Urinary Metabolome Study for Monitoring Prostate Cancer Recurrence Following Radical Prostatectomy
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Urine Samples Collection
2.3. Inclusion and Exclusion Criteria
2.4. Volatile Organic Compounds Extraction from Urine Samples
2.5. Gas Chromatography/Mass Spectrometry (GC-MS) Coupled with Thermal Desorption Unit
2.6. Statistical Data Analysis
3. Results
3.1. VOCs Extraction and Identification
3.2. Partial Least Squares Discriminant Analysis (PLS-DA) Multivariate Model
3.2.1. Prostate Cancer Diagnosis (Biopsy-Designated-Positive Against Biopsy-Designated-Negative PCa)
3.2.2. Distinguishing Between Pre- and Post-Radical Prostatectomy (RP)
3.2.3. Distinguishing the Different Post-Radical Prostatectomy (RP) Outcomes
4. Discussion
4.1. Application of Urine VOCs Selected by PLS-DA Models in Class Differentiation
4.2. Biological Significance of Selected VOCs
4.2.1. Hydrocarbons and Aldehydes Metabolism
4.2.2. Ketones, Esters, and Alcohols Metabolism
4.2.3. Nitrogen- and Sulfur-Containing Molecules in Cancer Metabolism
- Early Detection: VOCs are small molecules that can be released into urine through metabolic processes or other biological pathways that are associated with cancer cells. Changes in VOC profiles may occur early in the progression of disease, potentially allowing for earlier detection of recurrence compared to traditional methods.
- Non-invasive Monitoring: A radical prostatectomy is a common treatment for localized prostate cancer. After surgery, the primary concern is monitoring for cancer recurrence. Current monitoring methods, such as PSA testing and imaging techniques, have limitations. The use of VOCs in urine offers a non-invasive approach that could complement or improve existing methods.
- Mass Spectrometry Precision: Mass spectrometry is a highly sensitive and specific analytical technique capable of detecting and quantifying VOCs in biological samples such as urine. This technology allows for the identification of specific VOC profiles that correlate with prostate cancer status, providing a reliable method for monitoring patients post a radical prostatectomy.
- Personalized Medicine: The identification of distinct VOC signatures associated with prostate cancer recurrence can facilitate personalized treatment strategies. By monitoring VOC profiles over time, clinicians may tailor interventions more effectively, including the timing of adjuvant therapies or interventions aimed at preventing disease progression.
- Research and Clinical Translation: Previous studies have shown promising results regarding the feasibility and accuracy of using VOC analysis for cancer monitoring. Further research aims to validate these findings in larger cohorts, establish standardized protocols, and potentially integrate VOC analysis into routine clinical practice as a complementary diagnostic tool.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AUC | Area Under Curve |
BCR | Biochemical Recurrence |
CIS | Cryogenic Injection System |
DI | Deionized |
fc | Fold Change |
FDR | False Discovery Rate |
GC-MS | Gas Chromatography-Mass Spectrometry |
IS | Internal Standard |
RCM | Recurrent Metastasis |
