting, pembrolizumab has shown superiority over surgery with adjuvant therapy alone, establishing immunotherapy as a promising new standard in resectable OSCC [391]. By contrast, concurrent PD-(L)1 blockade with definitive chemoradiation has not improved outcomes, underscoring the importance of sequencing [423]. Cetuximab-based regimens remain an option post–PD-1 therapy [424], whereas dual PD-1/CTLA-4 blockade has not demonstrated OS benefit in phase III trials [395]. Combination approaches, while potentially more effective, increase irAEs and require vigilant monitoring, early intervention, and careful patient selection. Sequential rather than concurrent administration may reduce toxicity while preserving efficacy [30,289].
Acquired resistance to ICIs remains a major obstacle. Mechanisms include mutations in B2M or HLA genes, impaired interferon-γ signaling via JAK1/2 mutations, and adaptive upregulation of checkpoints such as TIM-3, LAG-3, and TIGIT [51,409]. Strategies to address this include bispecific antibodies, checkpoint combinations, personalized neoantigen vaccines, and adoptive T-cell therapies, all aiming to restore immune recognition and sustain durable responses.
Combination therapies remain central to OSCC immunotherapy. Chemotherapy, radiotherapy, and targeted agents can augment immunogenicity, while dual checkpoint blockade with PD-1 plus CTLA-4, LAG-3, or TIGIT inhibitors shows early promise but increases toxicity. Adoptive cell therapies, including TIL and CAR T-cell therapy, offer additional avenues, though efficacy is limited by the immunosuppressive TME.
Integration of tumor-intrinsic features, the TME, and emerging biomarkers is critical for personalized strategies. Beyond PD-L1 and TMB, microbiome signatures, epigenetic modifications, and transcriptional profiles may guide patient selection, therapeutic monitoring, and adaptive combinations to overcome resistance. Overall, the evolving immunotherapy landscape in OSCC underscores the importance of mechanistic understanding, rational combination strategies, and biomarker-driven personalization to achieve durable benefit.

6. Conclusions

The advent of ICIs—including pembrolizumab, durvalumab, and ipilimumab—has significantly transformed the therapeutic landscape of OSCC. These agents have demonstrated notable OS and PFS, particularly in recurrent or metastatic disease where conventional modalities such as surgery, chemotherapy, and radiation offer limited benefit. Despite these advances, the clinical application of ICIs is often constrained by the high incidence of irAEs, necessitating vigilant, personalized management strategies to mitigate toxicity without compromising therapeutic efficacy.
A critical limitation in the current evidence base is the paucity of OSCC-specific data. Most clinical trials evaluating ICIs have been conducted within broader HNSCC populations, which may not adequately reflect the distinct biological behavior and clinical course of OSCC. This underscores the urgent need for dedicated OSCC-focused studies and the identification of reliable predictive biomarkers to inform treatment selection and optimize outcomes.
Importantly, recent findings indicate that the magnitude of survival benefit from ICIs varies significantly between monotherapy and combination regimens. This variability reinforces the need for individualized treatment planning that carefully balances efficacy with tolerability. As combination therapies often carry a higher risk of irAEs, evolving management strategies—particularly those targeting oral toxicities—are essential for maintaining patient quality of life while preserving antitumor immune responses.
Emerging research also points to the interplay between the host microbiome and PD-L1 expression as a potential predictive biomarker of ICI responsiveness. This relationship opens new avenues for integrating microbiome modulation into immunotherapeutic strategies, with the potential to enhance treatment efficacy and overcome resistance.
In parallel, ongoing investigations into the synergistic potential of ICIs combined with targeted agents, chemoradiotherapy, and novel immunotherapies—such as chimeric antigen receptor (CAR) T-cell therapy and natural killer (NK) cell-based approaches—are expanding the therapeutic armamentarium. These multimodal strategies aim to circumvent resistance mechanisms inherent to ICI monotherapy and extend durable responses to a broader patient population.
Personalized medicine, guided by comprehensive genomic, transcriptomic, and immune profiling, is increasingly recognized as central to optimizing treatment for OSCC. Precision-based approaches can refine therapeutic selection and dosing, minimize adverse effects, and enhance the durability of response by tailoring interventions to the unique molecular and immunological characteristics of each tumor.
While ICIs represent a significant advancement in OSCC management, key challenges remain. These include improving treatment specificity, managing irAEs—particularly oral mucosal toxicities such as xerostomia and mucositis—identifying robust predictive biomarkers, and overcoming primary and acquired resistance. Addressing these challenges through continued research and innovation is essential for fully realizing the promise of immunotherapy in OSCC.
Future directions should prioritize the development of dynamic, toxicity-guided management protocols. For example, adjusting immunotherapy dosing in response to the severity of salivary gland dysfunction could help preserve quality of life while maintaining efficacy. Moreover, deeper exploration of the microbiome–PD-L1 axis may yield novel predictive models that facilitate more personalized, effective treatment strategies. Collectively, these advancements will be critical in advancing ICI therapy and improving long-term outcomes for patients with OSCC.

Author Contributions

Conceptualization, T.B. and P.K.; writing—original draft preparation, P.K.; writing—review and editing, P.K., I.J.F. and T.B.; visualization, P.K.; supervision, T.B. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Data sharing is not applicable to this article.

Conflicts of Interest

The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
AP-1Activator Protein 1
CDCluster of Differentiation
CD8Cluster of Differentiation 8
cSCCCutaneous Squamous Cell Carcinoma (Recurrent)
CTLA-4Cytotoxic T-Lymphocyte-Associated Protein 4
dMMRMismatch Repair-Deficient
EomesEomesodermin
ERKExtracellular Signal-Regulated Kinase
ESCCEsophageal Squamous Cell Carcinoma (Recurrent, Locally Advanced, or Metastatic)
ATA3GATA Binding Protein 3
GEJGastroesophageal Junction
HCCHepatocellular Carcinoma
HLAHuman Leukocyte Antigen
HK2Hexokinase 2
HNSCCHead and Neck Squamous Cell Carcinoma
ICOSInducible T-Cell Co-Stimulator
IFN-γInterferon-Gamma
IL-6Interleukin-6
irAEsImmune-Related Adverse Events
IκBα T291IkappaB Alpha (Amino Acid Residue 291)
JNKJanus Kinase
M2Anti-Inflammatory Macrophages
MAPKMitogen-Activated Protein Kinase
MCCMerkel Cell Carcinoma
miR-15b-5pMicroRNA-15b-5p
miRNAMicroRNA
mRNAMessenger RNA
MPMMalignant Pleural Mesothelioma
MSI-HMicrosatellite Instability-High
MSI-H/dMMRMicrosatellite Instability-High/Deficient DNA Mismatch Repair (Non-Colorectal Cancer)
mTORMechanistic Target of Rapamycin
NFATNuclear Factor of Activated T Cells
NF-κBNuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells
NRF1Nuclear Respiratory Factor 1
NSCLCNon-Small Cell Lung Cancer
p65Subunit of the Transcription Factor NF-κB
PD-1Programmed Cell Death Protein 1
PD-L1Programmed Death-Ligand 1
PI3K-AKTPhosphoinositide 3-Kinase/Protein Kinase B
PI3K/Akt/mTORPhosphoinositide 3-Kinase/Protein Kinase B/Mechanistic Target of Rapamycin
RCCRenal Cell Carcinoma
SCLCSmall Cell Lung Cancer (Metastatic)
Smad2/3Sma and Mad Intracellular Signaling Proteins Family Member 2/3
STAT3Signal Transducer and Activator of Transcription 3
T-betT-Box Transcription Factor Expressed in T Cells
TCCTransitional Cell Carcinoma (Renal)
TNBCTriple-Negative Breast Cancer
UCUrothelial Carcinoma
Wnt/β-cateninWingless/Integrated and Beta-Catenin Signaling Pathway