NIST | National Institute Of Standards And Technology |
PCa | Prostate Cancer |
PLS-DA | Partial Least Squares Discriminant Analysis |
PSA | Prostate-Specific Antigen |
RCH | Recovered Healthy |
ROC | Receiver Operating Characteristic Curve |
RP | Radical Prostatectomy |
SBSE | Stir Bar Sorptive Extraction |
TDT | Thermal Desorption Tube |
TDU | Thermal Desorption Unit |
VIP | Variable Importance In Projection |
VOCs | Volatile Organic Compounds |
References
- Siegel, R.L.; Kratzer, T.B.; Giaquinto, A.N.; Sung, H.; Jemal, A. Cancer Statistics, 2025. CA Cancer J. Clin. 2025, 75, 10–45. [Google Scholar] [CrossRef]
- Bekelman, J.E.; Rumble, R.B.; Chen, R.C.; Pisansky, T.M.; Finelli, A.; Feifer, A.; Nguyen, P.L.; Loblaw, D.A.; Tagawa, S.T.; Gillessen, S.; et al. Clinically Localized Prostate Cancer: ASCO Clinical Practice Guideline Endorsement of an American Urological Association/American Society for Radiation Oncology/Society of Urologic Oncology Guideline. J. Clin. Oncol. 2018, 36, 3251–3258. [Google Scholar] [CrossRef] [PubMed]
- Doan, P.; Scheltema, M.J.; Amin, A.; Shnier, R.; Geboers, B.; Gondoputro, W.; Moses, D.; Van Leeuwen, P.J.; Haynes, A.M.; Matthews, J.; et al. Final Analysis of the Magnetic Resonance Imaging in Active Surveillance Trial. J. Urol. 2022, 208, 1028–1036. [Google Scholar] [CrossRef]
- Eklund, M.; Jäderling, F.; Discacciati, A.; Bergman, M.; Annerstedt, M.; Aly, M.; Glaessgen, A.; Carlsson, S.; Grönberg, H.; Nordström, T. MRI-Targeted or Standard Biopsy in Prostate Cancer Screening. N. Engl. J. Med. 2021, 385, 908–920. [Google Scholar] [CrossRef]
- Evans, A.J. Treatment Effects in Prostate Cancer. Mod. Pathol. 2018, 31, 110–121. [Google Scholar] [CrossRef]
- Khan, A.; Khan, A.U.; Siref, L.; Feloney, M. Focal Cryoablation of the Prostate: Primary Treatment in 163 Patients With Localized Prostate Cancer. Cureus 2023, 15, e37172. [Google Scholar] [CrossRef]
- Nyk, Ł.; Michalak, W.; Szempliński, S.; Woźniak, R.; Zagożdżon, B.; Krajewski, W.; Kryst, P.; Kamecki, H.; Poletajew, S. High-Intensity Focused-Ultrasound Focal Therapy Versus Laparoscopic Radical Prostatectomy: A Comparison of Oncological and Functional Outcomes in Low- and Intermediate-Risk Prostate Cancer Patients. J. Pers. Med. 2022, 12, 251. [Google Scholar] [CrossRef]
- Wang, I.; Song, L.; Wang, B.Y.; Rezazadeh Kalebasty, A.; Uchio, E.; Zi, X. Prostate Cancer Immunotherapy: A Review of Recent Advancements with Novel Treatment Methods and Efficacy. Am. J. Clin. Exp. Urol. 2022, 10, 210–233. [Google Scholar] [PubMed]
- Bach, C.; Pisipati, S.; Daneshwar, D.; Wright, M.; Rowe, E.; Gillatt, D.; Persad, R.; Koupparis, A. The Status of Surgery in the Management of High-Risk Prostate Cancer. Nat. Rev. Urol. 2014, 11, 342–351. [Google Scholar] [CrossRef]
- Kan, C.K.; Qureshi, M.M.; Gupta, A.; Agarwal, A.; Gignac, G.A.; Bloch, B.N.; Thoreson, N.; Hirsch, A.E. Risk Factors Involved in Treatment Delays and Differences in Treatment Type for Patients with Prostate Cancer by Risk Category in an Academic Safety Net Hospital. Adv. Radiat. Oncol. 2018, 3, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Sekhoacha, M.; Riet, K.; Motloung, P.; Gumenku, L.; Adegoke, A.; Mashele, S. Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches. Molecules 2022, 27, 5730. [Google Scholar] [CrossRef]
- Kasivisvanathan, V.; Rannikko, A.S.; Borghi, M.; Panebianco, V.; Mynderse, L.A.; Vaarala, M.H.; Briganti, A.; Budäus, L.; Hellawell, G.; Hindley, R.G.; et al. MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis. N. Engl. J. Med. 2018, 378, 1767–1777. [Google Scholar] [CrossRef]
- Nordström, T.; Discacciati, A.; Bergman, M.; Clements, M.; Aly, M.; Annerstedt, M.; Glaessgen, A.; Carlsson, S.; Jäderling, F.; Eklund, M.; et al. Prostate Cancer Screening Using a Combination of Risk-Prediction, MRI, and Targeted Prostate Biopsies (STHLM3-MRI): A Prospective, Population-Based, Randomised, Open-Label, Non-Inferiority Trial. Lancet Oncol. 2021, 22, 1240–1249. [Google Scholar] [CrossRef]
- Miller, K.D.; Nogueira, L.; Devasia, T.; Mariotto, A.B.; Yabroff, K.R.; Jemal, A.; Kramer, J.; Siegel, R.L. Cancer Treatment and Survivorship Statistics, 2022. CA. Cancer J. Clin. 2022, 72, 409–436. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA. Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- Wu, S.; Xie, L.; Lin, S.X.; Wirth, G.J.; Lu, M.; Zhang, Y.; Blute, M.L.; Dahl, D.M.; Wu, C.-L. Quantification of Perineural Invasion Focus after Radical Prostatectomy Could Improve Predictive Power of Recurrence. Hum. Pathol. 2020, 104, 96–104. [Google Scholar] [CrossRef]
- Zattoni, F.; Heidegger, I.; Kasivisvanathan, V.; Kretschmer, A.; Marra, G.; Magli, A.; Preisser, F.; Tilki, D.; Tsaur, I.; Valerio, M.; et al. Radiation Therapy After Radical Prostatectomy: What Has Changed Over Time? Front. Surg. 2021, 8, 691473. [Google Scholar] [CrossRef]
- Marino, F.; Moretto, S.; Rossi, F.; Bizzarri, F.P.; Gandi, C.; Filomena, G.B.; Gavi, F.; Russo, P.; Campetella, M.; Totaro, A.; et al. Robot-Assisted Radical Prostatectomy with the Hugo RAS and Da Vinci Surgical Robotic Systems: A Systematic Review and Meta-Analysis of Comparative Studies. Eur. Urol. Focus. 2024, in press. [Google Scholar] [CrossRef] [PubMed]
- Bommelaere, T.; Villers, A.; Puech, P.; Ploussard, G.; Labreuche, J.; Drumez, E.; Leroy, X.; Olivier, J. Risk Estimation of Metastatic Recurrence After Prostatectomy: A Model Using Preoperative Magnetic Resonance Imaging and Targeted Biopsy. Eur. Urol. Open Sci. 2022, 41, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Shore, N.D.; Moul, J.W.; Pienta, K.J.; Czernin, J.; King, M.T.; Freedland, S.J. Biochemical Recurrence in Patients with Prostate Cancer after Primary Definitive Therapy: Treatment Based on Risk Stratification. Prostate Cancer Prostatic Dis. 2024, 27, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.T.; Kim, J.; Kim, W.-J. How Can We Best Manage Biochemical Failure after Radical Prostatectomy? Investig. Clin. Urol. 2022, 63, 592. [Google Scholar] [CrossRef]
- Albisinni, S.; Diamand, R. Understanding Biochemical Recurrence after Radical Prostatectomy: Trust Biology, Not a Number. Prostate Cancer Prostatic Dis. 2023, 26, 637–638. [Google Scholar] [CrossRef]
- Rebello, R.J.; Oing, C.; Knudsen, K.E.; Loeb, S.; Johnson, D.C.; Reiter, R.E.; Gillessen, S.; Van Der Kwast, T.; Bristow, R.G. Prostate Cancer. Nat. Rev. Dis. Primer 2021, 7, 9. [Google Scholar] [CrossRef]