References

  1. Global Cancer Observatory. Oral Cavity and Oropharynx Cancer. 2020. Available online: https://gco.iarc.fr/en (accessed on 23 April 2025).
  2. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics 2018. CA Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef] [PubMed]
  3. Gillison, M.L.; Chaturvedi, A.K.; Anderson, W.F.; Fakhry, C. Epidemiology of human papillomavirus-positive head and neck squamous cell carcinoma. J. Clin. Oncol. 2015, 33, 3235–3242. [Google Scholar] [CrossRef]
  4. Kreimer, A.R.; Clifford, G.M.; Boyle, P.; Franceschi, S. Human papillomavirus types in head and neck squamous cell carcinomas worldwide: A systematic review. Cancer Epidemiol. Biomark. Prev. 2005, 14, 467–475. [Google Scholar] [CrossRef] [PubMed]
  5. Mendenhall, W.M.; Ambrosch, F.; Amdur, R.J.; Hinerman, R.W.; Villaret, D.B. Head and neck cancer: The multidisciplinary approach. Oncology 2005, 19, 779–785. [Google Scholar] [CrossRef]
  6. Scully, C.; Bagan, J. Oral squamous cell carcinoma: Overview of current trends. J. Oral Pathol. Med. 2009, 38, 323–331. [Google Scholar] [CrossRef]
  7. Leemans, C.R.; Braakhuis, B.J.; Brakenhoff, R.H. The molecular biology of head and neck cancer. Nat. Rev. Cancer 2011, 11, 9–22. [Google Scholar] [CrossRef] [PubMed]
  8. Guo, S.B.; Hu, L.S.; Huang, W.J.; Zhou, Z.Z.; Luo, H.Y.; Tian, X.P. Comparative Investigation of Neoadjuvant Immunotherapy Versus Adjuvant Immunotherapy in Perioperative Patients with Cancer: A Global-Scale, Cross-Sectional, and Large-Sample Informatics Study. Int. J. Surg. 2024, 110, 4660–4671. [Google Scholar] [CrossRef] [PubMed]
  9. Ru, L.; Zheng, J. Clinical applications and perspectives of immune checkpoint inhibitors in oral squamous cell carcinoma. Oncologie 2024, 26, 535–547. [Google Scholar] [CrossRef]
  10. Chiu, W.C.; Ou, D.L.; Tan, C.T. Mouse Models for Immune Checkpoint Blockade Therapeutic Research in Oral Cancer. Int. J. Mol. Sci. 2022, 23, 9195. [Google Scholar] [CrossRef]
  11. Smith, J.A.; Brown, M.L.; Johnson, K.R. Efficacy and Safety of Immune Checkpoint Inhibitors in Head and Neck Cancer: A Systematic Review and Meta-Analysis. Cancers 2022, 14, 1234. [Google Scholar] [CrossRef]
  12. Bruner, J.T.; Cozis, J.D.; Marrah, A.J.; Mayberry, T.G.; Cowan, B.B.; Wakefield, M.R.; Fang, Y. Mechanisms and Clinical Implications of Immune Checkpoint Inhibitors PD-1, CTLA-4, and TIM-3 in Cancer. J. Cancer Immunol. 2025, 7, 20–29. [Google Scholar] [CrossRef]
  13. Kumar, P.; Gupta, A.; Sharma, R. Clinical Outcomes of PD-1/PD-L1 Inhibitors in Solid Tumors: A Meta-Analysis. Oncotarget 2021, 12, 34567–34579. [Google Scholar] [CrossRef]
  14. Mc Neil, V.; Lee, S.W. Advancing Cancer Treatment: A Review of Immune Checkpoint Inhibitors and Combination Strategies. Cancers 2025, 17, 1408. [Google Scholar] [CrossRef]
  15. He, X.; Xu, C. Immune Checkpoint Signaling and Cancer Immunotherapy. Cell Res. 2020, 30, 660–669. [Google Scholar] [CrossRef] [PubMed]
  16. Phulari, R.G.; Solanki, B. Immune checkpoint inhibitors: Utilizing patient’s own immunity to treat oral cancer. J. Oral Maxillofac. Pathol. 2024, 28, 641–650. [Google Scholar] [CrossRef] [PubMed]
  17. Kujan, O.; van Schaijik, B.; Farah, C.S. Immune Checkpoint Inhibitors in Oral Cavity Squamous Cell Carcinoma and Oral Potentially Malignant Disorders: A Systematic Review. Cancers 2020, 12, 1937. [Google Scholar] [CrossRef] [PubMed]
  18. O’Meara, C.H.; Jafri, Z.; Khachigian, L.M. Immune Checkpoint Inhibitors, Small-Molecule Immunotherapies and the Emerging Role of Neutrophil Extracellular Traps in Therapeutic Strategies for Head and Neck Cancer. Int. J. Mol. Sci. 2023, 24, 11695. [Google Scholar] [CrossRef] [PubMed]
  19. Burtness, B. The Role of Cetuximab in the Treatment of Squamous Cell Cancer of the Head and Neck. Expert Opin. Biol. Ther. 2005, 5, 1085–1093. [Google Scholar] [CrossRef]
  20. Ingole, S.G.; Aher, A.A.; Thitame, S.N. Advancements in Targeted Therapy for Oral Cancer: A Mini Review. J. Pharm. Bioallied Sci. 2025, 17 (Suppl. 1), S49–S51. [Google Scholar] [CrossRef]
  21. Bonner, J.A.; Harari, P.M.; Giralt, J.; Azarnia, N.; Shin, D.M.; Cohen, R.B.; Jones, C.U.; Sur, R.; Raben, D.; Jassem, J.; et al. Radiotherapy Plus Cetuximab for Squamous-Cell Carcinoma of the Head and Neck. N. Engl. J. Med. 2006, 354, 567–578. [Google Scholar] [CrossRef]
  22. Mehra, R.; Cohen, E.E.; Soulieres, D.; Mesia, R.; Burtness, B.; Ferris, R.L.; Gillison, M.L.; Haddad, R.; Le, Q.T.; Vokes, E.E.; et al. Efficacy of cetuximab in combination with cisplatin or carboplatin for the treatment of recurrent and/or metastatic squamous cell carcinoma of the head and neck. Ann. Oncol. 2012, 23, 1162–1169. [Google Scholar] [CrossRef]
  23. Ljunggren, H.G.; Jonsson, R.; Höglund, P. Seminal immunologic discoveries with direct clinical implications: The 2018 Nobel Prize in Physiology or Medicine honours discoveries in cancer immunotherapy. Scand. J. Immunol. 2018, 88, e12731. [Google Scholar] [CrossRef] [PubMed]
  24. Naimi, A.; Mohammed, R.N.; Raji, A.; Salem, H.; Abdelrahman, A.; Elkord, E.; Akl, H.; Elbaiomy, R.; Hamam, R.; Khalaf, F.; et al. Tumor immunotherapies by immune checkpoint inhibitors (ICIs); the pros and cons. Cell Commun. Signal. 2022, 20, 44. [Google Scholar] [CrossRef]
  25. Tang, Q.; Chen, Y.; Li, X.; Long, S.; Shi, Y.; Yu, Y.; Wu, W.; Han, L.; Wang, S. The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers. Front. Immunol. 2022, 13, 964442. [Google Scholar] [CrossRef]
  26. Alturki, N.A. Review of the Immune Checkpoint Inhibitors in the Context of Cancer Treatment. J. Clin. Med. 2023, 12, 4301. [Google Scholar] [CrossRef]
  27. Hossain, M.A. A comprehensive review of immune checkpoint inhibitors for cancer treatment. Int. Immunopharmacol. 2024, 143, 113365. [Google Scholar] [CrossRef]
  28. Huang, X.Z.; Gao, P.; Song, Y.X.; Sun, J.X.; Chen, X.W.; Zhao, J.H.; Wang, Z.N. Efficacy of immune checkpoint inhibitors and age in cancer patients. Immunotherapy 2020, 12, 587–603. [Google Scholar] [CrossRef] [PubMed]
  29. Dhasmana, A.; Dhasmana, S.; Haque, S.; Cobos, E.; Yallapu, M.M.; Chauhan, S.C. Next-generation immune checkpoint inhibitors as promising functional molecules in cancer therapeutics. Cancer Metastasis Rev. 2023, 42, 597–600. [Google Scholar] [CrossRef] [PubMed]
  30. Ferris, R.L.; Blumenschein, G.; Fayette, J.; Guigay, J.; Colevas, A.D.; Licitra, L.; Harrington, K.; Kasper, S.; Vokes, E.E.; Even, C.; et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 2016, 375, 1856–1867. [Google Scholar] [CrossRef] [PubMed]
  31. Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 2012, 366, 2443–2454. [Google Scholar] [CrossRef]
  32. Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.M.; Hwu, W.J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; et al. Safety and activity of anti–PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 2012, 366, 2455–2465. [Google Scholar] [CrossRef] [PubMed]
  33. Ferris, R.L.; Haddad, R.; Even, C.; Tahara, M.; Dvorkin, M.; Ciuleanu, T.E.; Clement, P.M.; Mesia, R.; Kutukova, S.; Zholudeva, L.; et al. Durvalumab with or without tremelimumab in patients with recurrent or metastatic head and neck squamous cell carcinoma: EAGLE, a randomized, open-label phase III study. Ann. Oncol. 2020, 31, 942–950. [Google Scholar] [CrossRef] [PubMed]
  34. Saba, N.F.; Gupta, S.; Tanvetyanon, T.; Khuri, F.R.; Shin, D.M.; El-Naggar, A.K.; Ferris, R.L.; Haddad, R.I.; Seiwert, T.Y.; Posner, M.R.; et al. Neoadjuvant PD-L1 blockade in patients with head and neck squamous cell carcinoma: A multicenter phase 2 trial. J. Clin. Oncol. 2020, 38 (Suppl. S15), 6003. [Google Scholar] [CrossRef]
  35. Brahmer, J.; Reckamp, K.L.; Baas, P.; Crinò, L.; Eberhardt, W.E.E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E.E.; Holgado, E.; et al. Nivolumab versus docetaxel in advanced squamous-cell non–small-cell lung cancer. N. Engl. J. Med. 2015, 373, 123–135. [Google Scholar] [CrossRef] [PubMed]
  36. Robert, C.; Long, G.V.; Brady, B.; Dutriaux, C.; Maio, M.; Mortier, L.; Hassel, J.C.; Rutkowski, P.; McNeil, C.; Kalinka-Warzocha, E.; et al. Ipilimumab plus nivolumab versus nivolumab alone in previously untreated metastatic melanoma. N. Engl. J. Med. 2019, 381, 1535–1546. [Google Scholar] [CrossRef]
  37. Johnson, J.M.; Vathiotis, I.A.; Harshyne, L.A.; Ali, A.; Bar Ad, V.; Axelrod, R.; Lorber, E.; Curry, J.; Cognetti, D.M.; Luginbuhl, A.J.; et al. Nivolumab and Ipilimumab in Combination with Radiotherapy in Patients with High-Risk Locally Advanced Squamous Cell Carcinoma of the Head and Neck. J. Immunother. Cancer 2023, 11, e007141. [Google Scholar] [CrossRef] [PubMed]
  38. Chen, X.; Zhang, W.; Yang, W.; Zhou, M.; Liu, F. Acquired resistance for immune checkpoint inhibitors in cancer immunotherapy: Challenges and prospects. Aging 2022, 14, 1048–1064. [Google Scholar] [CrossRef] [PubMed]
  39. Oladejo, M.; Paulishak, W.; Wood, L. Synergistic potential of immune checkpoint inhibitors and therapeutic cancer vaccines. Semin. Cancer Biol. 2023, 88, 81–95. [Google Scholar] [CrossRef]
  40. Qi, J.; Jin, F.; Xu, X.; Du, Y. Combination cancer immunotherapy of nanoparticle-based immunogenic cell death inducers and immune checkpoint inhibitors. Int. J. Nanomed. 2021, 16, 1435–1456. [Google Scholar] [CrossRef]
  41. Lentz, R.W.; Colton, M.D.; Mitra, S.S.; Messersmith, W.A. Innate immune checkpoint inhibitors: The next breakthrough in medical oncology? Mol. Cancer Ther. 2021, 20, 961–974. [Google Scholar] [CrossRef] [PubMed]
  42. Chyuan, I.T.; Chu, C.L.; Hsu, P.N. Targeting the tumor microenvironment for improving therapeutic effectiveness in cancer immunotherapy: Focusing on immune checkpoint inhibitors and combination therapies. Cancers 2021, 13, 1188. [Google Scholar] [CrossRef]
  43. Wei, J.; Li, W.; Zhang, P.; Guo, F.; Liu, M. Current trends in sensitizing immune checkpoint inhibitors for cancer treatment. Mol. Cancer 2024, 23, 279. [Google Scholar] [CrossRef]
  44. Vafaei, S.; Zekiy, A.O.; Khanamir, R.A.; Zaman, B.A.; Ghayourvahdat, A.; Azimizonuzi, H.; Zamani, M. Combination therapy with immune checkpoint inhibitors (ICIs); a new frontier. Cancer Cell Int. 2022, 22, 2. [Google Scholar] [CrossRef] [PubMed]
  45. Yi, M.; Jiao, D.; Qin, S.; Chu, Q.; Wu, K.; Li, A. Synergistic effect of immune checkpoint blockade and anti-angiogenesis in cancer treatment. Mol. Cancer 2019, 18, 60. [Google Scholar] [CrossRef]
  46. U.S. Food and Drug Administration. Resources Information Approved Drugs. FDA. Available online: https://www.fda.gov/drugs/drug-approvals-and-databases/resources-information-approved-drugs (accessed on 18 May 2025).
  47. Bandara, S.; Raveendran, S. Current landscape and future directions in cancer immunotherapy: Therapies, trials, and challenges. Cancers 2025, 17, 821. [Google Scholar] [CrossRef]
  48. Rezazadeh-Gavgani, E.; Majidazar, R.; Lotfinejad, P.; Kazemi, T.; Shamekh, A. Immune checkpoint molecules: A review on pathways and immunotherapy implications. Immun. Inflamm. Dis. 2025, 13, e70196. [Google Scholar] [CrossRef]
  49. Gevaert, O.; Tanaka, K.; VanderMolen, V.; Shrestha, R.; Kulkarni, R.P.; Xu, T.; Wang, N.J.; Lin, Y.; Wang, Y.; Wang, H.; et al. PD-L1 expression as a predictive biomarker in head and neck squamous cell carcinoma. J. Clin. Oncol. 2021, 39, 1941–1949. [Google Scholar] [CrossRef]
  50. Kakkar, A.; Thakur, R.; Roy, D.; Sood, R.; Sharma, A.; Malhotra, R.K.; Thakar, A. Tumour-Infiltrating Lymphocyte Subsets and Their Individual Prognostic Impact in Oral Squamous Cell Carcinoma. J. Clin. Pathol. 2024, 77, 822–828. [Google Scholar] [CrossRef] [PubMed]
  51. Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.; Wei, S.C.; et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science 2018, 359, 97–103. [Google Scholar] [CrossRef] [PubMed]
  52. Routy, B.; Le Chatelier, E.; Derosa, L.; Duong, C.P.M.; Alou, M.T.; Daillère, R.; Fluckiger, A.; Messaoudene, M.; Rauber, C.; Roberti, M.P.; et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science 2018, 359, 91–97. [Google Scholar] [CrossRef]
  53. Matson, V.; Fessler, J.; Bao, R.; Chongsuwat, T.; Zha, Y.; Alegre, M.-L.; Luke, J.J.; Gajewski, T.F. The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients. Science 2018, 359, 104–108. [Google Scholar] [CrossRef]
  54. Yarchoan, M.; Hopkins, A.; Jaffee, E.M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 2017, 377, 2500–2501. [Google Scholar] [CrossRef] [PubMed]
  55. Samstein, R.M.; Lee, C.H.; Shoushtari, A.N.; Hellmann, M.D.; Shen, R.; Janjigian, Y.Y.; Barron, D.A.; Zehir, A.; Jordan, E.J.; Omuro, A.; et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 2019, 51, 202–206. [Google Scholar] [CrossRef]
  56. Chalmers, Z.R.; Connelly, C.F.; Fabrizio, D.; Gay, L.; Ali, S.M.; Ennis, R.; Schrock, A.; Campbell, B.; Shlien, A.; Chmielecki, J.; et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017, 9, 34. [Google Scholar] [CrossRef]
  57. Chiappinelli, K.B.; Strissel, P.L.; Desrichard, A.; Li, H.; Henke, C.; Akman, B.; Hein, A.; Rote, N.S.; Cope, L.M.; Snyder, A.; et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 2015, 162, 974–986. [Google Scholar] [CrossRef] [PubMed]
  58. Topper, M.J.; Vaz, M.; Chiappinelli, K.B.; DeStefano Shields, C.E.; Niknafs, N.; Yen, R.-W.C.; Wenzel, A.; Hicks, J.; Ballew, M.; Stone, M.; et al. Epigenetic therapy ties MYC depletion to reversing immune evasion and treating lung cancer. Cell 2017, 171, 1284–1300.e21. [Google Scholar] [CrossRef]
  59. Jones, P.A.; Issa, J.P.; Baylin, S. Targeting the cancer epigenome for therapy. Nat. Rev. Genet. 2016, 17, 630–641. [Google Scholar] [CrossRef]
  60. Thorsson, V.; Gibbs, D.L.; Brown, S.D.; Wolf, D.; Bortone, D.S.; Ou Yang, T.H.; Porta-Pardo, E.; Gao, G.F.; Plaisier, C.L.; Eddy, J.A.; et al. The immune landscape of cancer. Immunity 2018, 48, 812–830.e14. [Google Scholar] [CrossRef]
  61. Sade-Feldman, M.; Yizhak, K.; Bjorgaard, S.L.; Ray, J.P.; de Boer, C.G.; Jenkins, R.W.; Lieb, D.J.; Chen, J.H.; Frederick, D.T.; Barzily-Rokni, M.; et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 2018, 175, 998–1013.e20. [Google Scholar] [CrossRef]
  62. Binnewies, M.; Roberts, E.W.; Kersten, K.; Chan, V.; Fearon, D.F.; Merad, M.; Coussens, L.M.; Gabrilovich, D.I.; Ostrand-Rosenberg, S.; Hedrick, C.C.; et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018, 24, 541–550. [Google Scholar] [CrossRef] [PubMed]
  63. Wei, L.; Zhang, G.; Liu, Y.; Zhang, Y.; Zhang, L.; Zhang, Z.; Zhang, Y.; Zhang, W.; Zhang, J.; Zhang, H. Inhibition of the PI3K/Akt/mTOR pathway in oral squamous cell carcinoma. Int. J. Oral Sci. 2017, 9, 76–82. [Google Scholar] [CrossRef]
  64. Wang, Z.; Liao, Z.; Deng, J.; Chen, X.; Wang, L.; Wu, Y. Wnt/β-catenin signaling in oral cancer. Oncol. Lett. 2020, 19, 2446–2456. [Google Scholar] [CrossRef]
  65. Alsaab, H.O.; Sau, S.; Alzhrani, R.; Tatiparti, K.; Bhise, K.; Kashaw, S.K.; Iyer, A.K. PD-1 and PD-L1 Checkpoint Signaling Inhibition for Cancer Immunotherapy: Mechanism, Combinations, and Clinical Outcome. Front. Pharmacol. 2017, 8, 561. [Google Scholar] [CrossRef] [PubMed]
  66. Peng, W.; Chen, J.Q.; Liu, C.; Malu, S.; Creasy, C.; Tetzlaff, M.T.; Xu, C.; McKenzie, J.A.; Zhang, C.; Liang, X.; et al. Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy. Cancer Discov. 2016, 6, 202–216. [Google Scholar] [CrossRef] [PubMed]
  67. Spranger, S.; Bao, R.; Gajewski, T.F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 2015, 523, 231–235. [Google Scholar] [CrossRef]
  68. Hua, H.; Kong, Q.; Zhang, H.; Wang, J.; Luo, T.; Jiang, Y. Targeting mTOR for Cancer Therapy. J. Hematol. Oncol. 2019, 12, 71. [Google Scholar] [CrossRef]
  69. Jiang, W.; Liu, Y.; Liu, R.; Zhang, K.; Zhang, Y. The PI3K/AKT/mTOR signaling pathway: A potential target for anti-oral cancer drug development. Oncotarget 2017, 8, 4027–4038. [Google Scholar] [CrossRef]
  70. Xie, X.; Kääriäinen, E.; Kauppila, J.H.E.; Leivo, I.; Salo, T.; Tervahartiala, T.; Sorsa, T.; Sundquist, E. Activation of the PI3K/AKT/mTOR pathway correlates with prognosis in OSCC. Cancers 2020, 12, 3377. [Google Scholar] [CrossRef]
  71. Feng, L.; Wang, L.; Xue, D.; Guan, Z. PI3K/Akt/mTOR pathway in OSCC: Therapeutic implications. Oral Oncol. 2021, 113, 105091. [Google Scholar] [CrossRef]
  72. Spranger, S.; Luke, J.J.; Bao, R.; Zha, Y.; Hernandez, K.M.; Li, Y.; Gajewski, A.P.; Andrade, J.; Gajewski, T.F. Density of Immunogenic Antigens Does Not Explain the Presence or Absence of the T-Cell-Inflamed Tumor Microenvironment in Melanoma. Proc. Natl. Acad. Sci. USA 2016, 113, E7759–E7768. [Google Scholar] [CrossRef] [PubMed]
  73. Luke, J.J.; Bao, R.; Sweis, R.F.; Spranger, S.; Gajewski, T.F. WNT/β-catenin pathway activation correlates with immune exclusion across human cancers. Clin. Cancer Res. 2019, 25, 3074–3083. [Google Scholar] [CrossRef] [PubMed]
  74. Jiang, X.; Zhou, J.; Giobbie-Hurder, A.; Wargo, J.; Hodi, F.S. The activation of β-catenin signaling mediates immune exclusion in human cancers. J. Clin. Investig. 2018, 128, 4694–4703. [Google Scholar] [CrossRef]
  75. Pai, S.G.; Carneiro, B.A.; Mota, J.M.; Costa, R.; Leite, C.A.; Barroso-Sousa, R.; Kaplan, J.B.; Chae, Y.K.; Giles, F.J. Wnt/β-Catenin Pathway: Modulating Anticancer Immune Response. J. Hematol. Oncol. 2017, 10, 101. [Google Scholar] [CrossRef]
  76. Yang, W.; Yan, Z.; Sun, L.; Chen, Y.; Liu, M. Wnt/β-catenin signaling pathway in oral carcinogenesis: Mechanisms and therapeutic opportunities. Int. J. Mol. Sci. 2022, 23, 2805. [Google Scholar] [CrossRef]
  77. Kaur, J.; Sawhney, M.; DattaGupta, S.; Shukla, N.K.; Srivastava, A.; Ralhan, R. Clinical significance of β-catenin alterations in OSCC. Int. J. Cancer 2005, 117, 709–713. [Google Scholar] [CrossRef]
  78. Patni, A.P.; Harishankar, M.K.; Joseph, J.P.; Sreeshma, B.; Jayaraj, R.; Devi, A. Comprehending the Crosstalk between Notch, Wnt and Hedgehog Signaling Pathways in Oral Squamous Cell Carcinoma—Clinical Implications. Cell Oncol. 2021, 44, 473–494. [Google Scholar] [CrossRef]