- Tourinho-Barbosa, R.; Srougi, V.; Nunes-Silva, I.; Baghdadi, M.; Rembeyo, G.; Eiffel, S.S.; Barret, E.; Rozet, F.; Galiano, M.; Cathelineau, X.; et al. Biochemical Recurrence after Radical Prostatectomy: What Does It Mean? Int. Braz. J. Urol. 2018, 44, 14–21. [Google Scholar] [CrossRef]
- Jiang, Q.; Xie, M.; He, M.; Yan, F.; Chen, M.; Xu, S.; Zhang, X.; Shen, P. PITX2 Methylation: A Novel and Effective Biomarker for Monitoring Biochemical Recurrence Risk of Prostate Cancer. Medicine 2019, 98, e13820. [Google Scholar] [CrossRef] [PubMed]
- Parker, C.; Castro, E.; Fizazi, K.; Heidenreich, A.; Ost, P.; Procopio, G.; Tombal, B.; Gillessen, S. Prostate Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2020, 31, 1119–1134. [Google Scholar] [CrossRef]
- Cheung, P.K.; Ma, M.H.; Tse, H.F.; Yeung, K.F.; Tsang, H.F.; Chu, M.K.M.; Kan, C.M.; Cho, W.C.S.; Ng, L.B.W.; Chan, L.W.C.; et al. The Applications of Metabolomics in the Molecular Diagnostics of Cancer. Expert Rev. Mol. Diagn. 2019, 19, 785–793. [Google Scholar] [CrossRef]
- Schmidt, D.R.; Patel, R.; Kirsch, D.G.; Lewis, C.A.; Vander Heiden, M.G.; Locasale, J.W. Metabolomics in Cancer Research and Emerging Applications in Clinical Oncology. CA. Cancer J. Clin. 2021, 71, 333–358. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Covarrubias, V.; Martínez-Martínez, E.; del Bosque-Plata, L. The Potential of Metabolomics in Biomedical Applications. Metabolites 2022, 12, 194. [Google Scholar] [CrossRef] [PubMed]
- Tounta, V.; Liu, Y.; Cheyne, A.; Larrouy-Maumus, G. Metabolomics in Infectious Diseases and Drug Discovery. Mol. Omics 2021, 17, 376–393. [Google Scholar] [CrossRef]
- Liu, R.; Bao, Z.-X.; Zhao, P.-J.; Li, G.-H. Advances in the Study of Metabolomics and Metabolites in Some Species Interactions. Molecules 2021, 26, 3311. [Google Scholar] [CrossRef]
- Birhanu, A.G. Mass Spectrometry-Based Proteomics as an Emerging Tool in Clinical Laboratories. Clin. Proteom. 2023, 20, 32. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Guo, S.; Yang, Q.; Xie, Y.; Tang, S.; Zhang, A. Innovation in Identifying Metabolites from Complex Metabolome—Highlights of Recent Analytical Platforms and Protocols. Front. Chem. 2023, 11, 1129717. [Google Scholar] [CrossRef]
- Danzi, F.; Pacchiana, R.; Mafficini, A.; Scupoli, M.T.; Scarpa, A.; Donadelli, M.; Fiore, A. To Metabolomics and beyond: A Technological Portfolio to Investigate Cancer Metabolism. Signal Transduct. Target. Ther. 2023, 8, 137. [Google Scholar] [CrossRef]
- Donatti, A.; Canto, A.M.; Godoi, A.B.; Da Rosa, D.C.; Lopes-Cendes, I. Circulating Metabolites as Potential Biomarkers for Neurological Disorders—Metabolites in Neurological Disorders. Metabolites 2020, 10, 389. [Google Scholar] [CrossRef]
- Le, T.; Priefer, R. Detection Technologies of Volatile Organic Compounds in the Breath for Cancer Diagnoses. Talanta 2023, 265, 124767. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Lee, W.-Y. Urinary Metabolites for Urological Cancer Detection: A Review on the Application of Volatile Organic Compounds for Cancers. Am. J. Clin. Exp. Urol. 2019, 7, 232–248. [Google Scholar] [PubMed]