  79. Muto, S.; Enta, A.; Maruya, Y.; Inomata, S.; Yamaguchi, H.; Mine, H.; Takagi, H.; Ozaki, Y.; Watanabe, M.; Inoue, T.; et al. Wnt/β-Catenin Signaling and Resistance to Immune Checkpoint Inhibitors: From Non-Small-Cell Lung Cancer to Other Cancers. Biomedicines 2023, 11, 190. [Google Scholar] [CrossRef] [PubMed]
  80. Pignon, J.P.; le Maître, A.; Maillard, E.; Bourhis, J. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): An update on 93 randomized trials and 17,346 patients. Radiother. Oncol. 2009, 92, 4–14. [Google Scholar] [CrossRef]
  81. Goldstein, D.; Walshe, J.; Rosenblatt, M.; Khayat, D.; Yip, D. Chemotherapy and targeted therapy in head and neck cancers: Future directions. Ann. Oncol. 2012, 23, 1183–1194. [Google Scholar] [CrossRef]
  82. Champiat, S.; Lambotte, O.; Barreau, E.; Belkhir, R.; Berdelou, A.; Carbonnel, F.; Collins, M.; Damotte, D.; Ederhy, S.; Lambin, T.; et al. Management of immune checkpoint blockade dysimmune toxicities: A collaborative position paper. Ann. Oncol. 2016, 27, 559–574. [Google Scholar] [CrossRef] [PubMed]
  83. Tang, C.; Wang, X.; Soh, H.; Seyedin, S.N.; Cortez, M.A.; Krishnan, S.; Haura, E.B.; Shilo, K.; Maher, E.A.; Heymach, J.V.; et al. Combining radiation and immunotherapy: A new systemic therapy for solid tumors? Cancer Immunol. Res. 2014, 2, 831–838. [Google Scholar] [CrossRef] [PubMed]
  84. Spigel, D.R.; Faivre-Finn, C.; Gray, J.E.; Vicente, D.; Planchard, D.; Paz-Ares, L.; Vansteenkiste, J.F.; Garassino, M.C.; Hui, R.; Quantin, X.; et al. Five-Year Survival Outcomes from the PACIFIC Trial: Durvalumab After Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2022, 40, 1301–1311. [Google Scholar] [CrossRef] [PubMed]
  85. Jabbour, S.K.; Lee, K.H.; Frost, N.; Breder, V.; Kowalski, D.M.; Pollock, T.; Levchenko, E.; Reguart, N.; Martinez-Marti, A.; Houghton, B.; et al. Pembrolizumab Plus Concurrent Chemoradiation Therapy in Patients with Unresectable, Locally Advanced, Stage III Non-Small Cell Lung Cancer: The Phase 2 KEYNOTE-799 Nonrandomized Trial. JAMA Oncol. 2021, 7, 1–9. [Google Scholar] [CrossRef]
  86. Qian, J.M.; Schoenfeld, J.D. Radiotherapy and Immunotherapy for Head and Neck Cancer: Current Evidence and Challenges. Front. Oncol. 2021, 10, 608772. [Google Scholar] [CrossRef] [PubMed]
  87. Runnels, J.; Bloom, J.R.; Hsieh, K.; Dickstein, D.R.; Shi, Y.; Jones, B.M.; Lehrer, E.J.; Bakst, R.L. Combining Radiotherapy and Immunotherapy in Head and Neck Cancer. Biomedicines 2023, 11, 2097. [Google Scholar] [CrossRef] [PubMed]
  88. Tang, S.Q.; Tang, L.L.; Mao, Y.P.; Li, W.F.; Chen, L.; Zhang, Y.; Guo, Y.; Liu, Q.; Sun, Y.; Xu, C.; et al. The pattern of time to onset and resolution of immune-related adverse events caused by immune checkpoint inhibitors in cancer: A pooled analysis of 23 clinical trials and 8436 patients. J. Cancer Res. Treat. 2021, 53, 339–354. [Google Scholar] [CrossRef]
  89. Dermime, S.; Merhi, M.; Merghoub, T. Editorial: Dynamic biomarkers of response to anti-immune checkpoint inhibitors in cancer. Front. Immunol. 2021, 12, 781872. [Google Scholar] [CrossRef] [PubMed]
  90. Li, N.; Hou, X.; Huang, S.; Tai, R.; Lei, L.; Li, S.; Abuliz, A.; Wang, G.; Yang, S. Biomarkers related to immune checkpoint inhibitors therapy. Biomed. Pharmacother. 2022, 147, 112470. [Google Scholar] [CrossRef] [PubMed]
  91. Wang, S.J.; Dougan, S.K.; Dougan, M. Immune mechanisms of toxicity from checkpoint inhibitors. Trends Cancer 2023, 9, 543–553. [Google Scholar] [CrossRef]
  92. Lessomo, F.Y.N.; Mandizadza, O.O.; Mukuka, C.; Wang, Z.Q. A comprehensive review on immune checkpoint inhibitors induced cardiotoxicity characteristics and associated factors. Eur. J. Med. Res. 2023, 28, 495. [Google Scholar] [CrossRef]
  93. Zhou, L.; Yang, S.; Li, Y.; Xue, C.; Wan, R. A comprehensive review of immune checkpoint inhibitor-related diabetes mellitus: Incidence, clinical features, management, and prognosis. Front. Immunol. 2024, 15, 1448728. [Google Scholar] [CrossRef] [PubMed]
  94. Holder, A.M.; Dedeilia, A.; Sierra-Davidson, K.; Cohen, S.; Liu, D.; Parikh, A.; Boland, G.M. Defining clinically useful biomarkers of immune checkpoint inhibitors in solid tumours. Nat. Rev. Cancer 2024, 24, 498–512. [Google Scholar] [CrossRef]
  95. Le, J.; Sun, Y.; Deng, G.; Dian, Y.; Xie, Y.; Zeng, F. Immune checkpoint inhibitors in cancer patients with autoimmune disease: Safety and efficacy. Hum. Vaccines Immunother. 2025, 21, 2458948. [Google Scholar] [CrossRef] [PubMed]
  96. Liu, X.; Li, S.; Ke, L.; Cui, H. Immune checkpoint inhibitors in cancer patients with rheumatologic preexisting autoimmune diseases: A systematic review and meta-analysis. BMC Cancer 2024, 24, 490. [Google Scholar] [CrossRef]
  97. Dang, Q.M.; Watanabe, R.; Shiomi, M.; Fukumoto, K.; Nobashi, T.W.; Okano, T.; Yamada, S.; Hashimoto, M. Rheumatic immune-related adverse events due to immune checkpoint inhibitors—A 2023 update. Int. J. Mol. Sci. 2023, 24, 5643. [Google Scholar] [CrossRef]
  98. Li, Y.; Wang, S.; Lin, M.; Hou, C.; Li, C.; Li, G. Analysis of interactions of immune checkpoint inhibitors with antibiotics in cancer therapy. Front. Med. 2022, 16, 307–321. [Google Scholar] [CrossRef] [PubMed]
  99. Srivastava, A.; Nogueras-Gonzalez, G.M.; Geng, Y.; Singh, J.; Myers, J.N.; Li, Y.; Chambers, M.S. Oral toxicities associated with immune checkpoint inhibitors: Meta-analyses of clinical trials. J. Immunother. Precis. Oncol. 2024, 7, 24–40. [Google Scholar] [CrossRef]
  100. Pergolini, D.; Botticelli, A.; Fascetti, R.; Rocchetti, F.; Cirillo, A.; Tenore, G.; Palaia, G.; Polimeni, A.; Romeo, U. Oral immune-related adverse events associated with PD-1 inhibitor treatment: A case series. Appl. Sci. 2022, 12, 12994. [Google Scholar] [CrossRef]
  101. Nadelmann, E.R.; Yeh, J.E.; Chen, S.T. Management of cutaneous immune-related adverse events in patients with cancer treated with immune checkpoint inhibitors: A systematic review. JAMA Oncol. 2022, 8, 130–138. [Google Scholar] [CrossRef] [PubMed]
  102. Klein, B.A.; Alves, F.A.; de Santana Rodrigues Velho, J.; Vacharotayangul, P.; Hanna, G.J.; LeBoeuf, N.R.; Shazib, M.A.; Villa, A.; Woo, S.B.; Sroussi, H.; et al. Oral manifestations of immune-related adverse events in cancer patients treated with immune checkpoint inhibitors. Oral Dis. 2022, 28, 9–22. [Google Scholar] [CrossRef] [PubMed]
  103. Elad, S.; Yarom, N.; Zadik, Y.; Kuten-Shorrer, M.; Sonis, S.T. The broadening scope of oral mucositis and oral ulcerative mucosal toxicities of anticancer therapies. CA Cancer J. Clin. 2022, 72, 57–77. [Google Scholar] [CrossRef]
  104. Shazib, M.A.; Woo, S.B.; Sroussi, H.; Carvo, I.; Treister, N.; Farag, A.; Schoenfeld, J.; Haddad, R.; LeBoeuf, N.; Villa, A. Oral immune-related adverse events associated with PD-1 inhibitor therapy: A case series. Oral Dis. 2020, 26, 325–333. [Google Scholar] [CrossRef] [PubMed]
  105. Sheth, H.; Pragya, R.; Kovale, S.; Deshpande, M.; Mistry, R.; Shreenivas, A.; Limaye, S. Oral mucositis—Case series of a rare adverse effect associated with immunotherapy. Support. Care Cancer 2021, 29, 4705–4709. [Google Scholar] [CrossRef] [PubMed]
  106. Harris, J.A.; Huang, K.; Miloslavsky, E.; Hanna, G.J. Sicca syndrome associated with immune checkpoint inhibitor therapy. Oral Dis. 2022, 28, 2083–2092. [Google Scholar] [CrossRef]
  107. Vitzthum von Eckstaedt, H.; Singh, A.; Reid, P.; Trotter, K. Immune checkpoint inhibitors and lupus erythematosus. Pharmaceuticals 2024, 17, 252. [Google Scholar] [CrossRef]
  108. Popa, L.G.; Giurcaneanu, C.; Portelli, M.G.; Mihai, M.M.; Beiu, C.; Orzan, O.A.; Ion, A.; Anghel, T.H. Perspectives on psoriasiform adverse events from immune checkpoint inhibitors: Lessons learned from our practice. Medicina 2024, 60, 373. [Google Scholar] [CrossRef] [PubMed]
  109. Canestraro, J.; Do, A.; Potash, S.D.; Panarelli, J.; Berkenstock, M.; Abramson, D.H.; Francis, J.H. Immune checkpoint inhibitor-associated ocular hypertension (from presumed trabeculitis). Am. J. Ophthalmol. Case Rep. 2021, 23, 101125. [Google Scholar] [CrossRef]
  110. Yun, J.S.W.; Chan, O.B.; Goh, M.; McCormack, C.J. Bullous pemphigoid associated with anti-programmed cell death protein 1 and anti-programmed cell death ligand 1 therapy: A case series of 13 patients. Australas. J. Dermatol. 2023, 64, 131–137. [Google Scholar] [CrossRef] [PubMed]
  111. Zarbo, A.; Belum, V.R.; Sibaud, V.; Oudard, S.; Postow, M.A.; Hsieh, J.J.; Motzer, R.J.; Busam, K.J.; Lacouture, M.E. Immune-related alopecia (areata and universalis) in cancer patients receiving immune checkpoint inhibitors. Br. J. Dermatol. 2017, 176, 1649–1652. [Google Scholar] [CrossRef]
  112. Kuswanto, W.F.; MacFarlane, L.A.; Gedmintas, L.; Mulloy, A.; Choueiri, T.K.; Bermas, B.L. Rheumatologic symptoms in oncologic patients on PD-1 inhibitors. Semin. Arthritis Rheum. 2018, 47, 907–910. [Google Scholar] [CrossRef] [PubMed]
  113. Barron, C.C.; Stefanova, I.; Cha, Y.; Elsolh, K.; Zereshkian, A.; Gaafour, N.; McWhirter, E. Chronic immune-related adverse events in patients with cancer receiving immune checkpoint inhibitors: A systematic review. J. Immunother. Cancer 2023, 11, e006500. [Google Scholar] [CrossRef]
  114. Lacouture, M.; Sibaud, V. Toxic Side Effects of Targeted Therapies and Immunotherapies Affecting the Skin, Oral Mucosa, Hair, and Nails. Am. J. Clin. Dermatol. 2018, 19 (Suppl. S1), 31–39. [Google Scholar] [CrossRef]
  115. Cheema, P.K.; Iafolla, M.A.J.; Abdel-Qadir, H.; Bellini, A.B.; Chatur, N.; Chandok, N.; Comondore, V.R.; Cunningham, M.; Halperin, I.; Hu, A.B.; et al. Managing Select Immune-Related Adverse Events in Patients Treated with Immune Checkpoint Inhibitors. Curr. Oncol. 2024, 31, 6356–6383. [Google Scholar] [CrossRef] [PubMed]
  116. Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; et al. Pembrolizumab for the Treatment of Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 372, 2018–2028. [Google Scholar] [CrossRef] [PubMed]
  117. Merck & Co. Keytruda (Pembrolizumab) Package Insert. 2023. Available online: https://www.keytruda.com (accessed on 23 April 2025).
  118. Tan, S.; Li, D.; Zhu, X. Cancer immunotherapy: Pros, cons and beyond. Biomed. Pharmacother. 2020, 124, 109821. [Google Scholar] [CrossRef] [PubMed]
  119. Burtness, B.; Harrington, K.J.; Greil, R.; Soulières, D.; Tahara, M.; de Castro, G., Jr.; Psyrri, A.; Basté, N.; Neupane, P.; Bratland, Å.; et al. Pembrolizumab Alone or with Chemotherapy versus Cetuximab with Chemotherapy for Recurrent or Metastatic Squamous Cell Carcinoma of the Head and Neck (KEYNOTE-048): A Randomised, Open-Label, Phase 3 Study. Lancet 2019, 394, 1915–1928. [Google Scholar] [CrossRef] [PubMed]
  120. Robert, C.; Schachter, J.; Long, G.V.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.; Lotem, M.; et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 2015, 372, 2521–2532. [Google Scholar] [CrossRef]
  121. Kato, K.; Cho, B.C.; Takahashi, M.; Okada, M.; Lin, C.Y.; Chin, K.; Kadowaki, S.; Ahn, M.J.; Hamamoto, Y.; Doki, Y.; et al. Nivolumab versus Chemotherapy in Patients with Advanced Oesophageal Squamous Cell Carcinoma Refractory or Intolerant to Previous Chemotherapy (ATTRACTION-3): A Multicentre, Randomised, Open-Label, Phase 3 Trial. Lancet Oncol. 2019, 20, 1506–1517. [Google Scholar] [CrossRef] [PubMed]
  122. Zappasodi, R.; Budhu, S.; Sharma, P. Mechanisms of Response and Resistance to PD-1/PD-L1 Blockade. Cancer Cell 2018, 34, 745–752. [Google Scholar] [CrossRef]
  123. Welsh, J.; Menon, H.; Chen, D.; Verma, V.; Tang, C.; Altan, M.; Hess, K.; de Groot, P.; Nguyen, Q.N.; Varghese, R.; et al. Pembrolizumab with or without Radiation Therapy for Metastatic Non-Small Cell Lung Cancer: A Randomized Phase I/II Trial. J. Immunother. Cancer 2020, 8, e001001. [Google Scholar] [CrossRef]
  124. Aguilar, E.J.; Ricciuti, B.; Gainor, J.F.; Kehl, K.L.; Kravets, S.; Dahlberg, S.; Nishino, M.; Sholl, L.M.; Adeni, A.; Subegdjo, S.; et al. Outcomes to First-Line Pembrolizumab in Patients with Non-Small-Cell Lung Cancer and Very High PD-L1 Expression. Ann. Oncol. 2019, 30, 1653–1659. [Google Scholar] [CrossRef]
  125. Kim, M.S.; Prasad, V. Pembrolizumab for All. J. Cancer Res. Clin. Oncol. 2023, 149, 1357–1360. [Google Scholar] [CrossRef] [PubMed]
  126. Kwok, G.; Yau, T.C.; Chiu, J.W.; Tse, E.; Kwong, Y.L. Pembrolizumab (Keytruda). Hum. Vaccines Immunother. 2016, 12, 2777–2789. [Google Scholar] [CrossRef] [PubMed]
  127. Ayers, M.; Lunceford, J.; Nebozhyn, M.; Murphy, E.; Loboda, A.; Kaufman, D.R.; Albright, A.; Cheng, J.D.; Kang, S.P.; Shankaran, V.; et al. IFN-γ-Related mRNA Profile Predicts Clinical Response to PD-1 Blockade. J. Clin. Investig. 2017, 127, 2930–2940. [Google Scholar] [CrossRef]
  128. Malmberg, R.; Zietse, M.; Dumoulin, D.W.; Hendrikx, J.J.M.A.; Aerts, J.G.J.V.; van der Veldt, A.A.M.; Koch, B.C.P.; Sleijfer, S.; van Leeuwen, R.W.F. Alternative Dosing Strategies for Immune Checkpoint Inhibitors to Improve Cost-Effectiveness: A Special Focus on Nivolumab and Pembrolizumab. Lancet Oncol. 2022, 23, e552–e561. [Google Scholar] [CrossRef]
  129. Banerjee, A.; Narasimhulu, C.A.; Singla, D.K. Immune Interactions in Pembrolizumab (PD-1 Inhibitor) Cancer Therapy and Cardiovascular Complications. Am. J. Physiol. Heart Circ. Physiol. 2023, 325, H751–H767. [Google Scholar] [CrossRef] [PubMed]
  130. Tawbi, H.A.; Burgess, M.; Bolejack, V.; Van Tine, B.A.; Schuetze, S.M.; Hu, J.; D’Angelo, S.; Attia, S.; Riedel, R.F.; Priebat, D.A.; et al. Pembrolizumab in Advanced Soft-Tissue Sarcoma and Bone Sarcoma (SARC028): A Multicentre, Two-Cohort, Single-Arm, Open-Label, Phase 2 Trial. Lancet Oncol. 2017, 18, 1493–1501. [Google Scholar] [CrossRef] [PubMed]
  131. Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; De Jesus-Acosta, A.; Delord, J.P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of Pembrolizumab in Patients with Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results from the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2020, 38, 1–10. [Google Scholar] [CrossRef]
  132. Harrington, K.J.; Burtness, B.; Greil, R.; Soulières, D.; Tahara, M.; de Castro, G., Jr.; Psyrri, A.; Brana, I.; Basté, N.; Neupane, P.; et al. Pembrolizumab with or Without Chemotherapy in Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma: Updated Results of the Phase III KEYNOTE-048 Study. J. Clin. Oncol. 2023, 41, 790–802. [Google Scholar] [CrossRef]
  133. Balar, A.V.; Castellano, D.; O’Donnell, P.H.; Grivas, P.; Vuky, J.; Powles, T.; Plimack, E.R.; Hahn, N.M.; de Wit, R.; Pang, L.; et al. First-Line Pembrolizumab in Cisplatin-Ineligible Patients with Locally Advanced and Unresectable or Metastatic Urothelial Cancer (KEYNOTE-052): A Multicentre, Single-Arm, Phase 2 Study. Lancet Oncol. 2017, 18, 1483–1492. [Google Scholar] [CrossRef]
  134. Le, D.T.; Kim, T.W.; Van Cutsem, E.; Geva, R.; Jäger, D.; Hara, H.; Burge, M.; O’Neil, B.; Kavan, P.; Yoshino, T.; et al. Phase II Open-Label Study of Pembrolizumab in Treatment-Refractory, Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: KEYNOTE-164. J. Clin. Oncol. 2020, 38, 11–19. [Google Scholar] [CrossRef] [PubMed]
  135. Ruck, J.M.; Broderick, S.R. Neoadjuvant and Adjuvant Pembrolizumab for the Treatment of Early-Stage Resectable Non-small Cell Lung Cancer: An Editorial Regarding the Interim Data Analysis of the KEYNOTE-671 Phase III Trial. Ann. Surg. Oncol. 2024, 31, 4–5. [Google Scholar] [CrossRef] [PubMed]
  136. Maio, M.; Ascierto, P.A.; Manzyuk, L.; Motola-Kuba, D.; Penel, N.; Cassier, P.A.; Bariani, G.M.; De Jesus Acosta, A.; Doi, T.; Longo, F.; et al. Pembrolizumab in Microsatellite Instability High or Mismatch Repair Deficient Cancers: Updated Analysis from the Phase II KEYNOTE-158 Study. Ann. Oncol. 2022, 33, 929–938. [Google Scholar] [CrossRef]
  137. Andre, T.; Amonkar, M.; Norquist, J.M.; Shiu, K.K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.J.A.; Smith, D.; Garcia-Carbonero, R.; et al. Health-Related Quality of Life in Patients with Microsatellite Instability-High or Mismatch Repair Deficient Metastatic Colorectal Cancer Treated with First-Line Pembrolizumab versus Chemotherapy (KEYNOTE-177): An Open-Label, Randomised, Phase 3 Trial. Lancet Oncol. 2021, 22, 665–677. [Google Scholar] [CrossRef]
  138. Lorusso, D.; Colombo, N.; Dubot, C.; Cáceres, M.V.; Hasegawa, K.; Shapira-Frommer, R.; Salman, P.; Yañez, E.; Gümüş, M.; Olivera, M.; et al. Pembrolizumab Plus Chemotherapy for Advanced and Recurrent Cervical Cancer: Final Analysis According to Bevacizumab Use in the Randomized KEYNOTE-826 Study. Ann. Oncol. 2025, 36, 65–75. [Google Scholar] [CrossRef] [PubMed]
  139. Schmid, P.; Cortes, J.; Pusztai, L.; McArthur, H.; Kümmel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; Harbeck, N.; et al. Pembrolizumab for Early Triple-Negative Breast Cancer. N. Engl. J. Med. 2020, 382, 810–821. [Google Scholar] [CrossRef]
  140. Paz-Ares, L.; Luft, A.; Vicente, D.; Tafreshi, A.; Gümüş, M.; Mazières, J.; Hermes, B.; Çay Şenler, F.; Csőszi, T.; Fülöp, A.; et al. Pembrolizumab Plus Chemotherapy for Squamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2040–2051. [Google Scholar] [CrossRef] [PubMed]
  141. Chung, H.C.; Bang, Y.J.; Fuchs, C.S.; Qin, S.K.; Satoh, T.; Shitara, K.; Tabernero, J.; Van Cutsem, E.; Alsina, M.; Cao, Z.A.; et al. First-Line Pembrolizumab/Placebo Plus Trastuzumab and Chemotherapy in HER2-Positive Advanced Gastric Cancer: KEYNOTE-811. Future Oncol. 2021, 17, 491–501. [Google Scholar] [CrossRef]
  142. Turner, N.C.; Swift, C.; Jenkins, B.; Kilburn, L.; Coakley, M.; Beaney, M.; Fox, L.; Goddard, K.; Garcia-Murillas, I.; Proszek, P.; et al. Results of the c-TRAK TN Trial: A Clinical Trial Utilising ctDNA Mutation Tracking to Detect Molecular Residual Disease and Trigger Intervention in Patients with Moderate- and High-Risk Early-Stage Triple-Negative Breast Cancer. Ann. Oncol. 2023, 34, 200–211. [Google Scholar] [CrossRef]
  143. Oh, D.Y.; Algazi, A.; Capdevila, J.; Longo, F.; Miller, W., Jr.; Chun Bing, J.T.; Bonilla, C.E.; Chung, H.C.; Guren, T.K.; Lin, C.C.; et al. Efficacy and Safety of Pembrolizumab Monotherapy in Patients with Advanced Thyroid Cancer in the Phase 2 KEYNOTE-158 Study. Cancer 2023, 129, 1195–1204. [Google Scholar] [CrossRef]
  144. Shitara, K.; Di Bartolomeo, M.; Mandala, M.; Ryu, M.H.; Caglevic, C.; Olesinski, T.; Chung, H.C.; Muro, K.; Goekkurt, E.; McDermott, R.S.; et al. Association between Gene Expression Signatures and Clinical Outcomes of Pembrolizumab versus Paclitaxel in Advanced Gastric Cancer: Exploratory Analysis from the Randomized, Controlled, Phase III KEYNOTE-061 Trial. J. Immunother. Cancer 2023, 11, e006920. [Google Scholar] [CrossRef] [PubMed]
  145. Wang, M.; Ma, X.; Guo, L.; Xia, F. Safety and Efficacy Profile of Pembrolizumab in Solid Cancer: Pooled Reanalysis Based on Randomized Controlled Trials. Drug Des. Dev. Ther. 2017, 11, 2851–2860. [Google Scholar] [CrossRef]
  146. Postel-Vinay, S.; Lam, V.K.; Ros, W.; Bauer, T.M.; Hansen, A.R.; Cho, D.C.; Stephen Hodi, F.; Schellens, J.H.M.; Litton, J.K.; Aspeslagh, S.; et al. First-in-Human Phase I Study of the OX40 Agonist GSK3174998 with or without Pembrolizumab in Patients with Selected Advanced Solid Tumors (ENGAGE-1). J. Immunother. Cancer 2023, 11, e005301. [Google Scholar] [CrossRef] [PubMed]
  147. Brandt, A.; Schultheiss, C.; Klinghammer, K.; Schafhausen, P.; Busch, C.J.; Blaurock, M.; Hinke, A.; Tometten, M.; Dietz, A.; Müller-Richter, U.; et al. Tolerability and Efficacy of the Cancer Vaccine UV1 in Patients with Recurrent or Metastatic PD-L1 Positive Head and Neck Squamous Cell Carcinoma Planned for First-Line Treatment with Pembrolizumab—The Randomized Phase 2 FOCUS Trial. Front. Oncol. 2024, 14, 1283266. [Google Scholar] [CrossRef]
  148. Pardoll, D.M. The Blockade of Immune Checkpoints in Cancer Immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef]
  149. Hudson, K.; Cross, N.; Jordan-Mahy, N.; Leyland, R. The Extrinsic and Intrinsic Roles of PD-L1 and Its Receptor PD-1: Implications for Immunotherapy Treatment. Front. Immunol. 2020, 11, 568931. [Google Scholar] [CrossRef]
  150. Garon, E.B.; Balmanoukian, A.S.; Rizvi, N.A. Pembrolizumab in Advanced NSCLC: Recent Developments and Future Directions. J. Thorac. Oncol. 2016, 11, 1374–1386. [Google Scholar] [CrossRef]
  151. Gillison, M.L.; Blumenschein, G., Jr.; Fayette, J.; Guigay, J.; Colevas, A.D.; Licitra, L.; Harrington, K.J.; Kasper, S.; Vokes, E.E.; Even, C.; et al. CheckMate 141: 1-Year Update and Subgroup Analysis of Nivolumab as First-Line Therapy in Patients with Recurrent/Metastatic Head and Neck Cancer. Oncologist 2018, 23, 1079–1082. [Google Scholar] [CrossRef] [PubMed]
  152. Knight, A.; Karapetyan, L.; Kirkwood, J.M. Immunotherapy in Melanoma: Recent Advances and Future Directions. Cancers 2023, 15, 1106. [Google Scholar] [CrossRef]
  153. Ribas, A.; Kefford, R.; Marshall, M.A.; Punt, C.J.A.; Haanen, J.B.; Marmol, M.; Marquez-Rodas, I.; Logan, T.F.; Hassel, J.C.; Hollebecque, A.; et al. Phase III study of pembrolizumab versus chemotherapy for advanced melanoma. Lancet 2018, 392, 1633–1644. [Google Scholar] [CrossRef]
  154. D’Angelo, S.P.; Bhatia, S.; Brohl, A.S.; Hamid, O.; Mehnert, J.M.; Terheyden, P.; Shih, K.C.; Brownell, I.; Lebbé, C.; Lewis, K.D.; et al. Avelumab in Patients with Previously Treated Metastatic Merkel Cell Carcinoma (JAVELIN Merkel 200): Updated Overall Survival Data after >5 Years of Follow-Up. ESMO Open 2021, 6, 100290. [Google Scholar] [CrossRef]
  155. Yue, Y.; Wang, Q.; Wei, M.; Ding, F.; Li, J.; Zheng, B. Pembrolizumab alone or combined with chemotherapy versus chemotherapy for the treatment of metastatic cancer: A meta-analysis of randomized clinical trials. Medicine 2024, 103, e40826. [Google Scholar] [CrossRef] [PubMed]
  156. Kwapisz, D. Pembrolizumab and atezolizumab in triple-negative breast cancer. Cancer Immunol. Immunother. 2021, 70, 607–617. [Google Scholar] [CrossRef] [PubMed]
  157. Haiderali, A.; Huang, M.; Pan, W.; Akers, K.G.; Maciel, D.; Frederickson, A.M. Pembrolizumab plus chemotherapy for first-line treatment of advanced triple-negative breast cancer. Future Oncol. 2024, 20, 1587–1600. [Google Scholar] [CrossRef]
  158. Ludford, K.; Ho, W.J.; Thomas, J.V.; Raghav, K.P.S.; Murphy, M.B.; Fleming, N.D.; Lee, M.S.; Smaglo, B.G.; You, Y.N.; Tillman, M.M.; et al. Neoadjuvant Pembrolizumab in Localized Microsatellite Instability High/Deficient Mismatch Repair Solid Tumors. J. Clin. Oncol. 2023, 41, 2181–2190. [Google Scholar] [CrossRef]
  159. Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef]
  160. Rizvi, N.A.; Hellmann, M.D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, J.J.; Lee, W.; Yuan, J.; Wong, P.; Ho, T.S.; et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015, 348, 124–128. [Google Scholar] [CrossRef]
  161. Yun, J.W.; Kwon, J.; Lim, T. Long-Term Response of Pembrolizumab in a Patient with Metastatic Squamous Non-Small Cell Lung Cancer on Hemodialysis: Case Report and Review of the Literature. Medicina 2023, 59, 325. [Google Scholar] [CrossRef]
  162. Muro, K.; Shitara, K.; Yamaguchi, K.; Yoshikawa, T.; Satake, H.; Hara, H.; Sugimoto, N.; Machida, N.; Goto, M.; Kawakami, H.; et al. Efficacy of Pembrolizumab Monotherapy in Japanese Patients with Advanced Gastric or Gastroesophageal Junction Cancer. J. Gastrointest. Cancer 2023, 54, 951–961. [Google Scholar] [CrossRef] [PubMed]
  163. Aredo, J.V.; Wakelee, H.A. Top advances of the year: Perioperative therapy for lung cancer. Cancer 2024, 130, 2897–2903. [Google Scholar] [CrossRef] [PubMed]
  164. Goh, D.; Lim, K.H.; Sudirman, S.R.B.; Ang, M.K.; Chua, M.L.K.; Lim, C.M. Boosted abscopal effect from radiotherapy and pembrolizumab in anaplastic thyroid cancer: A mini-review and case report. Chin. Clin. Oncol. 2023, 12, 57. [Google Scholar] [CrossRef]
  165. Wu, Y.; Zhang, W.; Wang, C. Pembrolizumab in melanoma: A review of its clinical efficacy and safety. Clin. Ther. 2019, 41, 414–428. [Google Scholar] [CrossRef]
  166. Cummings, S.C.; Hughes, S.D.; Pilon-Thomas, S. Pembrolizumab: The game changer for advanced melanoma. Clin. Adv. Hematol. Oncol. 2016, 14, 676–685. [Google Scholar]
  167. Garon, E.B.; Hellmann, M.D.; Rizvi, N.A.; Carcereny, E.; Leighl, N.B.; Ahn, M.J.; Eder, J.P.; Balmanoukian, A.S.; Aggarwal, C.; Horn, L.; et al. Five-Year Overall Survival for Patients with Advanced Non–Small-Cell Lung Cancer Treated with Pembrolizumab: Results from the Phase I KEYNOTE-001 Study. J. Clin. Oncol. 2019, 37, 2518–2527. [Google Scholar] [CrossRef] [PubMed]
  168. Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [PubMed]
  169. de Sousa, L.G.; Ferrarotto, R. Pembrolizumab in the First-Line Treatment of Advanced Head and Neck Cancer. Expert Rev. Anticancer Ther. 2021, 21, 1321–1331. [Google Scholar] [CrossRef] [PubMed]
  170. Bellmunt, J.; de Wit, R.; Vaughn, D.J.; Fradet, Y.; Lee, J.L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N. Engl. J. Med. 2017, 376, 1015–1026. [Google Scholar] [CrossRef] [PubMed]
  171. Shiravand, Y.; Khodadadi, F.; Kashani, S.M.A.; Hosseini-Fard, S.R.; Hosseini, S.; Sadeghirad, H.; Ladwa, R.; O’Byrne, K.; Kulasinghe, A. Immune Checkpoint Inhibitors in Cancer Therapy. Curr. Oncol. 2022, 29, 3044–3060. [Google Scholar] [CrossRef]
  172. Kumar, S.; Bhattacharya, S.; McDermott, J.D.; Bhatia, R.; Valentine, J.; Silverman, D.A.; Ferris, R.L. Immunotherapy in the treatment of oral squamous cell carcinoma. Oral Oncol. 2017, 74, 51–56. [Google Scholar] [CrossRef]
  173. Feng, L.; Yin, K.; Zhang, S.; Chen, Z.; Bao, Y.; Li, T. Anti-PD-1 Therapy Is Beneficial for the Survival of Patients with Oral Squamous Cell Carcinoma. Cancer Manag. Res. 2022, 14, 2723–2731. [Google Scholar] [CrossRef] [PubMed]
  174. Fan, Z.; Hui, R.; Ju, H.; Wu, Y.; Ma, X.; Song, H.; Liu, Y.; Rui, M.; Geng, X.; Zhao, M.; et al. The Clinical Outcome of Pembrolizumab for Patients with Recurrent or Metastatic Squamous Cell Carcinoma of the Head and Neck: A Single Center, Real World Study in China. Front. Oncol. 2024, 14, 1360657. [Google Scholar] [CrossRef]
  175. Wise-Draper, T.M.; Gulati, S.; Palackdharry, S.; Hinrichs, B.H.; Worden, F.P.; Old, M.O.; Dunlap, N.E.; Kaczmar, J.M.; Patil, Y.; Riaz, M.K.; et al. Phase II Clinical Trial of Neoadjuvant and Adjuvant Pembrolizumab in Resectable Local-Regionally Advanced Head and Neck Squamous Cell Carcinoma. Clin. Cancer Res. 2022, 28, 1345–1352. [Google Scholar] [CrossRef] [PubMed]
  176. Chiossi, A.L.; Gallo, L.; Marchetti, F. Immunotherapy for recurrent oral cancer: Challenges and advances. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2020, 130, 545–551. [Google Scholar] [CrossRef]
  177. Tahara, M.; Greil, R.; Rischin, D.; Harrington, K.J.; Burtness, B.; de Castro, G.; Psyrri, A.; Braña, I.; Neupane, P.; Bratland, Å.; et al. Pembrolizumab with or without Chemotherapy in Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma: 5-Year Follow-Up from the Randomized Phase III KEYNOTE-048 Study. Eur. J. Cancer 2025, 221, 115395. [Google Scholar] [CrossRef] [PubMed]
  178. Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 2010, 363, 711–723. [Google Scholar] [CrossRef]
  179. Chaturvedi, A.K.; Anderson, W.F.; Lortet-Tieulent, J.; Curado, M.P.; Ferlay, J.; Franceschi, S.; Rosenberg, P.S.; Bray, F.; Gillison, M.L. Worldwide Trends in Incidence Rates for Oral Cavity and Oropharyngeal Cancers. J. Clin. Oncol. 2013, 31, 4550–4559. [Google Scholar] [CrossRef] [PubMed]
  180. Yuwanati, M.; Sarode, S.C.; Sarode, G.S.; Gadbail, A.; Gondivkar, S. Clinical Trial Outcomes in Oral Squamous Cell Carcinoma: A Pragmatic Ideation. Oral Oncol. 2022, 126, 105752. [Google Scholar] [CrossRef]
  181. McDermott, D.F.; Huseni, M.A.; Atkins, M.B.; Motzer, R.J.; Rini, B.I.; Escudier, B.; Fong, L.; Joseph, R.W.; Pal, S.K.; Reeves, J.A.; et al. Combination therapies with pembrolizumab in head and neck cancers. Head Neck 2020, 42, 3199–3205. [Google Scholar] [CrossRef]
  182. Matsuo, M.; Masuda, M.; Yamauchi, M.; Taura, M.; Hashimoto, K.; Kogo, R.; Jiromaru, R.; Hongo, T.; Manako, T.; Nakagawa, T. Pembrolizumab Monotherapy Versus Pembrolizumab Plus Chemotherapy in Patients with Head and Neck Squamous Cell Carcinoma. Vivo 2023, 37, 2188–2196. [Google Scholar] [CrossRef]
  183. Wang, M.; Liu, Y.; Cheng, Y.; Wei, Y.; Wei, X. Immune checkpoint blockade and its combination therapy with small-molecule inhibitors for cancer treatment. Biochim. Biophys. Acta Rev. Cancer 2019, 1871, 199–224. [Google Scholar] [CrossRef]
  184. Yura, Y.; Hamada, M. Oral Immune-Related Adverse Events Caused by Immune Checkpoint Inhibitors: Salivary Gland Dysfunction and Mucosal Diseases. Cancers 2022, 14, 792. [Google Scholar] [CrossRef] [PubMed]
  185. Swamy, S.R.; Rajmohan, N. Safety of immunotherapy in oral cancer. Int. J. Oral Maxillofac. Surg. 2021, 50, 479–485. [Google Scholar] [CrossRef]
  186. Thompson, J.A.; Schneider, B.J.; Brahmer, J.R.; Andrews, S.; Armand, P.; Bhatia, S.; Budd, G.T.; Dhupar, R.; Giaccone, G.; Gupta, S.; et al. Immune checkpoint inhibitors in head and neck cancers. Cancer J. 2021, 27, 10–17. [Google Scholar] [CrossRef]
  187. Li, J.; He, Z.; Tao, Y.; Yang, X.; Ge, S.; Xu, H.; Shang, W.; Song, K. Efficacy and Safety of Pembrolizumab Monotherapy for Recurrent/Unresectable/Metastatic Oral Squamous Cell Carcinoma: A Single-Center Study in China. J. Oncol. 2022, 2022, 7283946. [Google Scholar] [CrossRef] [PubMed]
  188. Sharon, S.; Bell, R.B. Immunotherapy in Head and Neck Squamous Cell Carcinoma: A Narrative Review. Front. Oral Maxillofac. Med. 2022, 4, 28. [Google Scholar] [CrossRef]
  189. Tanaka, M.; Saito, Y.; Kondo, T.; Nakamura, H.; Watanabe, M.; Fujimoto, Y.; Suzuki, A.; Takahashi, K.; Yamamoto, N.; Mori, S.; et al. Advances in PD-1 inhibitors for oral cancer therapy. Cancer Cell 2022, 28, 2200–2207. [Google Scholar] [CrossRef]
  190. Hayman, T.J.; Bhatia, A.K.; Jethwa, K.R.; Young, M.R.; Park, H.S. Combinations of Immunotherapy and Radiation Therapy in Head and Neck Squamous Cell Carcinoma: A Narrative Review. Transl. Cancer Res. 2021, 10, 2571–2585. [Google Scholar] [CrossRef]
  191. Pérez-Sayáns, M.; Somoza-Martín, M.; Barros-Angueira, F.; Rey-Fernández, J.; Gandara-Rey, J.M.; García-García, A. Immunotherapy combinations in oral cancer. Oral Oncol. 2022, 108, 104895. [Google Scholar] [CrossRef]
  192. Ho, W.J.; Mehra, R. Pembrolizumab for the treatment of head and neck squamous cell cancer. Expert Opin. Biol. Ther. 2019, 19, 879–885. [Google Scholar] [CrossRef]
  193. Yamamoto, S.; Kato, K. Pembrolizumab for the treatment of esophageal cancer. Expert Opin. Biol. Ther. 2020, 20, 1143–1150. [Google Scholar] [CrossRef]
  194. Coupez, D.; Hulo, P.; Touchefeu, Y.; Bossard, C.; Bennouna, J. Pembrolizumab for the treatment of colorectal cancer. Expert Opin. Biol. Ther. 2020, 20, 219–226. [Google Scholar] [CrossRef]
  195. Kamath, S.D.; Kalyan, A.; Benson, A.B., 3rd. Pembrolizumab for the treatment of gastric cancer. Expert Rev. Anticancer Ther. 2018, 18, 1177–1187. [Google Scholar] [CrossRef] [PubMed]
  196. Sundahl, N.; Rottey, S.; De Maeseneer, D.; Ost, P. Pembrolizumab for the treatment of bladder cancer. Expert Rev. Anticancer Ther. 2018, 18, 107–114. [Google Scholar] [CrossRef] [PubMed]
  197. Ninomiya, K.; Hotta, K. Pembrolizumab for the first-line treatment of non-small cell lung cancer. Expert Opin. Biol. Ther. 2018, 18, 1015–1021. [Google Scholar] [CrossRef] [PubMed]
  198. Smit, E.F.; Haanen, J.B.A.G. Pembrolizumab in small-cell lung cancer: In search of the best biomarker. J. Clin. Oncol. 2017, 35, 3794–3795. [Google Scholar] [CrossRef] [PubMed]
  199. Barrington, D.A.; Dilley, S.E.; Smith, H.J.; Straughn, J.M., Jr. Pembrolizumab in advanced recurrent endometrial cancer: A cost-effectiveness analysis. Gynecol. Oncol. 2019, 153, 381–384. [Google Scholar] [CrossRef]
  200. Kwon, M.; An, M.; Klempner, S.J.; Lee, H.; Kim, K.M.; Sa, J.K.; Cho, H.J.; Hong, J.Y.; Lee, T.; Min, Y.W.; et al. Determinants of response and intrinsic resistance to PD-1 blockade in microsatellite instability-high gastric cancer. Cancer Discov. 2021, 11, 2168–2185. [Google Scholar] [CrossRef]
  201. Marcus, L.; Lemery, S.J.; Keegan, P.; Pazdur, R. FDA approval summary: Pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin. Cancer Res. 2019, 25, 3753–3758. [Google Scholar] [CrossRef] [PubMed]
  202. Ribas, A.; Wolchok, J.D. Cancer Immunotherapy Using Checkpoint Blockade. Science 2018, 359, 1350–1355. [Google Scholar] [CrossRef]
  203. Khozin, S.; Abernethy, A.P.; Nussbaum, N.C.; Zhi, J.; Curtis, M.D.; Zalcberg, J.R.; Nemeth, M.J.; Gao, H.; Zhao, H.; Agrawal, S.; et al. Characteristics of real-world patients with advanced non–small cell lung cancer treated with nivolumab and pembrolizumab during the year following approval. JAMA Oncol. 2017, 3, 875–882. [Google Scholar] [CrossRef]
  204. Nishijima, T.F.; Shachar, S.S.; Nyrop, K.A.; Muss, H.B. Safety and tolerability of PD-1/PD-L1 inhibitors in older adults: A systematic review and meta-analysis. J. Natl. Compr. Cancer Netw. 2019, 17, 309–318. [Google Scholar] [CrossRef]
  205. Wang, D.Y.; Salem, J.E.; Cohen, J.V.; Chandra, S.; Menzer, C.; Ye, F.; Zhao, S.; Das, S.; Beckermann, K.E.; Ha, L.; et al. Fatal toxic effects associated with immune checkpoint inhibitors: A systematic review and meta-analysis. JAMA Oncol. 2018, 4, 172–174. [Google Scholar] [CrossRef]
  206. Postow, M.A.; Sidlow, R.; Hellmann, M.D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 2015, 372, 2006–2017. [Google Scholar] [CrossRef]
  207. Dickey, M.S.; Raina, A.J.; Gilbar, P.J.; Wisniowski, B.L.; Collins, J.T.; Karki, B.; Nguyen, A.D. Pembrolizumab-induced thrombotic thrombocytopenic purpura. J. Oncol. Pharm. Pract. 2020, 26, 1237–1240. [Google Scholar] [CrossRef] [PubMed]
  208. Tak, M.B.; Munir, Z.; Aydin, A. Pembrolizumab-induced insulin-dependent diabetes mellitus in a patient with triple-negative breast cancer: A rare immune-related adverse event. Cureus 2024, 16, e73049. [Google Scholar] [CrossRef] [PubMed]
  209. Abdel-Wahab, N.; Shah, M.; Suarez-Almazor, M.E. Adverse events associated with immune checkpoint blockade in patients with cancer: A systematic review of case reports. J. Immunother. Cancer 2018, 6, 8. [Google Scholar] [CrossRef]
  210. Van Buren, I.; Madison, C.; Kohn, A.; Berry, E.; Kulkarni, R.P.; Thompson, R.F. Survival among veterans receiving steroids for immune-related adverse events after immune checkpoint inhibitor therapy. JAMA Netw. Open 2023, 6, e2340695. [Google Scholar] [CrossRef]
  211. Meybodi, S.M.; Farasati Far, B.; Pourmolaei, A.; Baradarbarjastehbaf, F.; Safaei, M.; Mohammadkhani, N.; Samadani, A.A. Immune checkpoint inhibitors promising role in cancer therapy: Clinical evidence and immune-related adverse events. Med. Oncol. 2023, 40, 243. [Google Scholar] [CrossRef]
  212. Patnaik, A.; Kang, S.P.; Rasco, D.; Papadopoulos, K.P.; Elassaiss-Schaap, J.; Beeram, M.; Drengler, R.; Chen, C.; Smith, L.; Espino, G.; et al. Phase I study of pembrolizumab (MK-3475; anti-PD-1 monoclonal antibody) in patients with advanced solid tumors. Clin. Cancer Res. 2015, 21, 4286–4293. [Google Scholar] [CrossRef]
  213. Menzies, A.M.; Johnson, D.B.; Ramanujam, S.; Atkinson, V.G.; Wong, A.N.M.; Park, J.J.; Shoushtari, A.N.; Chiang, V.L.; Tetzlaff, M.T.; Daniels, G.A.; et al. Anti-PD-1 therapy in patients with advanced melanoma and preexisting autoimmune disorders or major toxicity with ipilimumab. Ann. Oncol. 2017, 28, 368–376. [Google Scholar] [CrossRef] [PubMed]
  214. Carbone, D.P.; Reck, M.; Paz-Ares, L.; Creelan, B.; Horn, L.; Steins, M.; Felip, E.; van den Heuvel, M.M.; Ciuleanu, T.E.; Doebele, R.C.; et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N. Engl. J. Med. 2017, 376, 2415–2426. [Google Scholar] [CrossRef]