- Holbrook, K.L.; Lee, W.-Y. Volatile Organic Metabolites as Potential Biomarkers for Genitourinary Cancers: Review of the Applications and Detection Methods. Metabolites 2025, 15, 37. [Google Scholar] [CrossRef]
- Oxner, M.; Trang, A.; Mehta, J.; Forsyth, C.; Swanson, B.; Keshavarzian, A.; Bhushan, A. The Versatility and Diagnostic Potential of VOC Profiling for Noninfectious Diseases. BME Front. 2023, 4, 0002. [Google Scholar] [CrossRef]
- Zhang, J.D.; Le, M.N.; Hill, K.J.; Cooper, A.A.; Stuetz, R.M.; Donald, W.A. Identifying Robust and Reliable Volatile Organic Compounds in Human Sebum for Biomarker Discovery. Anal. Chim. Acta 2022, 1233, 340506. [Google Scholar] [CrossRef]
- Badmos, S. Urinary Volatile Organic Compounds in Prostate Cancer Biopsy Pathologic Risk Stratification Using Logistic Regression and Multivariate Analysis Models. Am. J. Cancer Res. 2024, 14, 192–209. [Google Scholar] [CrossRef]
- Gao, Q.; Su, X.; Annabi, M.H.; Schreiter, B.R.; Prince, T.; Ackerman, A.; Morgas, S.; Mata, V.; Williams, H.; Lee, W.-Y. Application of Urinary Volatile Organic Compounds (VOCs) for the Diagnosis of Prostate Cancer. Clin. Genitourin. Cancer 2019, 17, 183–190. [Google Scholar] [CrossRef]
- Holbrook, K.L.; Quaye, G.E.; Noriega Landa, E.; Su, X.; Gao, Q.; Williams, H.; Young, R.; Badmos, S.; Habib, A.; Chacon, A.A.; et al. Detection and Validation of Organic Metabolites in Urine for Clear Cell Renal Cell Carcinoma Diagnosis. Metabolites 2024, 14, 546. [Google Scholar] [CrossRef]
- Farraia, M.V.; Cavaleiro Rufo, J.; Paciência, I.; Mendes, F.; Delgado, L.; Moreira, A. The Electronic Nose Technology in Clinical Diagnosis: A Systematic Review. Porto Biomed. J. 2019, 4, e42. [Google Scholar] [CrossRef]
- Scheepers, M.H.M.C.; Al-Difaie, Z.; Brandts, L.; Peeters, A.; Van Grinsven, B.; Bouvy, N.D. Diagnostic Performance of Electronic Noses in Cancer Diagnoses Using Exhaled Breath: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2022, 5, e2219372. [Google Scholar] [CrossRef]
- da Costa, B.R.B.; De Martinis, B.S. Analysis of Urinary VOCs Using Mass Spectrometric Methods to Diagnose Cancer: A Review. Clin. Mass. Spectrom. 2020, 18, 27–37. [Google Scholar] [CrossRef]
- Rondanelli, M.; Perdoni, F.; Infantino, V.; Faliva, M.A.; Peroni, G.; Iannello, G.; Nichetti, M.; Alalwan, T.A.; Perna, S.; Cocuzza, C. Volatile Organic Compounds as Biomarkers of Gastrointestinal Diseases and Nutritional Status. J. Anal. Methods Chem. 2019, 2019, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Boulind, C.E.; Gould, O.; De Lacy Costello, B.; Allison, J.; White, P.; Ewings, P.; Wicaksono, A.N.; Curtis, N.J.; Pullyblank, A.; Jayne, D.; et al. Urinary Volatile Organic Compound Testing in Fast-Track Patients with Suspected Colorectal Cancer. Cancers 2022, 14, 2127. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Fan, Y.; Zeng, S.; Zhao, Y.; Yu, L.; Zhao, L.; Gao, J.; Zhang, X.; Zhang, Y. Volatile Organic Compounds for Early Detection of Prostate Cancer from Urine. Heliyon 2023, 9, e16686. [Google Scholar] [CrossRef] [PubMed]
- Noriega Landa, E.; Quaye, G.E.; Su, X.; Badmos, S.; Holbrook, K.L.; Polascik, T.J.; Adams, E.S.; Deivasigamani, S.; Gao, Q.; Annabi, M.H.; et al. Urinary Fatty Acid Biomarkers for Prostate Cancer Detection. PLoS ONE 2024, 19, e0297615. [Google Scholar] [CrossRef]
- Ewald, J.D.; Zhou, G.; Lu, Y.; Kolic, J.; Ellis, C.; Johnson, J.D.; Macdonald, P.E.; Xia, J. Web-Based Multi-Omics Integration Using the Analyst Software Suite. Nat. Protoc. 2024, 19, 1467–1497. [Google Scholar] [CrossRef] [PubMed]
- Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science 2009, 324, 1029–1033. [Google Scholar] [CrossRef]
- Panieri, E.; Santoro, M.M. ROS Homeostasis and Metabolism: A Dangerous Liason in Cancer Cells. Cell Death Dis. 2016, 7, e2253. [Google Scholar] [CrossRef]
- Ashrafian, H.; O’Flaherty, L.; Adam, J.; Steeples, V.; Chung, Y.-L.; East, P.; Vanharanta, S.; Lehtonen, H.; Nye, E.; Hatipoglu, E.; et al. Expression Profiling in Progressive Stages of Fumarate-Hydratase Deficiency: The Contribution of Metabolic Changes to Tumorigenesis. Cancer Res. 2010, 70, 9153–9165. [Google Scholar] [CrossRef]
- Sciacovelli, M.; Gonçalves, E.; Johnson, T.I.; Zecchini, V.R.; da Costa, A.S.; Gaude, E.; Frezza, C. Fumarate Is an Epigenetic Modifier That Elicits Epithelial to Mesenchymal Transition. Nature 2016, 537, 544–547. [Google Scholar] [CrossRef] [PubMed]
- Valcarcel-Jimenez, L.; Frezza, C. Fumarate Hydratase (FH) and Cancer: A Paradigm of Oncometabolism. Br. J. Cancer 2023, 129, 1546–1557. [Google Scholar] [CrossRef] [PubMed]
- Nagatsu, T. The catecholamine system in health and disease—Relation to tyrosine 3-monooxygenase and other catecholamine-synthesizing enzymes—. Proc. Jpn. Acad. Ser. B 2006, 82, 388–415. [Google Scholar] [CrossRef]
- Eisenhofer, G.; Kopin, I.J.; Goldstein, D.S. Catecholamine Metabolism: A Contemporary View with Implications for Physiology and Medicine. Pharmacol. Rev. 2004, 56, 331–349. [Google Scholar] [CrossRef]
- Guengerich, F.P. Cytochrome P450 and Chemical Toxicology. Chem. Res. Toxicol. 2008, 21, 70–83. [Google Scholar] [CrossRef]
- Nebert, D.W.; Dalton, T.P. The Role of Cytochrome P450 Enzymes in Endogenous Signalling Pathways and Environmental Carcinogenesis. Nat. Rev. Cancer 2006, 6, 947–960. [Google Scholar] [CrossRef]
- Spickett, C.M. The Lipid Peroxidation Product 4-Hydroxy-2-Nonenal: Advances in Chemistry and Analysis. Redox Biol. 2013, 1, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Gago-Dominguez, M.; Jiang, X.; Esteban Castelao, J. Lipid Peroxidation and the Protective Effect of Physical Exercise on Breast Cancer. Med. Hypotheses 2007, 68, 1138–1143. [Google Scholar] [CrossRef]
- Trachootham, D.; Lu, W.; Ogasawara, M.A.; Valle, N.R.-D.; Huang, P. Redox Regulation of Cell Survival. Antioxid. Redox Signal. 2008, 10, 1343–1374. [Google Scholar] [CrossRef] [PubMed]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative Stress, Inflammation, and Cancer: How Are They Linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef]
- Saito, J.; Onishi, N.; Yamasaki, J.; Koike, N.; Hata, Y.; Kimura, K.; Otsuki, Y.; Nobusue, H.; Sampetrean, O.; Shimizu, T.; et al. Benzaldehyde Suppresses Epithelial-Mesenchymal Plasticity Overcomes Treatment Resistance in Cancer by Targeting the Interaction of 14-3-3ζ with H3S28ph. Br. J. Cancer 2025, 133, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Cai, S.; Zhang, J.-K.; Ding, S.-Q.; Zhang, Z.-H.; Zhang, C.-D.; Dai, D.-Q.; Li, Y.-S. The Role and Mechanism of Fatty Acid Oxidation in Cancer Drug Resistance. Cell Death Discov. 2025, 11, 277. [Google Scholar] [CrossRef]