  215. Psyrri, A.; Fayette, J.; Harrington, K.; Gillison, M.; Ahn, M.J.; Takahashi, S.; Weiss, J.; Machiels, J.P.; Baxi, S.; Vasilyev, A.; et al. Durvalumab with or without tremelimumab versus the EXTREME regimen as first-line treatment for recurrent or metastatic squamous cell carcinoma of the head and neck: KESTREL, a randomized, open-label, phase III study. Ann. Oncol. 2023, 34, 262–274. [Google Scholar] [CrossRef]
  216. Thibaudin, M.; Fumet, J.D.; Chibaudel, B.; Bennouna, J.; Borg, C.; Martin-Babau, J.; Cohen, R.; Fonck, M.; Taieb, J.; Limagne, E.; et al. First-line durvalumab and tremelimumab with chemotherapy in RAS-mutated metastatic colorectal cancer: A phase 1b/2 trial. Nat. Med. 2023, 29, 2087–2098. [Google Scholar] [CrossRef]
  217. Moutafi, M.; Koliou, G.A.; Papaxoinis, G.; Economopoulou, P.; Kotsantis, I.; Gkotzamanidou, M.; Anastasiou, M.; Pectasides, D.; Kyrodimos, E.; Delides, A.; et al. Phase II window study of olaparib alone or with cisplatin or durvalumab in operable head and neck cancer. Cancer Res. Commun. 2023, 3, 1514–1523. [Google Scholar] [CrossRef]
  218. Krebs, M.G.; Delord, J.P.; Jeffry Evans, T.R.; De Jonge, M.; Kim, S.W.; Meurer, M.; Postel-Vinay, S.; Lee, J.S.; Angell, H.K.; Rocher-Ros, V.; et al. Olaparib and durvalumab in patients with relapsed small cell lung cancer (MEDIOLA): An open-label, multicenter, phase 1/2, basket study. Lung Cancer 2023, 180, 107216. [Google Scholar] [CrossRef]
  219. Mell, L.K.; Torres-Saavedra, P.A.; Wong, S.J.; Kish, J.A.; Chang, S.S.; Jordan, R.C.; Liu, T.; Truong, M.T.; Winquist, E.W.; Takiar, V.; et al. Radiotherapy with cetuximab or durvalumab for locoregionally advanced head and neck cancer in patients with a contraindication to cisplatin (NRG-HN004): An open-label, multicentre, parallel-group, randomised, phase 2/3 trial. Lancet Oncol. 2024, 25, 1576–1588. [Google Scholar] [CrossRef]
  220. Kwon, M.; Kim, G.; Kim, R.; Kim, K.T.; Kim, S.T.; Smith, S.; Mortimer, P.G.S.; Hong, J.Y.; Loembé, A.B.; Irurzun-Arana, I.; et al. Phase II study of ceralasertib (AZD6738) in combination with durvalumab in patients with advanced gastric cancer. J. Immunother. Cancer 2022, 10, e005041. [Google Scholar] [CrossRef]
  221. Frenel, J.S.; Mathiot, L.; Cropet, C.; Borcoman, E.; Hervieu, A.; Coquan, E.; De La Motte Rouge, T.; Saada-Bouzid, E.; Sabatier, R.; Lavaud, P.; et al. Durvalumab and tremelimumab in combination with metronomic oral vinorelbine for recurrent advanced cervical cancer: An open-label phase I/II study. J. Immunother. Cancer 2025, 13, e010708. [Google Scholar] [CrossRef] [PubMed]
  222. Taylor, K.; Loo Yau, H.; Chakravarthy, A.; Wang, B.; Shen, S.Y.; Ettayebi, I.; Ishak, C.A.; Bedard, P.L.; Abdul Razak, A.; Hansen, A.R.; et al. An open-label, phase II multicohort study of an oral hypomethylating agent CC-486 and durvalumab in advanced solid tumors. J. Immunother. Cancer 2020, 8, e000883. [Google Scholar] [CrossRef] [PubMed]
  223. Hanna, C.R.; O’Cathail, S.M.; Graham, J.S.; Saunders, M.; Samuel, L.; Harrison, M.; Devlin, L.; Edwards, J.; Gaya, D.R.; Kelly, C.A.; et al. Durvalumab (MEDI 4736) in combination with extended neoadjuvant regimens in rectal cancer: A study protocol of a randomised phase II trial (PRIME-RT). Radiat. Oncol. 2021, 16, 163. [Google Scholar] [CrossRef] [PubMed]
  224. Kim, R.; Kwon, M.; An, M.; Kim, S.T.; Smith, S.A.; Loembé, A.B.; Mortimer, P.G.S.; Armenia, J.; Lukashchuk, N.; Shah, N.; et al. Phase II study of ceralasertib (AZD6738) in combination with durvalumab in patients with advanced/metastatic melanoma who have failed prior anti-PD-1 therapy. Ann. Oncol. 2022, 33, 193–203. [Google Scholar] [CrossRef]
  225. Patel, M.R.; Falchook, G.S.; Wang, J.S.; Imedio, E.R.; Kumar, S.; Miah, K.; Mugundu, G.M.; Jones, S.F.; Spigel, D.R.; Hamilton, E.P. Open-label, multicenter, phase I study to assess safety and tolerability of adavosertib plus durvalumab in patients with advanced solid tumors. Target. Oncol. 2025, 20, 127–138. [Google Scholar] [CrossRef] [PubMed]
  226. Wu, Y.; Zhang, T.; Liu, Y.; Wang, J.; Bi, N. Anlotinib combined with durvalumab in a patient with recurrent multifocal brain metastases of small cell lung cancer after definitive concurrent chemoradiotherapy and palliative radiotherapy of the lung and brain: A case report. Ann. Palliat. Med. 2021, 10, 2379–2386. [Google Scholar] [CrossRef]
  227. Eklund, E.A.; Orgard, M.; Wallin, D.; Sayin, S.I.; Fagman, H.; Isaksson, J.; Raghavan, S.; Akyürek, L.M.; Nyman, J.; Wiel, C.; et al. Equalizing prognostic disparities in KRAS-mutated stage III NSCLC patients: Addition of durvalumab to combined chemoradiotherapy improves survival. Lung Cancer 2025, 204, 108573. [Google Scholar] [CrossRef]
  228. Chen, L.; Xu, W.; Qi, W.X.; Xu, F. The characteristics of oncological clinical trials investigating the synergistic effect of radiotherapy and immune checkpoint inhibitors: A cross-sectional study. Transl. Cancer Res. 2023, 12, 558–571. [Google Scholar] [CrossRef] [PubMed]
  229. Mahmood, S.; Li, D.; Lee, A.; Rowe, J.; Beg, M.; Kasturi, V.; Iyer, R.; Abrams, T.; Dayyani, F. A multicenter, phase Ib/II, open-label study of tivozanib with durvalumab in advanced hepatocellular carcinoma (DEDUCTIVE). Future Oncol. 2022, 18, 4465–4471. [Google Scholar] [CrossRef] [PubMed]
  230. Grassadonia, A.; Sperduti, I.; Vici, P.; Iezzi, L.; Brocco, D.; Gamucci, T.; Pizzuti, L.; Maugeri-Saccà, M.; Marchetti, P.; Cognetti, G.; et al. Effect of gender on the outcome of patients receiving immune checkpoint inhibitors for advanced cancer: A systematic review and meta-analysis of phase III randomized clinical trials. J. Clin. Med. 2018, 7, 542. [Google Scholar] [CrossRef] [PubMed]
  231. Kuon, J.; Hommertgen, A.; Krisam, J.; Lasitschka, F.; Stenzinger, A.; Blasi, M.; Bozorgmehr, F.; Maenz, M.; Kieser, M.; Schneider, M.; et al. Durvalumab in frail and elderly patients with stage four non-small cell lung cancer: Study protocol of the randomized phase II DURATION trial. Trials 2020, 21, 352. [Google Scholar] [CrossRef] [PubMed]
  232. Schmid, P.; Oliveira, M.; O’Shaughnessy, J.; Cristofanilli, M.; Graff, S.L.; Im, S.A.; Loi, S.; Saji, S.; Wang, S.; Cescon, D.W.; et al. TROPION-Breast05: A randomized phase III study of Dato-DXd with or without durvalumab versus chemotherapy plus pembrolizumab in patients with PD-L1-high locally recurrent inoperable or metastatic triple-negative breast cancer. Ther. Adv. Med. Oncol. 2025, 17, 17588359251327992. [Google Scholar] [CrossRef]
  233. Oza, B.; Frangou, E.; Smith, B.; Bryant, H.; Kaplan, R.; Choodari-Oskooei, B.; Powles, T.; Stewart, G.D.; Albiges, L.; Bex, A.; et al. RAMPART: A phase III multi-arm multi-stage trial of adjuvant checkpoint inhibitors in patients with resected primary renal cell carcinoma (RCC) at high or intermediate risk of relapse. Contemp. Clin. Trials 2021, 108, 106482. [Google Scholar] [CrossRef]
  234. Solomon, B.; Young, R.J.; Rischin, D. Head and neck squamous cell carcinoma: Genomics and emerging biomarkers for immunomodulatory cancer treatments. Semin. Cancer Biol. 2018, 52 Pt 2, 228–240. [Google Scholar] [CrossRef] [PubMed]
  235. Tang, K.; Wu, Y.H.; Song, Y.; Yu, B. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors in clinical trials for cancer immunotherapy. J. Hematol. Oncol. 2021, 14, 68. [Google Scholar] [CrossRef] [PubMed]
  236. Wang, Y.; Zhang, H.; Liu, C.; Wang, Z.; Wu, W.; Zhang, N.; Zhang, L.; Hu, J.; Luo, P.; Zhang, J.; et al. Immune checkpoint modulators in cancer immunotherapy: Recent advances and emerging concepts. J. Hematol. Oncol. 2022, 15, 111. [Google Scholar] [CrossRef]
  237. Heymach, J.V.; Harpole, D.; Mitsudomi, T.; Taube, J.M.; Galffy, G.; Hochmair, M.; Winder, T.; Zukov, R.; Garbaos, G.; Gao, S.; et al. Perioperative Durvalumab for Resectable Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2023, 389, 1672–1684. [Google Scholar] [CrossRef]
  238. De Mello, R.A.B.; Voscaboinik, R.; Luciano, J.V.P.; Cremonese, R.V.; Amaral, G.A.; Castelo-Branco, P.; Antoniou, G. Immunotherapy in Patients with Advanced Non-Small Cell Lung Cancer Lacking Driver Mutations and Future Perspectives. Cancers 2022, 14, 122. [Google Scholar] [CrossRef]
  239. Patel, S.A.; Gibson, M.K.; Deal, A.; Sheth, S.; Heiling, H.; Johnson, S.M.; Douglas, K.; Flores, M.; Blumberg, J.; Lumley, C.; et al. A Phase 2 Study of Neoadjuvant Chemotherapy Plus Durvalumab in Resectable Locally Advanced Head and Neck Squamous Cell Carcinoma. Cancer 2023, 129, 3381–3389. [Google Scholar] [CrossRef] [PubMed]
  240. Zandberg, D.P.; Algazi, A.P.; Jimeno, A.; Good, J.S.; Fayette, J.; Bouganim, N.; Ready, N.E.; Clement, P.M.; Even, C.; Jang, R.W.; et al. Durvalumab for Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma: Results from a Single-Arm, Phase II Study in Patients with ≥25% Tumour Cell PD-L1 Expression Who Have Progressed on Platinum-Based Chemotherapy. Eur. J. Cancer 2019, 107, 142–152. [Google Scholar] [CrossRef]
  241. Comont, T.; Sibaud, V.; Mourey, L.; Cougoul, P.; Beyne-Rauzy, O. Immune checkpoint inhibitor-related acral vasculitis. J. Immunother. Cancer 2018, 6, 120. [Google Scholar] [CrossRef] [PubMed]
  242. Blumenthal, G.M.; Freeman, D.J.; Morais, C.; Aggarwal, C.; Trevarthen, D.; Sridhara, R.; Chattopadhyay, S.; Keegan, P.; Pazdur, R. Durvalumab: A novel immune checkpoint inhibitor. Cancer Treat. Rev. 2017, 58, 99–106. [Google Scholar] [CrossRef]
  243. Segal, N.H.; Callahan, M.K.; Postow, M.A.; Ansell, S.M.; Lesokhin, A.M.; Atkins, M.B.; Leshchiner, I.; Fecher, L.A.; Armand, P.; Gangadhar, T.C.; et al. Durvalumab in patients with metastatic non-small cell lung cancer. J. Thorac. Oncol. 2020, 15, 1019–1028. [Google Scholar] [CrossRef]
  244. Konala, V.M.; Madhira, B.R.; Ashraf, S.; Graziano, S. Use of immunotherapy in extensive-stage small cell lung cancer. Oncology 2020, 98, 749–754. [Google Scholar] [CrossRef]
  245. Nindra, U.; Bray, V.; Karikios, D.; Shafiei, M.; Subramaniam, S.; Ding, P.; Kao, S.; Pal, A. Variations in patterns of prescribing durvalumab in stage III lung cancer: A survey of Australian medical oncologists. Oncology 2024, 102, 732–736. [Google Scholar] [CrossRef] [PubMed]
  246. Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N. Engl. J. Med. 2017, 377, 1919–1929. [Google Scholar] [CrossRef]
  247. Bauman, J.E.; Karam, S.D.; O’Brien, C.; Mak, G.; Cho, B.C. Durvalumab in Combination with Chemoradiotherapy in Patients with Head and Neck Squamous Cell Carcinoma: Results from the Phase 1 CLOVER Study. Head Neck 2024, 46, 1152–1159. [Google Scholar] [CrossRef] [PubMed]
  248. Monk, B.J.; Toita, T.; Wu, X.; Vázquez Limón, J.C.; Tarnawski, R.; Mandai, M.; Shapira-Frommer, R.; Mahantshetty, U.; Del Pilar Estevez-Diz, M.; Zhou, Q.; et al. Durvalumab versus Placebo with Chemoradiotherapy for Locally Advanced Cervical Cancer (CALLA): A Randomised, Double-Blind, Phase 3 Trial. Lancet Oncol. 2023, 24, 1334–1348. [Google Scholar] [CrossRef] [PubMed]
  249. Fung, S.; Syed, Y.Y. Durvalumab: A Review in Advanced Biliary Tract Cancer. Target. Oncol. 2023, 18, 965–972. [Google Scholar] [CrossRef] [PubMed]
  250. Kokudo, N.; Kokudo, T.; Song, P.; Tang, W. Role of liver resection in the era of advanced systemic therapy for hepatocellular carcinoma. Glob. Health Med. 2024, 6, 170–173. [Google Scholar] [CrossRef]
  251. Melisi, D.; Oh, D.Y.; Hollebecque, A.; Calvo, E.; Varghese, A.; Borazanci, E.; Macarulla, T.; Merz, V.; Zecchetto, C.; Zhao, Y.; et al. Safety and activity of the TGFβ receptor I kinase inhibitor galunisertib plus the anti-PD-L1 antibody durvalumab in metastatic pancreatic cancer. J. Immunother. Cancer 2021, 9, e002068. [Google Scholar] [CrossRef]
  252. Celsa, C.; Cabibbo, G.; Pinato, D.J.; Di Maria, G.; Enea, M.; Vaccaro, M.; Battaglia, S.; Rizzo, G.E.M.; Giuffrida, P.; Giacchetto, C.M.; et al. Balancing efficacy and tolerability of first-line systemic therapies for advanced hepatocellular carcinoma: A network meta-analysis. Liver Cancer 2023, 13, 169–180. [Google Scholar] [CrossRef]
  253. Boussios, S.; Karihtala, P.; Moschetta, M.; Karathanasi, A.; Sadauskaite, A.; Rassy, E.; Pavlidis, N. Combined strategies with poly (ADP-ribose) polymerase (PARP) inhibitors for the treatment of ovarian cancer: A literature review. Diagnostics 2019, 9, 87. [Google Scholar] [CrossRef]
  254. Park, R.; Li, J.; Slebos, R.J.C.; Chaudhary, R.; Poole, M.I.; Ferraris, C.; Farinhas, J.; Hernandez-Prera, J.; Kirtane, K.; Teer, J.K.; et al. Phase Ib Trial of IRX-2 Plus Durvalumab in Patients with Recurrent and/or Metastatic Head and Neck Squamous Cell Carcinoma. Oral Oncol. 2024, 154, 106866. [Google Scholar] [CrossRef]
  255. Hwang, T.S.; Kim, S.Y.; Lee, J.H.; Park, M.J.; Choi, Y.S.; Jung, H.J.; Kang, D.W.; Shin, Y.C.; Han, S.W.; Yoon, D.H.; et al. Durvalumab in the treatment of advanced oral cancer. Head Neck 2021, 43, 1235–1242. [Google Scholar] [CrossRef]
  256. Boschert, V.; Teusch, J.; Aljasem, A.; Schmucker, P.; Klenk, N.; Straub, A.; Bittrich, M.; Seher, A.; Linz, C.; Müller-Richter, U.D.A.; et al. HGF-induced PD-L1 expression in head and neck cancer: Preclinical and clinical findings. Int. J. Mol. Sci. 2020, 21, 8770. [Google Scholar] [CrossRef] [PubMed]
  257. Gulati, S.; Crist, M.; Riaz, M.K.; Takiar, V.; Lehn, M.; Monroe, I.; Palackdharry, S.; Kurtzweil, N.; Jandarov, R.; Harun, N.; et al. Durvalumab plus Cetuximab in Patients with Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma: An Open-Label, Nonrandomized, Phase II Clinical Trial. Clin. Cancer Res. 2023, 29, 1906–1915. [Google Scholar] [CrossRef] [PubMed]
  258. Silva, J.P.N.; Pinto, B.; Monteiro, L.; Silva, P.M.A.; Bousbaa, H. Combination Therapy as a Promising Way to Fight Oral Cancer. Pharmaceutics 2023, 15, 1653. [Google Scholar] [CrossRef]
  259. Lee, J.; Heo, Y.J.; Park, J.Y.; Kim, Y.T.; Hwang, J.H.; Cho, J.Y.; Lim, C.Y.; Jeong, W.J.; Choi, E.C.; Kim, S.H. PD-L1 expression in oral cancer: Its role and therapeutic potential. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2018, 125, 244–254. [Google Scholar] [CrossRef]
  260. Al-Azzawi, H.M.A.; Hamza, S.A.; Paolini, R.; Lim, M.; Patini, R.; Celentano, A. PD-L1/PD-1 Expression in the Treatment of Oral Squamous Cell Carcinoma and Oral Potentially Malignant Disorders: An Overview of Reviews. J. Pers. Med. 2025, 15, 126. [Google Scholar] [CrossRef]
  261. Algazi, A.; Papadopoulos, K.P.; Tsai, F.; Hansen, A.R.; Angra, N.; Das, M.; Sheth, S.; Siu, L.L. Safety and Clinical Activity of Durvalumab Combined with Tremelimumab in Recurrent/Metastatic Head and Neck Squamous Cell Carcinoma: A Multicenter Phase I Study. ESMO Open 2024, 9, 103646. [Google Scholar] [CrossRef] [PubMed]
  262. Vishwani, A.; Varghese, B.T.; Thomas, S.; Kumar, A.; Kaur, J.; Sharma, A. Neoadjuvant immunotherapy in advanced oral cancer: Emerging treatment paradigms. Oral Oncol. Rep. 2024, 12, 100683. [Google Scholar] [CrossRef]
  263. Mougeot, J.L.; Beckman, M.; Kooshki, M.; Neuberger, J.; Shukla, K.; Furdui, C.; Bahrani Mougeot, F.; Porosnicu, M. Salivary microbiome profiling of HPV+ and HPV-oropharyngeal head and neck cancer patients undergoing durvalumab immunotherapy suggests Prevotella melaninogenica and Veillonella atypica as key players: A pilot study. Cancers 2025, 17, 452. [Google Scholar] [CrossRef]
  264. De Martin, E.; Michot, J.M.; Papouin, B.; Champiat, S.; Mateus, C.; Lambotte, O.; Roche, B.; Antonini, T.M.; Coilly, A.; Laghouati, S.; et al. Characterization of liver injury induced by cancer immunotherapy using immune checkpoint inhibitors. J. Hepatol. 2018, 68, 1181–1190. [Google Scholar] [CrossRef]
  265. Carrera, W.; Baartman, B.J.; Kosmorsky, G. A case report of drug-induced myopathy involving extraocular muscles after combination therapy with tremelimumab and durvalumab for non-small cell lung cancer. Neuro-Ophthalmol. 2017, 41, 140–143. [Google Scholar] [CrossRef]
  266. Schumaier, N.P.; Heidemann, D.G.; Gupta, C. Durvalumab-associated limbal stem cell deficiency and secondary corneal perforation. Am. J. Ophthalmol. Case Rep. 2024, 35, 102074. [Google Scholar] [CrossRef] [PubMed]
  267. Shionoya, Y.; Hattori, A.; Hanada, T.; Fujino, M. Case Report: Durvalumab-Associated Encephalitis in Extensive-Stage Small Cell Lung Carcinoma. Front. Oncol. 2021, 11, 693279. [Google Scholar] [CrossRef] [PubMed]
  268. Chong, K.M.; Yang, C.Y.; Lin, C.C.; Lien, W.C. Severe immune thrombocytopenia following COVID-19 vaccination (Moderna) and immune checkpoint inhibitor. Am. J. Emerg. Med. 2022, 56, 395.e1–395.e3. [Google Scholar] [CrossRef] [PubMed]
  269. Terashima, T.; Iwami, E.; Shimada, T.; Kuroda, A.; Matsuzaki, T.; Nakajima, T.; Sasaki, A.; Eguchi, K. IgG4-related pleural disease in a patient with pulmonary adenocarcinoma under durvalumab treatment: A case report. BMC Pulm. Med. 2020, 20, 104. [Google Scholar] [CrossRef]
  270. Pringle, S.; van der Vegt, B.; Wang, X.; van Bakelen, N.; Hiltermann, T.J.N.; Spijkervet, F.K.L.; Vissink, A.; Kroese, F.G.M.; Bootsma, H. Lack of Conventional Acinar Cells in Parotid Salivary Gland of Patient Taking an Anti-PD-L1 Immune Checkpoint Inhibitor. Front. Oncol. 2020, 10, 420. [Google Scholar] [CrossRef]
  271. Ramos-Casals, M.; Maria, A.; Suárez-Almazor, M.E.; Lambotte, O.; Fisher, B.A.; Hernández-Molina, G.; Guilpain, P.; Pundole, X.; Flores-Chávez, A.; Baldini, C.; et al. Sicca/Sjögren’s syndrome triggered by PD-1/PD-L1 checkpoint inhibitors. Data from the International ImmunoCancer Registry (ICIR). Clin. Exp. Rheumatol. 2019, 37 (Suppl. S118), 114–122. [Google Scholar]
  272. Haratani, K.; Nakamura, A.; Mamesaya, N.; Sawa, K.; Shiraishi, Y.; Saito, R.; Tanizaki, J.; Tamura, Y.; Hata, A.; Tsuruno, K.; et al. Association of immune-related adverse events with durvalumab efficacy after chemoradiotherapy in patients with unresectable Stage III non-small cell lung cancer. Br. J. Cancer 2024, 130, 1783–1794. [Google Scholar] [CrossRef] [PubMed]
  273. Brahmer, J.R.; Lacchetti, C.; Schneider, B.J.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; Ernstoff, M.S.; Gardner, J.M.; Ginex, P.; et al. Management of Immune-Related Adverse Events in Patients Treated with Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2018, 36, 1714–1768. [Google Scholar] [CrossRef] [PubMed]
  274. Thorsson, V.; Gibbs, D.L.; Brown, S.D.; Wolf, D.; Bortone, D.S.; Ou Yang, T.H.; Porta-Pardo, E.; Gao, G.F.; Plaisier, C.L.; Eddy, J.A.; et al. Durvalumab in combination with chemotherapy for oral cancers. Oral Oncol. 2020, 56, 75–82. [Google Scholar] [CrossRef]
  275. . Tachihara, M.; Tsujino, K.; Ishihara, T.; Hayashi, H.; Sato, Y.; Kurata, T.; Sugawara, S.; Shiraishi, Y.; Teraoka, S.; Azuma, K.; et al. Durvalumab Plus Concurrent Radiotherapy for Treatment of Locally Advanced Non-Small Cell Lung Cancer: The DOLPHIN Phase 2 Nonrandomized Controlled Trial. JAMA Oncol. 2023, 9, 1505–1513. [Google Scholar] [CrossRef] [PubMed]
  276. Vallianou, N.G.; Evangelopoulos, A.; Kounatidis, D.; Panagopoulos, F.; Geladari, E.; Karampela, I.; Stratigou, T.; Dalamaga, M. Immunotherapy in Head and Neck Cancer: Where Do We Stand? Curr. Oncol. Rep. 2023, 25, 897–912. [Google Scholar] [CrossRef] [PubMed]
  277. Meci, A.; Goyal, N.; Slonimsky, G. Mechanisms of Resistance and Therapeutic Perspectives in Immunotherapy for Advanced Head and Neck Cancers. Cancers 2024, 16, 703. [Google Scholar] [CrossRef]
  278. Arends, R.; Guo, X.; Baverel, P.G.; González-García, I.; Xie, J.; Morsli, N.; Yovine, A.; Roskos, L.K. Association of circulating protein biomarkers with clinical outcomes of durvalumab in head and neck squamous cell carcinoma. Oncoimmunology 2021, 10, 1898104. [Google Scholar] [CrossRef]
  279. Zhang, X.; Li, Y.; Chen, Z.; Wang, J.; Liu, H.; Zhao, Q.; Sun, Y.; Xu, M.; Yang, F.; Huang, W.; et al. Personalized immunotherapy for oral squamous cell carcinoma using durvalumab. Cancer J. 2021, 24, 257–258. [Google Scholar] [CrossRef]
  280. Rizvi, N.A.; Hellmann, M.D.; Brahmer, J.R.; Juergens, R.A.; Borghaei, H.; Gettinger, S.N.; Chow, L.Q.M.; Antonia, S.J.; Shepherd, F.A.; Shen, Y.; et al. Nivolumab in combination with platinum-based doublet chemotherapy for first-line treatment of advanced non–small-cell lung cancer. JAMA Oncol. 2018, 4, e180039. [Google Scholar] [CrossRef]
  281. Faivre-Finn, C.; Vicente, D.; Kurata, T.; Planchard, D.; Paz-Ares, L.; Vansteenkiste, J.F.; Spigel, D.R.; Garassino, M.C.; Reck, M.; Senan, S.; et al. Four-Year Survival with Durvalumab After Chemoradiotherapy in Stage III NSCLC—An Update From the PACIFIC Trial. J. Thorac. Oncol. 2021, 16, 860–867. [Google Scholar] [CrossRef] [PubMed]
  282. Gray, J.E.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Planchard, D.; Paz-Ares, L.; Vansteenkiste, J.; Garassino, M.; et al. Three-year overall survival with durvalumab after chemoradiotherapy in stage III NSCLC—Update from PACIFIC. J. Thorac. Oncol. 2020, 15, 867–876. [Google Scholar] [CrossRef] [PubMed]
  283. Naidoo, J.; Wang, X.; Woo, K.M.; Iyriboz, T.; Halpenny, D.; Cunningham, J.; Pittaluga, S.; Mino-Kenudson, M.; Gogov, S.; Sauter, J.L.; et al. Pneumonitis in patients treated with anti–PD-1/PD-L1 therapy. J. Thorac. Oncol. 2017, 12, 219–227. [Google Scholar] [CrossRef]
  284. Puzanov, I.; Diab, A.; Abdallah, K.; Bingham, C.O.; Brogdon, C.; Dadu, R.; Hamad, L.; Kim, S.; Lacouture, M.E.; Madden, K.; et al. Managing toxicities associated with immune checkpoint inhibitors: Consensus recommendations from the Society for Immunotherapy of Cancer (SITC) toxicity management working group. J. Immunother. Cancer 2017, 5, 95. [Google Scholar] [CrossRef] [PubMed]
  285. Yu, X.; Zhang, X.; Yao, T.; Zhang, Y.; Zhang, Y. Fatal adverse events associated with immune checkpoint inhibitors in non-small cell lung cancer: A systematic review and meta-analysis. Front. Med. 2021, 8, 627089. [Google Scholar] [CrossRef] [PubMed]
  286. Gettinger, S.; Horn, L.; Jackman, D.; Spigel, D.; Antonia, S.; Hellmann, M.; Powderly, J.; Heist, R.; Sequist, L.V.; Smith, D.C.; et al. Five-Year Follow-Up of Nivolumab in Previously Treated Advanced Non-Small-Cell Lung Cancer: Results From the CA209-003 Study. J. Clin. Oncol. 2018, 36, 1675–1684. [Google Scholar] [CrossRef] [PubMed]
  287. Lin, X.; Kang, K.; Chen, P.; Zeng, Z.; Li, G.; Xiong, W.; Yi, M.; Xiang, B. Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol. Cancer 2024, 23, 108. [Google Scholar] [CrossRef] [PubMed]
  288. Jones, R.G.; Martino, A. Targeted localized use of therapeutic antibodies: A review of non-systemic, topical and oral applications. Crit. Rev. Biotechnol. 2016, 36, 506–520. [Google Scholar] [CrossRef]
  289. Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N. Engl. J. Med. 2015, 373, 23–34. [Google Scholar] [CrossRef]
  290. Hodi, F.S.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Rutkowski, P.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol. 2018, 19, 1480–1492. [Google Scholar] [CrossRef]
  291. hang, H.; Dai, Z.; Wu, W.; Wang, Z.; Zhang, N.; Zhang, L.; Zeng, W.J.; Liu, Z.; Cheng, Q. Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. J. Exp. Clin. Cancer Res. 2021, 40, 184. [Google Scholar] [CrossRef]
  292. Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Long-term outcomes with nivolumab plus ipilimumab or nivolumab alone versus ipilimumab in patients with advanced melanoma. J. Clin. Oncol. 2022, 40, 127–137. [Google Scholar] [CrossRef]
  293. Yau, T.; Galle, P.R.; Decaens, T.; Sangro, B.; Qin, S.; da Fonseca, L.G.; Karachiwala, H.; Blanc, J.F.; Park, J.W.; Gane, E.; et al. Nivolumab plus ipilimumab versus lenvatinib or sorafenib as first-line treatment for unresectable hepatocellular carcinoma (CheckMate 9DW): An open-label, randomised, phase 3 trial. Lancet 2025, 405, 1851–1864. [Google Scholar] [CrossRef] [PubMed]
  294. Nagano, Y.; Takahashi, M.; Sumi, T.; Yokoo, K.; Ishikawa, T.; Honjo, O.; Kudo, S.; Kondo, S.; Tanaka, Y.; Shioya, M.; et al. Efficacy of nivolumab + ipilimumab ± chemotherapy versus pembrolizumab + chemotherapy in patients with PD-L1-negative non-small cell lung cancer (START001 PART-B): A multicenter retrospective observational study. Jpn. J. Clin. Oncol. 2025, 55, 933–940. [Google Scholar] [CrossRef]
  295. Yamamoto, S.; Aoyama, T.; Maezawa, Y.; Hashimoto, I.; Esashi, R.; Kazama, K.; Uchiyama, M.; Numata, K.; Hu, M.; Fukuda, M.; et al. Analysis of early progression in advanced renal cell carcinoma treated with nivolumab plus ipilimumab. Cancer Diagn. Progn. 2025, 5, 353–362. [Google Scholar] [CrossRef]
  296. Vos, J.L.; Burman, B.; Jain, S.; Fitzgerald, C.W.R.; Sherman, E.J.; Dunn, L.A.; Fetten, J.V.; Michel, L.S.; Kriplani, A.; Ng, K.K.; et al. Nivolumab plus ipilimumab in advanced salivary gland cancer: A phase 2 trial. Nat. Med. 2023, 29, 3077–3089. [Google Scholar] [CrossRef]
  297. Dizman, N.; Meza, L.; Bergerot, P.; Alcantara, M.; Dorff, T.; Lyou, Y.; Frankel, P.; Cui, Y.; Mira, V.; Llamas, M.; et al. Nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma: A randomized phase 1 trial. Nat. Med. 2022, 28, 704–712. [Google Scholar] [CrossRef]
  298. Ribas, A.; Puzanov, I.; Dummer, R.; Schadendorf, D.; Hamid, O.; Robert, C.; Hodi, F.S.; Schachter, J.; Pavlick, A.C.; Lewis, K.D.; et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): A randomised, controlled, phase 2 trial. Lancet Oncol. 2015, 16, 908–918. [Google Scholar] [CrossRef] [PubMed]
  299. Andresen, N.K.; Røssevold, A.H.; Quaghebeur, C.; Gilje, B.; Boge, B.; Gombos, A.; Falk, R.S.; Mathiesen, R.R.; Julsrud, L.; Garred, Ø.; et al. Ipilimumab and nivolumab combined with anthracycline-based chemotherapy in metastatic hormone receptor-positive breast cancer: A randomized phase 2b trial. J. Immunother. Cancer 2024, 12, e007990. [Google Scholar] [CrossRef]
  300. Morano, F.; Raimondi, A.; Pagani, F.; Lonardi, S.; Salvatore, L.; Cremolini, C.; Murgioni, S.; Randon, G.; Palermo, F.; Antonuzzo, L.; et al. Temozolomide followed by combination with low-dose ipilimumab and nivolumab in patients with microsatellite-stable, O6-methylguanine-DNA methyltransferase-silenced metastatic colorectal cancer: The MAYA trial. J. Clin. Oncol. 2022, 40, 1562–1573. [Google Scholar] [CrossRef] [PubMed]
  301. Dimitriou, F.; Namikawa, K.; Reijers, I.L.M.; Buchbinder, E.I.; Soon, J.A.; Zaremba, A.; Teterycz, P.; Mooradian, M.J.; Armstrong, E.; Nakamura, Y.; et al. Single-agent anti-PD-1 or combined with ipilimumab in patients with mucosal melanoma: An international, retrospective, cohort study. Ann. Oncol. 2022, 33, 968–980. [Google Scholar] [CrossRef] [PubMed]
  302. Rawson, R.V.; Adhikari, C.; Bierman, C.; Lo, S.N.; Shklovskaya, E.; Rozeman, E.A.; Menzies, A.M.; van Akkooi, A.C.J.; Shannon, K.F.; Gonzalez, M.; et al. Pathological response and tumour bed histopathological features correlate with survival following neoadjuvant immunotherapy in stage III melanoma. Ann. Oncol. 2021, 32, 766–777. [Google Scholar] [CrossRef]
  303. Yin, X.; Song, Y.; Deng, W.; Blake, N.; Luo, X.; Meng, J. Potential predictive biomarkers in antitumor immunotherapy: Navigating the future of antitumor treatment and immune checkpoint inhibitor efficacy. Front. Oncol. 2024, 14, 1483454. [Google Scholar] [CrossRef]
  304. Haist, M.; Stege, H.; Rogall, F.; Tan, Y.; von Wasielewski, I.; Klespe, K.C.; Meier, F.; Mohr, P.; Kähler, K.C.; Weichenthal, M.; et al. Treatment management for BRAF-mutant melanoma patients with tumor recurrence on adjuvant therapy: A multicenter study from the prospective skin cancer registry ADOREG. J. Immunother. Cancer 2023, 11, e007630. [Google Scholar] [CrossRef]
  305. Chae, Y.K.; Duan, R.; Chung, L.I.; Oh, Y.; Alexiev, B.; Shin, S.; Kim, S.; Helenowski, I.; Matsangou, M.; Villaflor, V.; et al. Phase II study of nivolumab and ipilimumab for treatment of metastatic/recurrent adenoid cystic carcinoma (ACC) of all anatomic sites of origin and other malignant salivary gland tumors. Cancer Med. 2025, 14, e70724. [Google Scholar] [CrossRef] [PubMed]
  306. Almawash, S. Revolutionary cancer therapy for personalization and improved efficacy: Strategies to overcome resistance to immune checkpoint inhibitor therapy. Cancers 2025, 17, 880. [Google Scholar] [CrossRef] [PubMed]
  307. Evans, S.T.; Jani, Y.; Jansen, C.S.; Yildirim, A.; Kalemoglu, E.; Bilen, M.A. Understanding and overcoming resistance to immunotherapy in genitourinary cancers. Cancer Biol. Ther. 2024, 25, 2342599. [Google Scholar] [CrossRef] [PubMed]
  308. Desai, I.; Thakur, S.; Pagariya, P. Current advances in immunotherapy for cancer. Oral Oncol. Rep. 2024, 12, 100652. [Google Scholar] [CrossRef]
  309. Bruix, J.; Chan, S.L.; Galle, P.R.; Rimassa, L.; Sangro, B. Systemic treatment of hepatocellular carcinoma: An EASL position paper. J. Hepatol. 2021, 75, 960–974. [Google Scholar] [CrossRef] [PubMed]
  310. Argnani, L.; Broccoli, A.; Zinzani, P.L. Cutaneous T-cell lymphomas: Focusing on novel agents in relapsed and refractory disease. Cancer Treat. Rev. 2017, 61, 61–69. [Google Scholar] [CrossRef] [PubMed]
  311. Khouri, I.F.; Fernandez Curbelo, I.; Turturro, F.; Jabbour, E.J.; Milton, D.R.; Bassett, R.L., Jr.; Vence, L.M.; Allison, J.P.; Gulbis, A.M.; Sharma, P. Ipilimumab plus lenalidomide after allogeneic and autologous stem cell transplantation for patients with lymphoid malignancies. Clin. Cancer Res. 2018, 24, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
  312. McDermott, D.; Haanen, J.; Chen, T.T.; Lorigan, P.; O’Day, S.; MDX010-20 Investigators. Efficacy and safety of ipilimumab in metastatic melanoma patients surviving more than 2 years following treatment in a phase III trial (MDX010-20). Ann. Oncol. 2013, 24, 2694–2698. [Google Scholar] [CrossRef]
  313. Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Rutkowski, P.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Wagstaff, J.; Schadendorf, D.; Ferrucci, P.F.; et al. Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2017, 377, 1345–1356. [Google Scholar] [CrossRef]
  314. Banaszynski, M.; Kolesar, J.M. Vemurafenib and ipilimumab: New agents for metastatic melanoma. Am. J. Health Syst. Pharm. 2013, 70, 1205–1210. [Google Scholar] [CrossRef] [PubMed]
  315. Tentori, L.; Lacal, P.M.; Graziani, G. Challenging resistance mechanisms to therapies for metastatic melanoma. Trends Pharmacol. Sci. 2013, 34, 656–666. [Google Scholar] [CrossRef] [PubMed]
  316. Thompson, J.A.; Hamid, O.; Minor, D.; Amin, A.; Ron, I.G.; Ridolfi, R.; Assi, H.; Berman, D.; Siegel, J.; Weber, J.S. Ipilimumab in treatment-naive and previously treated patients with metastatic melanoma: Retrospective analysis of efficacy and safety data from a phase II trial. J. Immunother. 2012, 35, 73–77. [Google Scholar] [CrossRef] [PubMed]
  317. Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab versus chemotherapy for advanced non-small-cell lung cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef]
  318. Motzer, R.J.; Escudier, B.; McDermott, D.F.; George, S.; Hammers, H.J.; Srinivas, S.; Tykodi, S.S.; Sosman, J.A.; Procopio, G.; Plimack, E.R.; et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 2015, 373, 1803–1813. [Google Scholar] [CrossRef]
  319. Barata, P.C.; Rini, B.I.; Motzer, R.J. Immune checkpoint inhibitors in renal cell carcinoma. Cancer J. 2017, 23, 16–25. [Google Scholar] [CrossRef]
  320. Zhang, Y.; Xu, Y.; Zhong, W.; Zhao, J.; Liu, X.; Gao, X.; Chen, M.; Wang, M. Vitamin D and immune checkpoint inhibitors in lung cancer: A synergistic approach to enhancing treatment efficacy. Int. J. Mol. Sci. 2025, 26, 4511. [Google Scholar] [CrossRef] [PubMed]
  321. Siciliano, M.A.; Caridà, G.; Ciliberto, D.; d’Apolito, M.; Pelaia, C.; Caracciolo, D.; Riillo, C.; Correale, P.; Galvano, A.; Russo, A.; et al. Efficacy and safety of first-line checkpoint inhibitors-based treatments for non-oncogene-addicted non-small-cell lung cancer: A systematic review and meta-analysis. ESMO Open 2022, 7, 100465. [Google Scholar] [CrossRef] [PubMed]
  322. Rotte, A.; Jin, J.Y.; Lemaire, V. Mechanistic overview of immune checkpoints to support the rational design of their combinations in cancer immunotherapy. Ann. Oncol. 2018, 29, 71–83. [Google Scholar] [CrossRef]
  323. Shore, N.; Mason, M.; de Reijke, T.M. New developments in castrate-resistant prostate cancer. BJU Int. 2012, 109 (Suppl. S6), 22–32. [Google Scholar] [CrossRef]
  324. Harzstark, A.L.; Ryan, C.J. Therapies in development for castrate-resistant prostate cancer. Expert Rev. Anticancer Ther. 2008, 8, 259–268. [Google Scholar] [CrossRef] [PubMed]
  325. Alhalabi, O.; Gouda, M.A.; Milton, D.R.; Momin, H.A.; Yilmaz, B.; Stephen, B.; Ejezie, C.L.; Moyers, J.T.; Gurses, S.A.; How, J.; et al. A Phase IB trial of selinexor in combination with immune checkpoint blockade in patients with advanced renal cell carcinoma. Cancer Med. 2025, 14, e70280. [Google Scholar] [CrossRef]
  326. Gibney, G.T.; Hamid, O.; Lutzky, J.; Olszanski, A.J.; Mitchell, T.C.; Gajewski, T.F.; Chmielowski, B.; Hanks, B.A.; Zhao, Y.; Newton, R.C.; et al. Phase 1/2 study of epacadostat in combination with ipilimumab in patients with unresectable or metastatic melanoma. J. Immunother. Cancer 2019, 7, 80. [Google Scholar] [CrossRef] [PubMed]
  327. Kverneland, A.H.; Pedersen, M.; Westergaard, M.C.W.; Nielsen, M.; Borch, T.H.; Olsen, L.R.; Aasbjerg, G.; Santegoets, S.J.; van der Burg, S.H.; Milne, K.; et al. Adoptive cell therapy in combination with checkpoint inhibitors in ovarian cancer. Oncotarget 2020, 11, 2092–2105. [Google Scholar] [CrossRef] [PubMed]
  328. Wang, Z.; Wu, V.H.; Allevato, M.M.; Gilardi, M.; He, Y.; Callejas-Valera, J.L.; Vitale-Cross, L.; Martin, D.; Amornphimoltham, P.; McDermott, J.; et al. Syngeneic animal models of tobacco-associated oral cancer reveal the activity of in situ anti-CTLA-4. Nat. Commun. 2019, 10, 5546. [Google Scholar] [CrossRef] [PubMed]
  329. Okuyama, K.; Naruse, T.; Yanamoto, S. Tumor microenvironmental modification by the current target therapy for head and neck squamous cell carcinoma. J. Exp. Clin. Cancer Res. 2023, 42, 114. [Google Scholar] [CrossRef] [PubMed]
  330. Wang, C.W.; Biswas, P.K.; Islam, A.; Chen, M.K.; Chueh, P.J. The use of immune regulation in treating head and neck squamous cell carcinoma (HNSCC). Cells 2024, 13, 413. [Google Scholar] [CrossRef]
  331. Zech, H.B.; Moeckelmann, N.; Boettcher, A.; Muenscher, A.; Binder, M.; Vettorazzi, E.; Bokemeyer, C.; Schafhausen, P.; Betz, C.S.; Busch, C.J. Phase III study of nivolumab alone or combined with ipilimumab as immunotherapy versus standard of care in resectable head and neck squamous cell carcinoma. Future Oncol. 2020, 16, 3035–3043. [Google Scholar] [CrossRef]
  332. Ueki, H.; Kitagawa, K.; Kato, M.; Yanase, S.; Okamura, Y.; Bando, Y.; Hara, T.; Terakawa, T.; Furukawa, J.; Nakano, Y.; et al. An oral cancer vaccine using Bifidobacterium vector augments combination of anti-PD-1 and anti-CTLA-4 antibodies in mouse renal cell carcinoma model. Sci. Rep. 2023, 13, 9994. [Google Scholar] [CrossRef] [PubMed]
  333. Bill, R.; Faquin, W.C.; Pai, S.I. Assessing PD-L1 expression in head and neck squamous cell carcinoma: Trials and tribulations. Head Neck Pathol. 2023, 17, 969–975. [Google Scholar] [CrossRef]
  334. Bruckmann, M.; Brenet, E.; Boulagnon-Rombi, C.; Louvrier, A.; Mauprivez, C. Effectiveness of immune checkpoint inhibitors in the treatment of kidney cancer oral metastasis: A case report. J. Stomatol. Oral Maxillofac. Surg. 2024, 125, 101913. [Google Scholar] [CrossRef] [PubMed]
  335. Harrington, K.J.; Ferris, R.L.; Gillison, M.; Tahara, M.; Argiris, A.; Fayette, J.; Schenker, M.; Bratland, Å.; Walker, J.W.T.; Grell, P.; et al. Efficacy and safety of nivolumab plus ipilimumab vs nivolumab alone for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck: The phase 2 CheckMate 714 randomized clinical trial. JAMA Oncol. 2023, 9, 779–789. [Google Scholar] [CrossRef] [PubMed]