- Furuhashi, T.; Matsumoto, Y.; Ishii, R.; Sugasawa, T. Hypoxia and Lactate Influence VOC Production in A549 Lung Cancer Cells: Mechanisms of Trans 2 Hexenol Formation and Regulation. Front. Mol. Biosci. 2023, 10, 1274298. [Google Scholar] [CrossRef]
- Janfaza, S.; Khorsand, B.; Nikkhah, M.; Zahiri, J. Digging Deeper into Volatile Organic Compounds Associated with Cancer. Biol. Methods Protoc. 2019, 4, bpz014. [Google Scholar] [CrossRef]
- Zhang, Q.-C.; Yan, W.-L.; Jiang, L.; Zheng, Y.-G.; Wang, J.-X.; Zhang, R.-K. Synthesis of Nano-Praseodymium Oxide for Cataluminescence Sensing of Acetophenone in Exhaled Breath. Mol. Basel Switz. 2019, 24, 4275. [Google Scholar] [CrossRef]
- Hershberger, C.E.; Rodarte, A.I.; Siddiqi, S.; Moro, A.; Acevedo-Moreno, L.; Brown, J.M.; Allende, D.S.; Aucejo, F.; Rotroff, D.M. Salivary Metabolites Are Promising Non-invasive Biomarkers of Hepatocellular Carcinoma and Chronic Liver Disease. Liver Cancer Int. 2021, 2, 33–44. [Google Scholar] [CrossRef]
- Haick, H.; Broza, Y.Y.; Mochalski, P.; Ruzsanyi, V.; Amann, A. Assessment, Origin, and Implementation of Breath Volatile Cancer Markers. Chem. Soc. Rev. 2014, 43, 1423–1449. [Google Scholar] [CrossRef]
- O’Reilly, K.T.; Mohler, R.E.; Zemo, D.A.; Ahn, S.; Tiwary, A.K.; Magaw, R.I.; Espino Devine, C.; Synowiec, K.A. Identification of Ester Metabolites from Petroleum Hydrocarbon Biodegradation in Groundwater Using GC×GC-TOFMS. Environ. Toxicol. Chem. 2015, 34, 1959–1961. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, N.; Das, G. Metabolic Reprogramming in Breast Cancer and Its Therapeutic Implications. Cells 2019, 8, 89. [Google Scholar] [CrossRef]
- Lu, J.; Tan, M.; Cai, Q. The Warburg Effect in Tumor Progression: Mitochondrial Oxidative Metabolism as an Anti-Metastasis Mechanism. Cancer Lett. 2015, 356, 156–164. [Google Scholar] [CrossRef]
- Ley, J.P.; Engelhart, K.; Bernhardt, J.; Bertram, H.J. 3,4-Dihydroxymandelic Acid, a Noradrenalin Metabolite with Powerful Antioxidative Potential. J. Agric. Food Chem. 2002, 50, 5897–5902. [Google Scholar] [CrossRef]
- Miller Fleming, L.; Olin Sandoval, V.; Campbell, K.; Ralser, M. Remaining Mysteries of Molecular Biology: The Role of Polyamines in the Cell. J. Mol. Biol. 2015, 427, 3389–3406. [Google Scholar] [CrossRef] [PubMed]
- Pegg, A.E. Mammalian Polyamine Metabolism and Function. IUBMB Life 2009, 61, 880–894. [Google Scholar] [CrossRef] [PubMed]
- Wißfeld, J.; Werner, A.; Yan, X.; Ten Bosch, N.; Cui, G. Metabolic Regulation of Immune Responses to Cancer. Cancer Biol. Med. 2022, 19, 1528–1542. [Google Scholar] [CrossRef]
Control | Pre-Treatment | Black Americans (Post-Treatment) | White (Post-Treatment) | ||||||
---|---|---|---|---|---|---|---|---|---|
Age Bracket (Years) | Total | PCa Negative | PCa Positive | RCH | BCR | RCM | RCH | BCR | RCM |
45–50 | 14 | 8 | 6 | 1 | ** | 1 | 4 | ** | ** |
51–55 | 25 | 16 | 9 | 1 | ** | 1 | 6 | ** | 1 |
56–60 | 23 | 12 | 11 | 3 | ** | ** | 7 | 1 | ** |