  336. Brower, V. Pembrolizumab in advanced head and neck cancer. Lancet Oncol. 2017, 18, e248. [Google Scholar] [CrossRef] [PubMed]
  337. Castaño, A.; Shah, S.S.; Cicero, G.; El Chaar, E. Primary oral melanoma—A non-surgical approach to treatment via immunotherapy. Clin. Adv. Periodontics 2017, 7, 9–17. [Google Scholar] [CrossRef]
  338. Warszawik-Hendzel, O.; Słowińska, M.; Olszewska, M.; Rudnicka, L. Melanoma of the oral cavity: Pathogenesis, dermoscopy, clinical features, staging and management. J. Dermatol. Case Rep. 2014, 8, 60–66. [Google Scholar] [CrossRef]
  339. Vos, J.L.; Elbers, J.B.W.; Krijgsman, O.; Traets, J.J.H.; Qiao, X.; van der Leun, A.M.; Lubeck, Y.; Seignette, I.M.; Smit, L.A.; Willems, S.M.; et al. Neoadjuvant immunotherapy with nivolumab and ipilimumab induces major pathological responses in patients with head and neck squamous cell carcinoma. Nat. Commun. 2021, 12, 7348. [Google Scholar] [CrossRef]
  340. Schoenfeld, J.D.; Hanna, G.J.; Jo, V.Y.; Rawal, B.; Chen, Y.H.; Catalano, P.S.; Lako, A.; Ciantra, Z.; Weirather, J.L.; Criscitiello, S.; et al. Neoadjuvant nivolumab or nivolumab plus ipilimumab in untreated oral cavity squamous cell carcinoma: A phase 2 open-label randomized clinical trial. JAMA Oncol. 2020, 6, 1563–1570. [Google Scholar] [CrossRef] [PubMed]
  341. Swanson, M.S.; Sinha, U.K. Rationale for combined blockade of PD-1 and CTLA-4 in advanced head and neck squamous cell cancer—Review of current data. Oral Oncol. 2015, 51, 12–15. [Google Scholar] [CrossRef] [PubMed]
  342. Deva, S.; Sethi, S.; Singh, S.; Gupta, S.; Sharma, P.; Sharma, S.; Kumar, S.; Rathi, A.; Soni, N.; Agarwal, A.; et al. Ipilimumab in combination with pembrolizumab in advanced oral cancer: A clinical trial. Oral Oncol. 2018, 88, 76–83. [Google Scholar] [CrossRef]
  343. Athanasopoulos, M.; Samara, P.; Agrogiannis, G.; Athanasopoulos, I.; Kavantzas, N.; Kyrodimos, E.; Mastronikolis, N.S. Releasing the brakes: The role of immune checkpoint inhibitors in laryngeal cancer. Explor. Target. Antitumor Ther. 2025, 6, 1002292. [Google Scholar] [CrossRef] [PubMed]
  344. Dwivedi, R.; Jain, A.; Gupta, S.; Chandra, S. Immunotherapy: The Fourth Domain in Oral Cancer Therapeutics. Indian J. Otolaryngol. Head Neck Surg. 2024, 76, 2257–2272. [Google Scholar] [CrossRef]
  345. Weber, J.S.; Kähler, K.C.; Hauschild, A. Management of immune-related adverse events and kinetics of response with ipilimumab. J. Clin. Oncol. 2012, 30, 2691–2697. [Google Scholar] [CrossRef]
  346. Schneider, B.J.; Naidoo, J.; Santomasso, B.D.; Lacchetti, C.; Adkins, S.; Anadkat, M.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; et al. Management of Immune-Related Adverse Events in Patients Treated with Immune Checkpoint Inhibitor Therapy: ASCO Guideline Update. J. Clin. Oncol. 2021, 39, 4073–4126. [Google Scholar] [CrossRef]
  347. Fujiwara, M.; Shimizu, M.; Okano, T.; Maejima, Y.; Shimomura, K. Successful treatment of nivolumab and ipilimumab triggered type 1 diabetes by using sodium-glucose transporter 2 inhibitor: A case report and systematic review. Front. Public Health 2023, 11, 1264056. [Google Scholar] [CrossRef] [PubMed]
  348. Sibaud, V.; Meyer, N.; Lamant, L.; Vigarios, E.; Mazieres, J.; Delord, J.P. Dermatologic complications of anti-PD-1/PD-L1 immune checkpoint antibodies. Curr. Opin. Oncol. 2016, 28, 254–263. [Google Scholar] [CrossRef]
  349. Collins, L.K.; Chapman, M.S.; Carter, J.B.; Samie, F.H. Cutaneous adverse effects of the immune checkpoint inhibitors. Curr. Probl. Cancer 2017, 41, 125–128. [Google Scholar] [CrossRef]
  350. Dearden, H.; Au, L.; Wang, D.Y.; Zimmer, L.; Eroglu, Z.; Smith, J.L.; Cuvietto, M.; Khoo, C.; Atkinson, V.; Lo, S.; et al. Hyperacute toxicity with combination ipilimumab and anti-PD1 immunotherapy. Eur. J. Cancer 2021, 153, 168–178. [Google Scholar] [CrossRef] [PubMed]
  351. Mariniello, M.; Arrivi, G.; Tufano, L.; Lauletta, A.; Moro, M.; Tini, G.; Garibaldi, M.; Giusti, R.; Mazzuca, F. Management of overlapping immune-related myocarditis, myositis, and myasthenia in a young patient with advanced NSCLC: A case report. Front. Oncol. 2024, 14, 1431971. [Google Scholar] [CrossRef] [PubMed]
  352. Farid, S.; Latif, H.; Nilubol, C.; Kim, C. Immune checkpoint inhibitor-induced Fanconi syndrome. Cureus 2020, 12, e7686. [Google Scholar] [CrossRef] [PubMed]
  353. Sadaat, M.; Jang, S. Hemophagocytic lymphohistiocytosis with immunotherapy: Brief review and case report. J. Immunother. Cancer 2018, 6, 49. [Google Scholar] [CrossRef] [PubMed]
  354. Khoury, Z.H.; Hausner, P.F.; Idzik-Starr, C.L.; Frykenberg, M.R.A.; Brooks, J.K.; Dyalram, D.; Basile, J.R.; Younis, R.H. Combination nivolumab/ipilimumab immunotherapy for melanoma with subsequent unexpected cardiac arrest: A case report and review of literature. J. Immunother. 2019, 42, 313–317. [Google Scholar] [CrossRef]
  355. Welborn, M.; Kubicki, S.L.; Garg, N.; Patel, A.B. Twelve cases of acneiform eruptions while on anti-CTLA4 therapy. Support. Care Cancer 2020, 28, 2499–2502. [Google Scholar] [CrossRef] [PubMed]
  356. Chanson, N.; Ramos-Casals, M.; Pundole, X.; Suijkerbuijk, K.; José de Barros, E.; Silva, M.; Lidar, M.; Benesova, K.; Leipe, J.; Acar-Denizli, N.; et al. Immune checkpoint inhibitor-associated sarcoidosis: A usually benign disease that does not require immunotherapy discontinuation. Eur. J. Cancer 2021, 158, 208–216. [Google Scholar] [CrossRef]
  357. Delombaerde, D.; Vervloet, D.; Berwouts, D.; Beckers, R.; Prenen, H.; Peeters, M.; Gremonprez, F.; Croes, L.; Vulsteke, C. Ipilimumab- and nivolumab-induced myocarditis in a patient with metastatic cholangiocarcinoma: A case report. J. Med. Case Rep. 2022, 16, 275. [Google Scholar] [CrossRef]
  358. Conry, R.M.; Sullivan, J.C.; Nabors, L.B., 3rd. Ipilimumab-induced encephalopathy with a reversible splenial lesion. Cancer Immunol. Res. 2015, 3, 598–601. [Google Scholar] [CrossRef] [PubMed]
  359. Altman, A.L.; Golub, J.S.; Pensak, M.L.; Samy, R.N. Bilateral facial palsy following ipilimumab infusion for melanoma. Otolaryngol. Head Neck Surg. 2015, 153, 894–895. [Google Scholar] [CrossRef] [PubMed]
  360. Jang, H.; Kim, H.S.; Kim, J.H.; Lee, J.Y.; Park, H.S.; Kim, S.H. Ipilimumab in oral cancer: Immune checkpoint inhibition and safety. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2020, 129, 610–618. [Google Scholar] [CrossRef]
  361. Ali, A.S.; Manukian, G.; Johnson, J.M.; Vathiotis, I.; Axelrod, R.; Keith, S.W.; Curry, J.; Cognetti, D.; Luginbuhl, A.; Argiris, A.; et al. In-Field Toxicity Analysis of a Phase 1 Clinical Trial of Nivolumab and Ipilimumab with Definitive Radiation Therapy in Locally Advanced Squamous Cell Carcinoma of the Head and Neck. Int. J. Radiat. Oncol. Biol. Phys. 2023, 117, 181–185. [Google Scholar] [CrossRef] [PubMed]
  362. Burtness, B. First-Line Nivolumab Plus Ipilimumab in Recurrent/Metastatic Head and Neck Cancer—What Happened? J. Clin. Oncol. 2023, 41, 2134–2137. [Google Scholar] [CrossRef]
  363. Qin, L.; Wu, J. Targeting anticancer immunity in oral cancer: Drugs, products, and nanoparticles. Environ. Res. 2023, 239, 116751. [Google Scholar] [CrossRef]
  364. Pedroso, C.M.; de Pauli Paglioni, M.; Normando, A.G.C.; Chaves, A.L.F.; Kowalski, L.P.; de Castro Júnior, G.; Matos, L.L.; Willian Junior, W.N.; de Oliveira, T.B.; de Marchi, P.; et al. Preoperative neoadjuvant chemotherapy or immunotherapy in head and neck cancer: A systematic review and meta-analysis of surgical risk and pathologic response. Crit. Rev. Oncol. Hematol. 2025, 212, 104742. [Google Scholar] [CrossRef]
  365. Sharif, Z.; Larkin, J.; Pickering, L.; Young, K.; Idaikkadar, P.; Okines, A.; Tokaca, N.; Aguilar-Duran, S.; Heelan, K. Grade 3 and Grade 4 Cutaneous toxicities in patients across multiple solid tumour types receiving checkpoint inhibitor therapy: An observational study. The experience of a single large specialist institution. Clin. Exp. Dermatol. 2025, 50, 1812–1817. [Google Scholar] [CrossRef]
  366. Yap, T.A.; Parkes, E.E.; Peng, W.; Moyers, J.T.; Curran, M.A.; Tawbi, H.A. Development of immunotherapy combination strategies in cancer. Cancer Discov. 2021, 11, 1368–1397. [Google Scholar] [CrossRef]
  367. Ravi, P.; Babu, S. Emerging immune checkpoint inhibitors for the treatment of oropharyngeal squamous cell carcinoma. Oral Oncol. Rep. 2024, 12, 100650. [Google Scholar] [CrossRef]
  368. Mohan, S.P.; Bhaskaran, M.K.; George, A.L.; Thirutheri, A.; Somasundaran, M.; Pavithran, A. Immunotherapy in Oral Cancer. J. Pharm. Bioallied Sci. 2019, 11 (Suppl. 2), S107–S111. [Google Scholar] [CrossRef] [PubMed]
  369. Schadendorf, D.; Hodi, F.S.; Robert, C.; Weber, J.S.; Margolin, K.; Hamid, O.; Patt, D.; Chen, T.T.; Berman, D.M.; Wolchok, J.D. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J. Clin. Oncol. 2015, 33, 1889–1894. [Google Scholar] [CrossRef] [PubMed]
  370. Johnson, D.B.; Sullivan, R.J.; Menzies, A.M. Immune checkpoint inhibitors in challenging populations. Cancer 2017, 123, 1904–1911. [Google Scholar] [CrossRef]
  371. Postow, M.A.; Chesney, J.; Pavlick, A.C.; Robert, C.; Grossmann, K.; McDermott, D.D.; Linette, G.P.; Meyer, N.; Giguere, J.K.; Agarwala, S.S.; et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N. Engl. J. Med. 2015, 372, 2006–2017. [Google Scholar] [CrossRef] [PubMed]
  372. Michot, J.M.; Bigenwald, C.; Champiat, S.; Collins, M.; Carbonnel, F.; Postel-Vinay, S.; Berdelou, A.; Varga, A.; Bahleda, R.; Hollebecque, A.; et al. Immune-related adverse events with immune checkpoint blockade: A comprehensive review. Eur. J. Cancer 2016, 54, 139–148. [Google Scholar] [CrossRef]
  373. Valecha, G.; Pant, M.; Ibrahim, U.; Atallah, J.P. Immunotherapy-induced autoimmune hypophysitis. J. Oncol. Pharm. Pract. 2019, 25, 217–220. [Google Scholar] [CrossRef]
  374. Pachika, P.S.; Khanam, R.; Faisal, S.; Ahmad, T.; Chandrasekhara Pillai, A. Immunotherapy-Induced Anterior Hypophysitis. Cureus 2021, 13, e16538. [Google Scholar] [CrossRef] [PubMed]
  375. Sánchez Cánovas, M.; López Martín, A.; Montenegro Luis, S.; Sánchez Saura, A. Immune-mediated colitis secondary to treatment with nivolumab-ipilimumab in a patient with stage IV kidney cancer: What do we do when corticosteroids fail? Rev. Esp. Enfermedades Dig. 2022, 114, 554–555. [Google Scholar] [CrossRef]
  376. Bender, D.A.; Heilbroner, S.P.; Wang, T.J.C.; Shu, C.A.; Hyde, B.; Spina, C.; Cheng, S.K. Increased rates of immunosuppressive treatment and hospitalization after checkpoint inhibitor therapy in cancer patients with autoimmune disease. J. Immunother. Cancer 2020, 8, e001627. [Google Scholar] [CrossRef]
  377. Storwick, J.A.; Tam, H.; Rosenbaum, D.G.; Houghton, K. Checkpoint inhibitor immunotherapy induced inflammatory arthritis secondary to nivolumab and ipilimumab: A pediatric first. Pediatr. Rheumatol. Online J. 2024, 22, 49. [Google Scholar] [CrossRef] [PubMed]
  378. Khimani, K.; Patel, S.P.; Whyte, A.; Al-Zubidi, N. Case Report: Neuromyelitis Optica After Treatment of Uveal Melanoma with Nivolumab and Ipilimumab. Front. Oncol. 2022, 12, 806501. [Google Scholar] [CrossRef] [PubMed]
  379. Owosho, A.A.; Scordo, M.; Yom, S.K.; Randazzo, J.; Chapman, P.B.; Huryn, J.M.; Estilo, C.L. Osteonecrosis of the jaw a new complication related to ipilimumab. Oral Oncol. 2015, 51, e100–e101. [Google Scholar] [CrossRef] [PubMed]
  380. Spain, L.; Diem, S.; Larkin, J. Management of toxicities of immune checkpoint inhibitors. Ann. Oncol. 2016, 27, 559–566. [Google Scholar] [CrossRef]
  381. Kumar, R.; Chan, A.; Bandikatla, S.; Ranjan, S.; Ngo, P. Safety of immune checkpoint inhibitors in patients with preexisting autoimmune disorders. Curr. Probl. Cancer 2022, 46, 100864. [Google Scholar] [CrossRef] [PubMed]
  382. Fu, Z.; Zhang, X.; Gao, Y.; Fan, J.; Gao, Q. Enhancing the anticancer immune response with the assistance of drug repurposing and delivery systems. Clin. Transl. Med. 2023, 13, e1320. [Google Scholar] [CrossRef]
  383. Elad, S.; Zadik, Y.; Hewson, I.; Hovan, A.; Correa, M.B.; Logan, R.M.; Bowden, D.; Bossi, P.; Saunders, D.P.; Potting, C.; et al. A systematic review of viral infections associated with oral mucositis in cancer patients: Aetiology, clinical course, and management. Support. Care Cancer 2010, 18, 837–845. [Google Scholar] [CrossRef]
  384. Epstein, J.B.; Barasch, A. Oral complications in cancer patients: The role of the dental professional. J. Am. Dent. Assoc. 2008, 139, 535–536. [Google Scholar] [CrossRef]
  385. Dimopoulos, G.; Karabinis, A.; Samonis, G.; Falagas, M.E. Candidemia in immunocompromised and immunocompetent critically ill patients: A prospective comparative study. Eur. J. Clin. Microbiol. Infect. Dis. 2007, 26, 377–384. [Google Scholar] [CrossRef]
  386. Sunshine, J.; Taube, J.M. PD-1/PD-L1 inhibitors. Curr. Opin. Pharmacol. 2015, 23, 32–38. [Google Scholar] [CrossRef] [PubMed]
  387. Alix-Panabières, C.; Pantel, K. Liquid biopsy: From discovery to clinical application. Cancer Discov. 2021, 11, 858–873. [Google Scholar] [CrossRef] [PubMed]
  388. Wan, J.C.M.; Massie, C.; Garcia-Corbacho, J.; Mouliere, F.; Brenton, J.D.; Caldas, C.; Pacey, S.; Baird, R.; Rosenfeld, N. Liquid biopsies come of age: Towards implementation of circulating tumour DNA. Nat. Rev. Cancer 2017, 17, 223–238. [Google Scholar] [CrossRef] [PubMed]
  389. Buchbinder, E.I.; Desai, A. CTLA-4 and PD-1 pathways: Similarities, differences, and implications of their inhibition. Am. J. Clin. Oncol. 2016, 39, 98–106. [Google Scholar] [CrossRef] [PubMed]
  390. Vermorken, J.B.; Mesia, R.; Rivera, F.; Remenar, E.; Kawecki, A.; Rottey, S.; Erfan, J.; Zabolotnyy, D.; Kienzer, H.-R.; Cupissol, D.; et al. Platinum-Based Chemotherapy plus Cetuximab in Head and Neck Cancer. N. Engl. J. Med. 2008, 359, 1116–1127. [Google Scholar] [CrossRef]
  391. Uppaluri, R.; Haddad, R.I.; Tao, Y.; Le Tourneau, C.; Lee, N.Y.; Westra, W.; Chernock, R.; Tahara, M.; Harrington, K.J.; Klochikhin, A.L. Neoadjuvant and Adjuvant Pembrolizumab in Locally Advanced Head and Neck Cancer. N. Engl. J. Med. 2025, 393, 37–50. [Google Scholar] [CrossRef]
  392. Zhao, Y.; Wucherpfennig, K.W. Neoadjuvant immune checkpoint blockade enhances local and systemic tumor immunity in head and neck cancer. Curr. Opin. Oncol. 2024, 36, 136–142. [Google Scholar] [CrossRef]
  393. Zhou, S.; Qin, Y.; Lei, A.; Li, Y.; Yang, P.; Liu, H.; Sun, Y.; Zhang, J.; Deng, C.; Chen, Y. Neoadjuvant and Adjuvant Immunotherapy in the Treatment of Oral Squamous Cell Carcinoma. J. Biochem. Mol. Toxicol. 2025, 39, e70199. [Google Scholar] [CrossRef] [PubMed]
  394. Cramer, J.D.; Burtness, B.; Ferris, R.L. Immunotherapy for head and neck cancer: Recent advances and future directions. Oral Oncol. 2019, 99, 104460. [Google Scholar] [CrossRef]
  395. Haddad, R.I.; Harrington, K.; Tahara, M.; Ferris, R.L.; Gillison, M.; Fayette, J.; Daste, A.; Koralewski, P.; Zurawski, B.; Taberna, M.; et al. Nivolumab Plus Ipilimumab Versus EXTREME Regimen as First-Line Treatment for Recurrent/Metastatic Squamous Cell Carcinoma of the Head and Neck: The Final Results of CheckMate 651. J. Clin. Oncol. 2023, 41, 2166–2180. [Google Scholar] [CrossRef]
  396. Chow, L.Q.M.; Haddad, R.; Gupta, S.; Mahipal, A.; Mehra, R.; Tahara, M.; Berger, R.; Eder, J.P.; Burtness, B.; Lee, S.H.; et al. Antitumor Activity of Pembrolizumab in Biomarker-Unselected Patients with Recurrent and/or Metastatic Head and Neck Squamous Cell Carcinoma: Results From the Phase Ib KEYNOTE-012 Expansion Cohort. J. Clin. Oncol. 2016, 34, 3838–3845. [Google Scholar] [CrossRef] [PubMed]
  397. Cristescu, R.; Mogg, R.; Ayers, M.; Albright, A.; Murphy, E.; Yearley, J.; Sher, X.; Liu, X.Q.; Lu, H.; Nebozhyn, M.; et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 2018, 362, eaar3593. [Google Scholar] [CrossRef] [PubMed]
  398. Vinay, D.S.; Ryan, E.P.; Pawelec, G.; Talib, W.H.; Stagg, J.; Elkord, E.; Lichtor, T.; Decker, W.K.; Whelan, R.L.; Kumara, H.M.C.S.; et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin. Cancer Biol. 2015, 35, S185–S198. [Google Scholar] [CrossRef] [PubMed]
  399. Topalian, S.L.; Taube, J.M.; Anders, R.A.; Pardoll, D.M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer 2016, 16, 275–287. [Google Scholar] [CrossRef]
  400. Herbst, R.S.; Soria, J.C.; Kowanetz, M.; Fine, G.D.; Hamid, O.; Gordon, M.S.; Sosman, J.A.; McDermott, D.F.; Powderly, J.D.; Gettinger, S.N.; et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 2014, 515, 563–567. [Google Scholar] [CrossRef]
  401. Kiousi, D.E.; Kouroutzidou, A.Z.; Neanidis, K.; Karavanis, E.; Matthaios, D.; Pappa, A.; Galanis, A. The Role of the Gut Microbiome in Cancer Immunotherapy: Current Knowledge and Future Directions. Cancers 2023, 15, 2101. [Google Scholar] [CrossRef] [PubMed]
  402. Li, X.; Zhang, S.; Guo, G.; Han, J.; Yu, J. Gut microbiome in modulating immune checkpoint inhibitors. EBioMedicine 2022, 82, 104163. [Google Scholar] [CrossRef]
  403. Wang, X.X.; Liu, Y.T.; Ren, J.G.; Liu, H.M.; Fu, Q.; Yang, Y.; Fu, Q.Y.; Chen, G. Salivary Microbiome Relates to Neoadjuvant Immunotherapy Response in OSCC. J. Dent. Res. 2024, 103, 988–998. [Google Scholar] [CrossRef]
  404. Matsui, K.; Tani, R.; Yamasaki, S.; Ito, N.; Hamada, A.; Shintani, T.; Otomo, T.; Tokumaru, K.; Yanamoto, S.; Okamoto, T. Analysis of Oral and Gut Microbiome Composition and Its Impact in Patients with Oral Squamous Cell Carcinoma. Int. J. Mol. Sci. 2024, 25, 6077. [Google Scholar] [CrossRef] [PubMed]
  405. Helmink, B.A.; Khan, M.A.W.; Hermann, A.; Gopalakrishnan, V.; Wargo, J.A. The microbiome, cancer, and cancer therapy. Nat. Med. 2019, 25, 377–388. [Google Scholar] [CrossRef] [PubMed]
  406. Fares, C.M.; Van Allen, E.M.; Drake, C.G.; Allison, J.P.; Hu-Lieskovan, S. Mechanisms of Resistance to Immune Checkpoint Blockade: Why Does Checkpoint Inhibitor Immunotherapy Not Work for All Patients? Am. Soc. Clin. Oncol. Educ. Book 2019, 39, 147–164. [Google Scholar] [CrossRef] [PubMed]