61–65 | 25 | 7 | 18 | 2 | 1 | 3 | 10 | ** | 2 |
66–70 | 14 | 4 | 10 | 3 | ** | ** | 5 | 2 | ** |
71–75 | 6 | 5 | 1 | ** | ** | ** | 1 | ** | ** |
76–80 | 3 | 3 | 0 | ** | ** | ** | ** | ** | ** |
Total | 110 | 55 | 55 | 10 | 1 | 5 | 33 | 3 | 3 |
BCR vs. RCM | CAS Number | Compound Name | p-Value | Higher in |
---|---|---|---|---|
1 | 000535-77-3 | meta-Cymene | 1.13 × 10−3 | BCR |
2 | 001540-80-3 | 1,8-Cyclotetradecadiyne | 3.02 × 10−2 | BCR |
3 | 000099-87-6 | para-Cymene | 6.80 × 10−3 | BCR |
4 | 003386-33-2 | 1-chloro-Octadecane | 1.04 × 10−2 | RCM |
5 | 071579-69-6 | Tetrasiloxane | 1.55 × 10−2 | BCR |
6 | 006175-49-1 | 2-dodecanone | 1.65 × 10−2 | BCR |
7 | 000883-93-2 | Benzaldehyde | 2.67 × 10−2 | RCM |
8 | 004784-86-5 | 1,2-dimethylcyclopentadiene | 3.25 × 10−2 | BCR |
9 | 1000388-83-8 | 5-Methoxy-2-methyl-9-oxa-1-azatetracyclo [8.7.0.0(3,8).0(11,16)]heptadeca3(8),4,6,11(16),12,14-hexaen-17-one | 2.74 × 10−2 | BCR |
10 | 037148-65-5 | 3,4-dihydroxylmandelic acid | 4.50 × 10−2 | BCR |
11 | 1000408-12-9 | 2-{[(Trimethylsilyl)oxy]carbonyl}phenyl 2-[(trimethylsilyl)oxy]benzoate | 2.80 × 10−2 | BCR |
12 | 1000405-65-6 | Fumaric acid, 2-methylpentyl tridec-2-yn1-yl ester | 2.81 × 10−2 | BCR |
13 | 002345-27-9 | 2-Tetradecanone | 2.84 × 10−2 | BCR |
14 | 000107-68-6 | 2-(Methylamino)ethane sulfonic acid | 2.85 × 10−2 | BCR |
15 | 006443-92-1 | Cis-2-heptene | 2.86 × 10−2 | BCR |
16 | 000918-05-8 | N,N-Dimethylmethane solfonamide | 4.54 × 10−2 | BCR |
17 | 1000309-16-4 | Sulfurous acid, pentadecyl 2-pentyl ester | 2.89 × 10−2 | BCR |
18 | 1000336-52-6 | Octadecane-1,2-diol, 2TMS derivative | 2.90 × 10−2 | BCR |
19 | 1000268-80-8 | Pyrazol-5(4H)-one, 1-acetyl-4-allyl-3-methyl | 2.95 × 10−2 | BCR |
20 | 001686-20-0 | para-Mentha-1,5-dien-8-ol | 3.01 × 10−2 | BCR |
21 | 000126-86-3 | 2,4,7,9-Tetramethyl-5-decyne-4,7-diol | 3.36 × 10−2 | RCM |
22 | 002425-54-9 | 1-Chlorotetradecane | 3.40 × 10−2 | BCR |
23 | 000112-05-0 | Pelargonic acid | 3.81 × 10−2 | RCM |
24 | 000111-40-0 | Di-ethylenetriamine | 4.76 × 10−2 | BCR |
25 | 020634-43-9 | Silicotungstic acid | 4.85 × 10−2 | BCR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badmos, S.; Noriega Landa, E.; Holbrook, K.L.; Quaye, G.E.; Su, X.; Lee, W.-Y. Urinary Metabolome Study for Monitoring Prostate Cancer Recurrence Following Radical Prostatectomy. Cancers 2025, 17, 2756. https://doi.org/10.3390/cancers17172756
Badmos S, Noriega Landa E, Holbrook KL, Quaye GE, Su X, Lee W-Y. Urinary Metabolome Study for Monitoring Prostate Cancer Recurrence Following Radical Prostatectomy. Cancers. 2025; 17(17):2756. https://doi.org/10.3390/cancers17172756
Chicago/Turabian StyleBadmos, Sabur, Elizabeth Noriega Landa, Kiana L. Holbrook, George E. Quaye, Xiaogang Su, and Wen-Yee Lee. 2025. "Urinary Metabolome Study for Monitoring Prostate Cancer Recurrence Following Radical Prostatectomy" Cancers 17, no. 17: 2756. https://doi.org/10.3390/cancers17172756
APA StyleBadmos, S., Noriega Landa, E., Holbrook, K. L., Quaye, G. E., Su, X., & Lee, W.-Y. (2025). Urinary Metabolome Study for Monitoring Prostate Cancer Recurrence Following Radical Prostatectomy. Cancers, 17(17), 2756. https://doi.org/10.3390/cancers17172756