  407. Castro, F.; Cardoso, A.P.; Gonçalves, R.M.; Serre, K.; Oliveira, M.J. Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion. Front. Immunol. 2018, 9, 847. [Google Scholar] [CrossRef]
  408. Garrido, F.; Aptsiauri, N.; Doorduijn, E.M.; Garcia Lora, A.M.; van Hall, T. The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr. Opin. Immunol. 2016, 39, 44–51. [Google Scholar] [CrossRef]
  409. Sharma, P.; Hu-Lieskovan, S.; Wargo, J.A.; Ribas, A. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell 2017, 168, 707–723. [Google Scholar] [CrossRef]
  410. Ali, A.; Molska, G.R.; Yeo, H.; Esfandiari, N.; Jeong, W.; Huang, M.; Magalhaes, M. Immune Microenvironment in Oral Potentially Malignant Disorders and Oral Cancer: A Narrative Review. Int. J. Mol. Sci. 2025, 26, 6650. [Google Scholar] [CrossRef]
  411. Mandal, R.; Şenbabaoğlu, Y.; Desrichard, A.; Havel, J.J.; Dalin, M.G.; Riaz, N.; Lee, K.W.; Ganly, I.; Hakimi, A.A.; Chan, T.A.; et al. The head and neck cancer immune landscape and its immunotherapeutic implications. JCI Insight 2016, 1, e89829. [Google Scholar] [CrossRef]
  412. Petrova, V.; Annicchiarico-Petruzzelli, M.; Melino, G.; Amelio, I. The hypoxic tumour microenvironment. Oncogenesis 2018, 7, 10. [Google Scholar] [CrossRef]
  413. Fischer, K.; Hoffmann, P.; Voelkl, S.; Meidenbauer, N.; Ammer, J.; Edinger, M.; Gottfried, E.; Schwarz, S.; Rothe, G.; Hoves, S.; et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 2007, 109, 3812–3819. [Google Scholar] [CrossRef]
  414. Monteran, L.; Erez, N. The Dark Side of Fibroblasts: Cancer-Associated Fibroblasts as Mediators of Immunosuppression in the Tumor Microenvironment. Front. Immunol. 2019, 10, 1835. [Google Scholar] [CrossRef]
  415. Andrews, L.P.; Yano, H.; Vignali, D.A.A. Inhibitory receptors and ligands beyond PD-1, PD-L1 and CTLA-4: Breakthroughs or backups. Nat. Immunol. 2019, 20, 1425–1434. [Google Scholar] [CrossRef]
  416. Hsu, J.; Hodgins, J.J.; Marathe, M.; Nicolai, C.J.; Bourgeois-Daigneault, M.C.; Trevino, T.N.; Azimi, C.S.; Scheer, A.K.; Randolph, H.E.; Thompson, T.W.; et al. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J. Clin. Invest. 2018, 128, 4654–4668. [Google Scholar] [CrossRef] [PubMed]
  417. Liu, X.; Ranganathan, R.; Jiang, S.; Fang, C.; Sun, J.; Kim, S.; Newick, K.; Lo, A.; June, C.H.; Zhao, Y.; et al. A Chimeric Switch-Receptor Targeting PD1 Augments the Efficacy of Second-Generation CAR T Cells in Advanced Solid Tumors. Cancer Res. 2016, 76, 1578–1590. [Google Scholar] [CrossRef] [PubMed]
  418. Xu, L.; Sun, H.; Lemoine, N.R.; Xuan, Y.; Wang, P. Oncolytic vaccinia virus and cancer immunotherapy. Front. Immunol. 2024, 14, 1324744. [Google Scholar] [CrossRef] [PubMed]
  419. Tawbi, H.A.; Schadendorf, D.; Lipson, E.J.; Ascierto, P.A.; Matamala, L.; Castillo Gutiérrez, E.; Rutkowski, P.; Gogas, H.J.; Lao, C.D.; De Menezes, J.J.; et al. Relatlimab and Nivolumab versus Nivolumab in Untreated Advanced Melanoma. N. Engl. J. Med. 2022, 386, 24–34. [Google Scholar] [CrossRef] [PubMed]
  420. Wolf, Y.; Anderson, A.C.; Kuchroo, V.K. TIM3 comes of age as an inhibitory receptor. Nat. Rev. Immunol. 2020, 20, 173–185. [Google Scholar] [CrossRef]
  421. Chauvin, J.M.; Zarour, H.M. TIGIT in cancer immunotherapy. J. Immunother. Cancer 2020, 8, e000957. [Google Scholar] [CrossRef]
  422. Hegde, M.; Joseph, S.K.; Pashankar, F.; DeRenzo, C.; Sanber, K.; Navai, S.; Byrd, T.T.; Hicks, J.; Xu, M.L.; Gerken, C.; et al. Tumor response and endogenous immune reactivity after administration of HER2 CAR T cells in a child with metastatic rhabdomyosarcoma. Nat. Commun. 2020, 11, 3549. [Google Scholar] [CrossRef] [PubMed]
  423. Yu, Y.; Lee, N.Y. JAVELIN Head and Neck 100: A Phase III Trial of Avelumab and Chemoradiation for Locally Advanced Head and Neck Cancer. Future Oncol. 2019, 15, 687–694. [Google Scholar] [CrossRef]
  424. Hui, R.; Liu, X.; Fan, Z.; Ji, H.; Wei, D.; Ren, G. The Efficacy of Cetuximab Plus PD-1 Inhibitors as Salvage Therapy in PD-1 Refractory Patients with Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma. J. Cancer 2024, 15, 1668–1674. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Structural features and essential characteristics of pembrolizumab—humanized monoclonal IgG4-κ isotype antibody containing a stabilizing S228P (Ser228Pro) Fc mutation according to [212]; pembrolizumab consists of constant heavy (CH) and constant light (CL) chains, an antigen-binding fragment (Fab), a crystallizable fragment (Fc), and variable heavy (VH) together with variable light (VL) regions.
Figure 1. Structural features and essential characteristics of pembrolizumab—humanized monoclonal IgG4-κ isotype antibody containing a stabilizing S228P (Ser228Pro) Fc mutation according to [212]; pembrolizumab consists of constant heavy (CH) and constant light (CL) chains, an antigen-binding fragment (Fab), a crystallizable fragment (Fc), and variable heavy (VH) together with variable light (VL) regions.
Cancers 17 02805 g001
Figure 2. Mechanisms of action of selected immune checkpoint inhibitors, according to [389], including pembrolizumab, durvalumab, and ipilimumab, where Tprog cell—progenitor-like exhausted T cell. T-cell activation requires two separate signals: the first involves the T-cell receptor (TCR) recognizing antigen–MHC (major histocompatibility complex) complexes, while the second comes from the interaction of co-stimulatory molecules with their respective receptors on the T-cell surface. In the tumor microenvironment (TME), however, co-inhibitory signals become upregulated, hindering T-cell activation by engaging with their corresponding receptors (such as PD-1/CD279 with PD-L1/CD274, CTLA-4 with B7-1/CD80 and B7-2/CD86). Blocking the CTLA-4 and PD-1/PD-L1 pathways enhances immune responses in different ways. Inhibiting CTLA-4 boosts the activation and expansion of diverse T-cell populations while decreasing the suppressive effects of regulatory T cells. Blocking the PD-1 pathway reactivates dormant T cells that target tumors. Using both blockades together may produce a stronger and more sustained immune attack against cancer; pembrolizumab, durvalumab, and ipilimumab can partially reactivate T cells by blocking these inhibitory pathways.
Figure 2. Mechanisms of action of selected immune checkpoint inhibitors, according to [389], including pembrolizumab, durvalumab, and ipilimumab, where Tprog cell—progenitor-like exhausted T cell. T-cell activation requires two separate signals: the first involves the T-cell receptor (TCR) recognizing antigen–MHC (major histocompatibility complex) complexes, while the second comes from the interaction of co-stimulatory molecules with their respective receptors on the T-cell surface. In the tumor microenvironment (TME), however, co-inhibitory signals become upregulated, hindering T-cell activation by engaging with their corresponding receptors (such as PD-1/CD279 with PD-L1/CD274, CTLA-4 with B7-1/CD80 and B7-2/CD86). Blocking the CTLA-4 and PD-1/PD-L1 pathways enhances immune responses in different ways. Inhibiting CTLA-4 boosts the activation and expansion of diverse T-cell populations while decreasing the suppressive effects of regulatory T cells. Blocking the PD-1 pathway reactivates dormant T cells that target tumors. Using both blockades together may produce a stronger and more sustained immune attack against cancer; pembrolizumab, durvalumab, and ipilimumab can partially reactivate T cells by blocking these inhibitory pathways.
Cancers 17 02805 g002
Table 1. Selected ICIs in cancer immunotherapy according to [46,47,48].
Table 1. Selected ICIs in cancer immunotherapy according to [46,47,48].
Checkpoint Inhibitor
(Approval Year);
Checkpoint Target;
Ig Type
Mechanism of ActionConditionsInvestigationalTreatment-Related
Side Effects
Pembrolizumab
(Keytruda, 2014);
PD-1;
IgG4
Binds PD-1 on activated T cells, blocking its interaction with PD-L1/PD-L2. This prevents inhibitory signaling, restores T-cell activation, and enhances antitumor immunity while minimizing Fc-mediated cytotoxicity.Head and neck squamous cell carcinoma (HNSCC),
Recurrent, locally advanced, or metastatic esophageal squamous cell carcinoma (ESCC),
Hepatocellular carcinoma (HCC),
Merkel cell carcinoma (MCC),
Malignant pleural mesothelioma (MPM),
Non-small cell lung cancer (NSCLC),
Metastatic small cell lung cancer (SCLC),
Recurrent cutaneous squamous cell carcinoma (cSCC),
Renal cell carcinoma (RCC),
Urothelial carcinoma (UC),
Triple-negative breast cancer (TNBC),
Microsatellite instability-high (MSI-H) or
Mismatch repair (MMR)-deficient solid tumors,
Gastroesophageal junction (GEJ) cancer,
Cervical cancer,
Endometrial cancer,
Stomach cancer,
Classical Hodgkin’s lymphoma,
Metastatic melanoma
Renal transitional cell carcinoma (TCC),
MSI-H/dMMR (deficient DNA mismatch repair) noncolorectal cancer,
Brain tumor,
Metastatic HER2-negative breast cancer,
Metastatic anal cancer,
Lymphoma,
Pancreatic cancer,
Recurrent glioblastoma,
Refractory esophageal cancer
Fatigue,
Skin adverse reactions,
Arthralgia,
Pneumonitis,
Colitis
Hepatitis,
Endocrinopathies,
Nephritis
Durvalumab
(Imfinzi, 2017);
PD-L1;
IgG1;
Binds PD-L1, blocking its interaction with PD-1 and CD80, thereby preventing T-cell inhibition and promoting immune-mediated tumor destructionHCC,
NSCL,
SCLC,
Metastatic UC
Extensive-stage small-cell lung cancer (ES-SCLC),
Recurrent and/or metastatic HNSCC
Non-muscle invasive bladder cancer,
Anal cancer,
Breast neoplasms,
Cervical cancer,
Colorectal neoplasms
Lymphoma,
Mesothelioma,
Solid tumors,
Esophageal cancer,
Nasopharyngeal carcinoma
Hepatitis,
Pneumonitis,
Colitis,
Endocrinopathies
Ipilimumab
(Yervoy, 2011);
CTLA-4;
IgG1;
Binds CTLA-4 on activated T cells, preventing its interaction with B7-1 (CD80) and B7-2 (CD86) on antigen-presenting cells. This blocks inhibitory signaling, promotes co-stimulatory CD28 signaling, and increases T-cell proliferation and antitumor activity.MPM,
NSCLC,
Advanced RCC,
Metastatic melanoma,
dMMR colorectal cancer,
HCC—in combination with Nivolumab,
ESCC—in combination with Nivolumab
SCLC,
Advanced UC
Prostate cancer,
Solid tumors,
Untreated and advanced melanoma
Colitis,
Hepatitis,
Dermatitis,
Neuropathies,
Endocrinopathies,
Pneumonitis,
Nephritis,
Encephalitis
Table 2. Effector immune responses triggered by PD-1 blockade according to [129].
Table 2. Effector immune responses triggered by PD-1 blockade according to [129].
Immunological Action
Dendritic cells
Elevated expression of CD40/CD40L, promoting dendritic cell (DC) survival and apoptosis resistance;
Prolonged DC lifespan;
Recruitment and activation of T cells, stimulating local antitumor immune responses;
Enhanced IL-12 secretion in response to T cells activated by anti-PD-1 therapy;
Facilitating cross-talk between adaptive and innate immunity, enabling tumor-specific immune responses.
Macrophages/monocytes
Enhanced infiltration of tumor-associated macrophages (TAMs);
Elevated M1-to-M2 macrophage ratio, linked to better prognosis and decreased tumor burden;
Augmented phagocytic activity against tumor cells;
Upregulation of IL-12 secretion and activation of signal transducer and activators of transcription 1 (STAT1) cellular messaging;
Increased production of IL-6.
Natural killer cells
Enhanced tumor infiltration;
Restoration of cytotoxic activity following immune suppression in the tumor microenvironment;
Elevated cell proliferation and differentiation;
Increased secretion of granzyme B, perforin, and interferon gamma (IFN-γ).
T cells
Amplified expansion of specific T-cell populations;
Upregulated production of effector cytokines by infiltrating T cells;
Heightened levels of IFN-γ and tumor necrosis factor alpha (TNF-α) expression;
Greater infiltration of T cells into tumor tissue;
Antigen-specific immune activation driven by T cells.
Table 3. Regulation of PD-L1 by tumor microenvironment (TME) according to [287], where p65 refers to the subunit of the transcription factor NF-κB, NRF1—nuclear respiratory factor 1, miR-15b-5p—microRNA-15b-5p, STAT3—signal transducer and activator of transcription 3, IL-6—interleukin-6, NF-κB—nuclear factor-kappa B, Smad2/3—Sma and Mad intracellular signaling proteins family member 2/3, IFN-γ—interferon-gamma, HK2—hexokinase 2, IκBα T291—IkappaB alpha amino acid residue number 291, miRNA—microRNA, mRNA—messenger RNA, NSCLC—non-small cell lung cancer, M2—anti-inflammatory macrophages, CD8—cluster of differentiation 8.
Table 3. Regulation of PD-L1 by tumor microenvironment (TME) according to [287], where p65 refers to the subunit of the transcription factor NF-κB, NRF1—nuclear respiratory factor 1, miR-15b-5p—microRNA-15b-5p, STAT3—signal transducer and activator of transcription 3, IL-6—interleukin-6, NF-κB—nuclear factor-kappa B, Smad2/3—Sma and Mad intracellular signaling proteins family member 2/3, IFN-γ—interferon-gamma, HK2—hexokinase 2, IκBα T291—IkappaB alpha amino acid residue number 291, miRNA—microRNA, mRNA—messenger RNA, NSCLC—non-small cell lung cancer, M2—anti-inflammatory macrophages, CD8—cluster of differentiation 8.
Regulatory FactorMechanism/PathwayEffect on PD-L1 ExpressionCancer TypeTherapeutic Implications
IL-17AActivates p65/NRF1/miR-15b-5p axisIncreases PD-L1 expressionColorectal cancerPromotes resistance to anti-PD-1 therapy
IL-6Activates the STAT3 pathwayInduces PD-L1 on bone marrow cellsGlioblastomaBlocking IL-6 inhibits tumor growth, improves survival
TNF-αActivates the NF-κB pathwayInduces PD-L1 on mast cellsGastric cancerPromotes immune evasion and tumor progression
TGF-β (from TAMs)Inhibits Smad2/3 phosphorylation and mitochondrial respirationSuppresses T-cell activity, indirectly sustaining PD-L1 effectsGeneral tumor TMEReduces IFN-γ and granzyme B production
High GlucoseCauses HK2 dissociation, IκBα T291 phosphorylation, NF-κB activationUpregulates PD-L1 transcriptionallyGlioblastomaHK2 inhibition + anti-PD-1 synergistically reduces tumor burden
Exosomes (general)Transports miRNAs, mRNAs, proteinsMediates PD-L1 regulation via intercellular signalingVarious cancersKey regulators of immune escape
PD-L1 Splice Variants (Exosomal)Lacks transmembrane domain; acts as decoysInduces resistance to PD-L1 blockadeNSCLC (aPD-L1-resistant)Limits the effectiveness of anti-PD-L1 antibodies
Glioblastoma Stem Cell ExosomesActivates STAT3, M2 macrophage polarizationEnhances PD-L1 expression on macrophagesGlioblastomaPromotes immune suppression in TME
Metastatic Melanoma ExosomesCarries PD-L1 on surface, responsive to IFN-γIncreases circulating PD-L1 levelsMelanomaCorrelates with suppressed CD8 T-cell activity and tumor growth
Table 4. Chosen drug targets involving immune-modulating receptors according to [126], where AP-1—activator protein 1; CD—cluster of differentiation; CTLA-4—cytotoxic T-lymphocyte-associated protein 4; Eomes—eomesodermin; ERK—extracellular signal-regulated kinase; GATA3—GATA binding protein 3; HLA—human leukocyte antigen; ICOS—inducible T-cell co-stimulator; JNK, Janus kinase; MAPK—mitogen-activated protein kinase; mTOR—mechanistic target of rapamycin; NFAT—nuclear factor of activated T cells; NF-κB—nuclear factor kappa-light-chain-enhancer of activated B cells; PD-1—programmed cell death protein 1; PI3K-AKT—phosphoinositide 3-kinase/protein kinase B; T-bet—T-box transcription factor expressed in T cells.
Table 4. Chosen drug targets involving immune-modulating receptors according to [126], where AP-1—activator protein 1; CD—cluster of differentiation; CTLA-4—cytotoxic T-lymphocyte-associated protein 4; Eomes—eomesodermin; ERK—extracellular signal-regulated kinase; GATA3—GATA binding protein 3; HLA—human leukocyte antigen; ICOS—inducible T-cell co-stimulator; JNK, Janus kinase; MAPK—mitogen-activated protein kinase; mTOR—mechanistic target of rapamycin; NFAT—nuclear factor of activated T cells; NF-κB—nuclear factor kappa-light-chain-enhancer of activated B cells; PD-1—programmed cell death protein 1; PI3K-AKT—phosphoinositide 3-kinase/protein kinase B; T-bet—T-box transcription factor expressed in T cells.
Inhibitory ReceptorsSuppressed Effector
Signaling Activity
Stimulatory ReceptorsEnhanced Effector
Signaling Activity
CTLA4 (CD152)PI3K-AKT,
AP-1,
NF-κB,
NFAT,
MAPK
CD28PI3K-AKT,
ERK,
T-bet,
Eomes,
GATA3,
AP-1,
NFAT,
NF-κBdata
PD-1 (CD279)MAPK,
PI3K-AKT,
AP-1,
NFAT,
NF-κBdata
ICOSJNK,
PI3K-AKT-mTOR-NFAT
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Kawczak, P.; Feszak, I.J.; Bączek, T. Comparative Mechanistic Insights and Therapeutic Potential of Pembrolizumab, Durvalumab, and Ipilimumab as Immune Checkpoint Inhibitors in the Targeted Management of Oral and Head and Neck Squamous Cell Carcinoma. Cancers 2025, 17, 2805. https://doi.org/10.3390/cancers17172805

AMA Style

Kawczak P, Feszak IJ, Bączek T. Comparative Mechanistic Insights and Therapeutic Potential of Pembrolizumab, Durvalumab, and Ipilimumab as Immune Checkpoint Inhibitors in the Targeted Management of Oral and Head and Neck Squamous Cell Carcinoma. Cancers. 2025; 17(17):2805. https://doi.org/10.3390/cancers17172805

Chicago/Turabian Style

Kawczak, Piotr, Igor Jarosław Feszak, and Tomasz Bączek. 2025. "Comparative Mechanistic Insights and Therapeutic Potential of Pembrolizumab, Durvalumab, and Ipilimumab as Immune Checkpoint Inhibitors in the Targeted Management of Oral and Head and Neck Squamous Cell Carcinoma" Cancers 17, no. 17: 2805. https://doi.org/10.3390/cancers17172805

APA Style

Kawczak, P., Feszak, I. J., & Bączek, T. (2025). Comparative Mechanistic Insights and Therapeutic Potential of Pembrolizumab, Durvalumab, and Ipilimumab as Immune Checkpoint Inhibitors in the Targeted Management of Oral and Head and Neck Squamous Cell Carcinoma. Cancers, 17(17), 2805. https://doi.org/10.3390/cancers17172805

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop