A Review of Post-Operative Pancreatic Fistula Following Distal Pancreatectomy: Risk Factors, Consequences, and Mitigation Strategies
Simple Summary
Abstract
1. Introduction
2. Risk Factors for CR-POPF
3. Consequences of CR-POPF
4. Techniques for Reducing CR-POPF
4.1. Pre-Operative Strategies for Reducing CR-POPF
4.2. Intra-Operative Strategies for Reducing POPF
4.3. Post-Operative Strategies for Reducing CR-POPF
4.4. Future Prospects: Pre-Clinical Studies to Reduce CR-POPF
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DP | Distal pancreatectomy |
CR-POPF | Clinically relevant post-operative pancreatic fistula |
PD | Pancreaticoduodenectomy |
References
- Bassi, C.; Marchegiani, G.; Dervenis, C.; Sarr, M.; Hilal, M.A.; Adham, M.; Allen, P.; Andersson, R.; Asbun, H.J.; Besselink, M.G.; et al. The 2016 update of the International Study Group (ISGPS) definition and grading of postoperative pancreatic fistula: 11 Years After. Surgery 2017, 161, 584–591. [Google Scholar] [CrossRef]
- de Rooij, T.; van Hilst, J.; van Santvoort, H.; Boerma, D.; van den Boezem, P.; Daams, F.; van Dam, R.; Dejong, C.; van Duyn, E.; Dijkgraaf, M.; et al. Minimally Invasive Versus Open Distal Pancreatectomy (LEOPARD): A Multicenter Patient-blinded Randomized Controlled Trial. Ann. Surg. 2019, 269, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Chong, E.; Ratnayake, B.; Lee, S.; French, J.J.; Wilson, C.; Roberts, K.J.; Loveday, B.P.; Manas, D.; Windsor, J.; White, S.; et al. Systematic review and meta-analysis of risk factors of postoperative pancreatic fistula after distal pancreatectomy in the era of 2016 International Study Group pancreatic fistula definition. HPB 2021, 23, 1139–1151. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, N.; Yamamoto, Y.; Sugiura, T.; Okamura, Y.; Ito, T.; Ashida, R.; Uesaka, K. The Impact of Stump Closure Techniques on Pancreatic Fistula Stratified by the Thickness of the Pancreas in Distal Pancreatectomy. Dig. Surg. 2020, 37, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K.; Kuriyama, N.; Yuge, T.; Ito, T.; Gyoten, K.; Hayasaki, A.; Fujii, T.; Iizawa, Y.; Murata, Y.; Tanemura, A.; et al. Risk factor analysis of postoperative pancreatic fistula after distal pancreatectomy, with a focus on pancreas-visceral fat CT value ratio and serrated pancreatic contour. BMC Surg. 2022, 22, 240. [Google Scholar] [CrossRef]
- Xu, Y.; Jin, C.; Fu, D.; Yang, F. External validation of fistula risk scores for postoperative pancreatic fistula after distal pancreatectomy. Surgery 2023, 174, 1416–1421. [Google Scholar] [CrossRef]
- Ecker, B.L.; McMillan, M.T.; Allegrini, V.; Bassi, C.; Beane, J.D.; Beckman, R.M.; Behrman, S.W.; Dickson, E.J.; Callery, M.P.; Christein, J.D.; et al. Risk Factors and Mitigation Strategies for Pancreatic Fistula After Distal Pancreatectomy: Analysis of 2026 Resections from the International, Multi-institutional Distal Pancreatectomy Study Group. Ann. Surg. 2019, 269, 143–149. [Google Scholar] [CrossRef]
- De Pastena, M.; Van Bodegraven, E.A.; Mungroop, T.H.; Vissers, F.L.; Jones, L.R.; Marchegiani, G.; Balduzzi, A.; Klompmaker, S.; Paiella, S.; Rad, S.T.; et al. Distal Pancreatectomy Fistula Risk Score (D-FRS): Development and International Validation. Ann. Surg. 2023, 277, e1099–e1105. [Google Scholar] [CrossRef]
- Nassour, I.; AlMasri, S.; Hodges, J.C.; Hughes, S.J.; Zureikat, A.; Paniccia, A. Novel Calculator to Estimate the Risk of Clinically Relevant Postoperative Pancreatic Fistula Following Distal Pancreatectomy. J. Gastrointest. Surg. 2022, 26, 1436–1444. [Google Scholar] [CrossRef]
- Kowalsky, S.J.; Zenati, M.S.; Dhir, M.; Schaefer, E.G.; Dopsovic, A.; Lee, K.K.; Hogg, M.E.; Zeh, H.J.; Vollmer, C.M.; Zureikat, A.H. Postoperative narcotic use is associated with development of clinically relevant pancreatic fistulas after distal pancreatectomy. Surgery 2018, 163, 747–752. [Google Scholar] [CrossRef]
- Peng, Y.P.; Zhu, X.L.; Yin, L.D.; Zhu, Y.; Wei, J.S.; Wu, J.L.; Miao, Y. Risk factors of postoperative pancreatic fistula in patients after distal pancreatectomy: A systematic review and meta-analysis. Sci. Rep. 2017, 7, 185. [Google Scholar] [CrossRef]
- Eshmuminov, D.; Schneider, M.A.; Tschuor, C.; Raptis, D.A.; Kambakamba, P.; Muller, X.; Lesurtel, M.; Clavien, P.A. Systematic review and meta-analysis of postoperative pancreatic fistula rates using the updated 2016 International Study Group Pancreatic Fistula definition in patients undergoing pancreatic resection with soft and hard pancreatic texture. HPB 2018, 20, 992–1003. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.B.; Hodges, J.C.; Nassour, I.; Casciani, F.; Lee, K.K.; Paniccia, A.; Vollmer Jr, C.M.; Zureikat, A.H. The risk of clinically-relevant pancreatic fistula after pancreaticoduodenectomy is better predicted by a postoperative trend in drain fluid amylase compared to day 1 values in isolation. Surgery 2023, 174, 916–923. [Google Scholar] [CrossRef] [PubMed]
- Mungroop, T.H.; Van Rijssen, L.B.; Van Klaveren, D.; Smits, F.J.; Van Woerden, V.; Linnemann, R.J.; De Pastena, M.; Klompmaker, S.; Marchegiani, G.; Ecker, B.L.; et al. Alternative Fistula Risk Score for Pancreatoduodenectomy (a-FRS): Design and International External Validation. Ann. Surg. 2019, 269, 937–943. [Google Scholar] [CrossRef] [PubMed]
- Ellis, R.J.; Brock Hewitt, D.; Liu, J.B.; Cohen, M.E.; Merkow, R.P.; Bentrem, D.J.; Bilimoria, K.Y.; Yang, A.D. Preoperative risk evaluation for pancreatic fistula after pancreaticoduodenectomy. J. Surg. Oncol. 2019, 119, 1128–1134. [Google Scholar] [CrossRef]
- Nahm, C.B.; Alzaabi, S.; Sahni, S.; Gill, A.J.; Samra, J.S.; Mittal, A. Increased postoperative pancreatic fistula rate after distal pancreatectomy compared with pancreatoduodenectomy is attributable to a difference in acinar scores. J. Hepatobiliary Pancreat. Sci. 2021, 28, 533–541. [Google Scholar] [CrossRef]
- Bonsdorff, A.; Ghorbani, P.; Helanterä, I.; Tarvainen, T.; Kontio, T.; Belfrage, H.; Sirén, J.; Kokkola, A.; Sparrelid, E.; Sallinen, V. Development and external validation of DISPAIR fistula risk score for clinically relevant postoperative pancreatic fistula risk after distal pancreatectomy. Br. J. Surg. 2022, 109, 1131–1139. [Google Scholar] [CrossRef]
- Pratt, W.B.; Maithel, S.K.; Vanounou, T.; Huang, Z.S.; Callery, M.P.; Vollmer Jr, C.M. Clinical and economic validation of the International Study Group of Pancreatic Fistula (ISGPF) classification scheme. Ann. Surg. 2007, 245, 443–451. [Google Scholar] [CrossRef]
- Nakano, Y.; Endo, Y.; Kitago, M.; Nishiyama, R.; Yagi, H.; Abe, Y.; Hasegawa, Y.; Hori, S.; Tanaka, M.; Shimane, G.; et al. Clinical characteristics and predictive factors of postoperative intra-abdominal abscess after distal pancreatectomy. Langenbecks Arch. Surg. 2023, 408, 170. [Google Scholar] [CrossRef]
- Vin, Y.; Sima, C.S.; Getrajdman, G.I.; Brown, K.T.; Covey, A.; Brennan, M.F.; Allen, P.J. Management and outcomes of postpancreatectomy fistula, leak, and abscess: Results of 908 patients resected at a single institution between 2000 and 2005. J. Am. Coll. Surg. 2008, 207, 490–498. [Google Scholar] [CrossRef]
- Diener, M.K.; Seiler, C.M.; Rossion, I.; Kleeff, J.; Glanemann, M.; Butturini, G.; Tomazic, A.; Bruns, C.J.; Busch, O.R.; Farkas, S.; et al. Efficacy of stapler versus hand-sewn closure after distal pancreatectomy (DISPACT): A randomised, controlled multicentre trial. Lancet 2011, 377, 1514–1522. [Google Scholar] [CrossRef]
- Glowka, T.R.; von Websky, M.; Pantelis, D.; Manekeller, S.; Standop, J.; Kalff, J.C.; Schäfer, N. Risk factors for delayed gastric emptying following distal pancreatectomy. Langenbecks Arch. Surg. 2016, 401, 161–167. [Google Scholar] [CrossRef]
- Degisors, S.; Caiazzo, R.; Dokmak, S.; Truant, S.; Aussilhou, B.; Eveno, C.; Pattou, F.; El Amrani, M.; Piessen, G.; Sauvanet, A. Delayed gastric emptying following distal pancreatectomy: Incidence and predisposing factors. HPB 2022, 24, 772–781. [Google Scholar] [CrossRef]
- Kawai, M.; Hirono, S.; Okada, K.I.; Sho, M.; Nakajima, Y.; Eguchi, H.; Nagano, H.; Ikoma, H.; Morimura, R.; Takeda, Y.; et al. Randomized Controlled Trial of Pancreaticojejunostomy versus Stapler Closure of the Pancreatic Stump During Distal Pancreatectomy to Reduce Pancreatic Fistula. Ann. Surg. 2016, 264, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Kawai, M.; Hirono, S.; Okada, K.I.; Satoi, S.; Yanagimoto, H.; Kon, M.; Murakami, Y.; Kondo, N.; Sho, M.; Akahori, T.; et al. Reinforced staplers for distal pancreatectomy. Langenbecks Arch. Surg. 2017, 402, 1197–1204. [Google Scholar] [CrossRef] [PubMed]
- Okano, K.; Hirao, T.; Unno, M.; Fujii, T.; Yoshitomi, H.; Suzuki, S.; Satoi, S.; Takahashi, S.; Kainuma, O.; Suzuki, Y. Postoperative infectious complications after pancreatic resection. Br. J. Surg. 2015, 102, 1551–1560. [Google Scholar] [CrossRef] [PubMed]
- Kelly, K.J.; Greenblatt, D.Y.; Wan, Y.; Rettammel, R.J.; Winslow, E.; Cho, C.S.; Weber, S.M. Risk stratification for distal pancreatectomy utilizing ACS-NSQIP: Preoperative factors predict morbidity and mortality. J. Gastrointest. Surg. 2011, 15, 250–261. [Google Scholar] [CrossRef]
- Venkat, R.; Edil, B.H.; Schulick, R.D.; Lidor, A.O.; Makary, M.A.; Wolfgang, C.L. Laparoscopic distal pancreatectomy is associated with significantly less overall morbidity compared to the open technique: A systematic review and meta-analysis. Ann. Surg. 2012, 255, 1048–1059. [Google Scholar] [CrossRef]
- Nakamura, M.; Nakashima, H. Laparoscopic distal pancreatectomy and pancreatoduodenectomy: Is it worthwhile? A meta-analysis of laparoscopic pancreatectomy. J. Hepatobiliary Pancreat. Sci. 2013, 20, 421–428. [Google Scholar] [CrossRef]
- Soreide, K.; Olsen, F.; Nymo, L.S.; Kleive, D.; Lassen, K. A nationwide cohort study of resection rates and short-term outcomes in open and laparoscopic distal pancreatectomy. HPB 2019, 21, 669–678. [Google Scholar] [CrossRef]
- Marchegiani, G.; Andrianello, S.; Pieretti-Vanmarcke, R.; Malleo, G.; Marchese, T.; Panzeri, F.; Fernandez-Del Castillo, C.; Lillemoe, K.D.; Bassi, C.; Salvia, R.; et al. Hospital readmission after distal pancreatectomy is predicted by specific intra- and post-operative factors. Am. J. Surg. 2018, 216, 511–517. [Google Scholar] [CrossRef]
- Sadot, E.; Brennan, M.F.; Lee, S.Y.; Allen, P.J.; Gönen, M.; Groeger, J.S.; Peter Kingham, T.; D’Angelica, M.I.; DeMatteo, R.P.; Jarnagin, W.R.; et al. Readmission after pancreatic resection: Causes and causality pattern. Ann. Surg. Oncol. 2014, 21, 4342–4350. [Google Scholar] [CrossRef]
- Adam, M.A.; Choudhury, K.; Goffredo, P.; Reed, S.D.; Blazer III, D.; Roman, S.A.; Sosa, J.A. Minimally Invasive Distal Pancreatectomy for Cancer: Short-Term Oncologic Outcomes in 1,733 Patients. World J. Surg. 2015, 39, 2564–2572. [Google Scholar] [CrossRef] [PubMed]
- Fahy, B.N.; Frey, C.F.; Ho, H.S.; Beckett, L.; Bold, R.J. Morbidity, mortality, and technical factors of distal pancreatectomy. Am. J. Surg. 2002, 183, 237–241. [Google Scholar] [CrossRef] [PubMed]
- van Hilst, J.; Strating, E.A.; De Rooij, T.; Daams, F.; Festen, S.; Groot Koerkamp, B.; Klaase, J.M.; Luyer, M.; Dijkgraaf, M.G.; Besselink, M.G.; et al. Costs and quality of life in a randomized trial comparing minimally invasive and open distal pancreatectomy (LEOPARD trial). Br. J. Surg. 2019, 106, 910–921. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.C.; Folkert, K.N.; Maatman, T.K.; Ellis, R.J.; Roch, A.M.; House, M.G.; Zyromski, N.J.; Nakeeb, A.; Schmidt, C.M.; Ceppa, E.P. High extraction site hernia rate after laparoscopic distal pancreatectomy—Another bridge to cross. HPB 2025, 27, S70–S71. [Google Scholar] [CrossRef]
- Grego, A.; Friziero, A.; Serafini, S.; Belluzzi, A.; Moletta, L.; Saadeh, L.M.; Sperti, C. Does Pancreatic Fistula Affect Long-Term Survival after Resection for Pancreatic Cancer? A Systematic Review and Meta-Analysis. Cancers 2021, 13, 5803. [Google Scholar] [CrossRef]
- Bonaroti, J.W.; Zenati, M.S.; Al-Abbas, A.I.; Rieser, C.J.; Zureikat, A.H.; Hogg, M.E.; Zeh, H.J.; Boone, B.A. Impact of postoperative pancreatic fistula on long-term oncologic outcomes after pancreatic resection. HPB 2021, 23, 1269–1276. [Google Scholar] [CrossRef]
- Kawai, M.; Murakami, Y.; Motoi, F.; Sho, M.; Satoi, S.; Matsumoto, I.; Honda, G.; Hirono, S.; Okada, K.I.; Unno, M.; et al. Grade B pancreatic fistulas do not affect survival after pancreatectomy for pancreatic cancer: A multicenter observational study. Surgery 2016, 160, 293–305. [Google Scholar] [CrossRef]
- Murakami, Y.; Uemura, K.; Sudo, T.; Hashimoto, Y.; Kondo, N.; Nakagawa, N.; Sasaki, H.; Sueda, T. Is pancreatic fistula associated with worse overall survival in patients with pancreatic carcinoma? World J. Surg. 2015, 39, 500–508. [Google Scholar] [CrossRef]
- Ma, L.W.; Dominguez-Rosado, I.; Gennarelli, R.L.; Bach, P.B.; Gonen, M.; D’Angelica, M.I.; DeMatteo, R.P.; Kingham, T.P.; Brennan, M.F.; Jarnagin, W.R.; et al. The Cost of Postoperative Pancreatic Fistula Versus the Cost of Pasireotide: Results from a Prospective Randomized Trial. Ann. Surg. 2017, 265, 11–16. [Google Scholar] [CrossRef]
- Rodriguez, J.R.; Germes, S.S.; Pandharipande, P.V.; Gazelle, G.S.; Thayer, S.P.; Warshaw, A.L.; Fernández-del Castillo, C. Implications and cost of pancreatic leak following distal pancreatic resection. Arch. Surg. 2006, 141, 361–365, discussion 366. [Google Scholar] [CrossRef]
- Abe, N.; Sugiyama, M.; Suzuki, Y.; Yamaguchi, Y.; Yanagida, O.; Masaki, T.; Mori, T.; Atomi, Y. Preoperative endoscopic pancreatic stenting for prophylaxis of pancreatic fistula development after distal pancreatectomy. Am. J. Surg. 2006, 191, 198–200. [Google Scholar] [CrossRef]
- Rieder, B.; Krampulz, D.; Adolf, J.; Pfeiffer, A. Endoscopic pancreatic sphincterotomy and stenting for preoperative prophylaxis of pancreatic fistula after distal pancreatectomy. Gastrointest. Endosc. 2010, 72, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Frozanpor, F.; Lundell, L.; Segersvärd, R.; Arnelo, U. The effect of prophylactic transpapillary pancreatic stent insertion on clinically significant leak rate following distal pancreatectomy: Results of a prospective controlled clinical trial. Ann. Surg. 2012, 255, 1032–1036. [Google Scholar] [CrossRef] [PubMed]
- Buscaglia, J.M.; DiMaio, C.J.; Pollack, M.J.; Shin, E.J.; Harris, M.D.; Richards, R.; Chak, A.; Kantsevoy, S.V.; Jagannath, S.B.; Okolo III, P.I. Are large side holes associated with reduced rates of pancreatic stent occlusion? Results of a prospective study. JOP 2009, 10, 496–500. [Google Scholar] [PubMed]
- Farnbacher, M.J.; Radespiel-Tröger, M.; König, M.D.; Wehler, M.; Hahn, E.G.; Schneider, H.T. Pancreatic endoprostheses in chronic pancreatitis: Criteria to predict stent occlusion. Gastrointest. Endosc. 2006, 63, 60–66. [Google Scholar] [CrossRef]
- Wu, X.; Li, M.; Wu, W.; Mu, J.; Zhang, L.; Ding, Q.; Ding, Q.; Weng, H.; Bao, R.; Shu, Y.; et al. The role of prophylactic transpapillary pancreatic stenting in distal pancreatectomy: A meta-analysis. Front. Med. 2013, 7, 499–505. [Google Scholar] [CrossRef]
- Hackert, T.; Klaiber, U.; Hinz, U.; Kehayova, T.; Probst, P.; Knebel, P.; Diener, M.K.; Schneider, L.; Strobel, O.; Michalski, C.W.; et al. Sphincter of Oddi botulinum toxin injection to prevent pancreatic fistula after distal pancreatectomy. Surgery 2017, 161, 1444–1450. [Google Scholar] [CrossRef]
- Volk, A.; Distler, M.; Müssle, B.; Berning, M.; Hampe, J.; Brückner, S.; Weitz, J.; Welsch, T. Reproducibility of preoperative endoscopic injection of botulinum toxin into the sphincter of Oddi to prevent postoperative pancreatic fistula. Innov. Surg. Sci. 2018, 3, 69–75. [Google Scholar] [CrossRef]
- Klaiber, U.; Sauer, P.; Martin, E.; Bruckner, T.; Luntz, S.; Tjaden, C.; Probst, P.; Knebel, P.; Diener, M.K.; Buchler, M.W.; et al. Protocol of a randomised controlled phase II clinical trial investigating PREoperative endoscopic injection of BOTulinum toxin into the sphincter of Oddi to reduce postoperative pancreatic fistula after distal pancreatectomy: The PREBOTPilot trial. BMJ Open 2020, 10, e036815. [Google Scholar] [CrossRef]
- Montorsi, M.; Zerbi, A.; Bassi, C.; Capussotti, L.; Coppola, R.; Sacchi, M.; Italian Tachosil Study Group. Efficacy of an absorbable fibrin sealant patch (TachoSil) after distal pancreatectomy: A multicenter, randomized, controlled trial. Ann. Surg. 2012, 256, 853–859, discussion 859–860. [Google Scholar] [CrossRef]
- Sa Cunha, A.; Carrere, N.; Meunier, B.; Fabre, J.M.; Sauvanet, A.; Pessaux, P.; Ortega-Deballon, P.; Fingerhut, A.; Lacaine, F. Stump closure reinforcement with absorbable fibrin collagen sealant sponge (TachoSil) does not prevent pancreatic fistula after distal pancreatectomy: The FIABLE multicenter controlled randomized study. Am. J. Surg. 2015, 210, 739–748. [Google Scholar] [CrossRef]
- Park, J.S.; Lee, D.H.; Jang, J.Y.; Han, Y.; Yoon, D.S.; Kim, J.K.; Han, H.S.; Yoon, Y.; Hwang, D.; Kang, C.M.; et al. Use of TachoSil((R)) patches to prevent pancreatic leaks after distal pancreatectomy: A prospective, multicenter, randomized controlled study. J. Hepatobiliary Pancreat. Sci. 2016, 23, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Huttner, F.J.; Mihaljevic, A.L.; Hackert, T.; Ulrich, A.; Buechler, M.W.; Diener, M.K. Effectiveness of Tachosil((R)) in the prevention of postoperative pancreatic fistula after distal pancreatectomy: A systematic review and meta-analysis. Langenbecks Arch. Surg. 2016, 401, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Mungroop, T.H.; van der Heijde, N.; Busch, O.R.; De Hingh, I.H.; Scheepers, J.J.; Dijkgraaf, M.G.; Groot Koerkamp, B.; Besselink, M.G.; Van Eijck, C.H. Randomized clinical trial and meta-analysis of the impact of a fibrin sealant patch on pancreatic fistula after distal pancreatectomy: CPR trial. BJS Open 2021, 5, zrab001. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, N.A.; Porembka, M.R.; Johnston, F.M.; Gao, F.; Strasberg, S.M.; Linehan, D.C.; Hawkins, W.G. Mesh reinforcement of pancreatic transection decreases incidence of pancreatic occlusion failure for left pancreatectomy: A single-blinded, randomized controlled trial. Ann. Surg. 2012, 255, 1037–1042. [Google Scholar] [CrossRef]
- Jang, J.Y.; Shin, Y.C.; Han, Y.; Park, J.S.; Han, H.S.; Hwang, H.K.; Yoon, D.S.; Kim, J.K.; Yoon, Y.S.; Hwang, D.W.; et al. Effect of Polyglycolic Acid Mesh for Prevention of Pancreatic Fistula Following Distal Pancreatectomy: A Randomized Clinical Trial. JAMA Surg. 2017, 152, 150–155. [Google Scholar] [CrossRef]
- Kondo, N.; Uemura, K.; Nakagawa, N.; Okada, K.; Kuroda, S.; Sudo, T.; Hadano, N.; Matstukawa, H.; Satoh, D.; Sasaki, M.; et al. A Multicenter, Randomized, Controlled Trial Comparing Reinforced Staplers with Bare Staplers During Distal Pancreatectomy (HiSCO-07 Trial). Ann. Surg. Oncol. 2019, 26, 1519–1527. [Google Scholar] [CrossRef]
- Wennerblom, J.; Ateeb, Z.; Jönsson, C.; Björnsson, B.; Tingstedt, B.; Williamsson, C.; Sandström, P.; Ansorge, C.; Blomberg, J.; Del Chiaro, M. Reinforced versus standard stapler transection on postoperative pancreatic fistula in distal pancreatectomy: Multicentre randomized clinical trial. Br. J. Surg. 2021, 108, 265–270. [Google Scholar] [CrossRef]
- Merdrignac, A.; Garnier, J.; Dokmak, S.; Regenet, N.; Lesurtel, M.; Mabrut, J.Y.; Cunha, A.S.; Fuks, D.; Bergeat, D.; Robin, F.; et al. Effect of the Use of Reinforced Stapling on the Occurrence of Pancreatic Fistula After Distal Pancreatectomy: Results of the REPLAY (REinforcement of the Pancreas in distaL pAncreatectomY) Multicenter Randomized Clinical Trial. Ann. Surg. 2022, 276, 769–775. [Google Scholar] [CrossRef]
- Zhang, W.; Wei, Z.; Che, X. Effect of polyglycolic acid mesh for prevention of pancreatic fistula after pancreatectomy: A systematic review and meta-analysis. Medicine 2020, 99, e21456. [Google Scholar] [CrossRef] [PubMed]
- Oweira, H.; Mazotta, A.; Mehrabi, A.; Reissfelder, C.; Rahbari, N.; Betzler, A.; Elhadedy, H.; Soubrane, O.; Chaouch, M.A. Using a Reinforced Stapler Decreases the Incidence of Postoperative Pancreatic Fistula After Distal Pancreatectomy: A Systematic Review and Meta-Analysis. World J. Surg. 2022, 46, 1969–1979. [Google Scholar] [CrossRef] [PubMed]
- Xia, N.; Li, J.; Huang, X.; Tian, B.; Xiong, J. Reinforced stapling does not reduce postoperative pancreatic fistula in distal pancreatectomy: A systematic review and meta-analysis. Updates Surg. 2023, 75, 2063–2074. [Google Scholar] [CrossRef] [PubMed]
- Hassenpflug, M.; Hinz, U.; Strobel, O.; Volpert, J.; Knebel, P.; Diener, M.K.; Doerr-Harim, C.; Werner, J.; Hackert, T.; Büchler, M.W. Teres Ligament Patch Reduces Relevant Morbidity After Distal Pancreatectomy (the DISCOVER Randomized Controlled Trial). Ann. Surg. 2016, 264, 723–730. [Google Scholar] [CrossRef]
- Weniger, M.; D’Haese, J.G.; Crispin, A.; Angele, M.K.; Werner, J.; Hartwig, W. Autologous but not Fibrin Sealant Patches for Stump Coverage Reduce Clinically Relevant Pancreatic Fistula in Distal Pancreatectomy: A Systematic Review and Meta-analysis. World J. Surg. 2016, 40, 2771–2781. [Google Scholar] [CrossRef]
- Huttner, F.J.; Probst, P.; Kenngott, H.G.; Knebel, P.; Hackert, T.; Ulrich, A.; Büchler, M.W.; Diener, M.K. 2-octyl cyanoacrylate sealing of the pancreatic remnant after distal pancreatectomy—A prospective pilot study. PLoS ONE 2018, 13, e0205748. [Google Scholar] [CrossRef]
- Park, Y.; Ko, J.H.; Kang, D.R.; Lee, J.H.; Hwang, D.W.; Lee, J.H.; Lee, W.; Kwon, J.; Park, S.N.; Song, K.B.; et al. Effect of Flowable Thrombin-Containing Collagen-Based Hemostatic Matrix for Preventing Pancreatic Fistula after Pancreatectomy: A Randomized Clinical Trial. J. Clin. Med. 2020, 9, 3085. [Google Scholar] [CrossRef]
- Uranues, S.; Fingerhut, A.; Belyaev, O.; Zerbi, A.; Boggi, U.; Hoffmann, M.W.; Reim, D.; Esposito, A.; Primavesi, F.; Kornprat, P.; et al. Clinical Impact of Stump Closure Reinforced with Hemopatch on the Prevention of Clinically Relevant Pancreatic Fistula After Distal Pancreatectomy: A Multicenter Randomized Trial. Ann. Surg. Open 2021, 2, e033. [Google Scholar] [CrossRef]
- Bubis, L.D.; Behman, R.; Roke, R.; Serrano, P.E.; Khalil, J.A.; Coburn, N.G.; Law, C.H.; Bertens, K.; Martel, G.; Hallet, J.; et al. PATCH-DP: A single-arm phase II trial of intra-operative application of HEMOPATCH to the pancreatic stump to prevent post-operative pancreatic fistula following distal pancreatectomy. HPB 2022, 24, 72–78. [Google Scholar] [CrossRef]
- Goetz, M.R.; Heumann, A.; Bassi, C.; Landoni, L.; Khatib-Chahidi, K.; Ghadimi, M.; von Heessen, M.; Berrevoet, F.; Gryspeerdt, F.; Besselink, M.; et al. Safety and performance of a synthetic sealant patch aimed to prevent postoperative pancreatic fistula after distal pancreatectomy (SHIELDS)—Prospective international multicenter phase II study. HPB 2024, 26, 903–910. [Google Scholar] [CrossRef]
- Chaouch, M.A.; Dziri, C.; Uranues, S.; Fingerhut, A. Pancreatic stump closure after distal pancreatectomy: Systematic review and meta-analysis of randomized clinical trials comparing non-autologous versus no reinforcement: Value of prediction intervals. Am. J. Surg. 2024, 229, 92–98. [Google Scholar] [CrossRef]
- Nakamura, M.; Ueda, J.; Kohno, H.; Aly, M.Y.F.; Takahata, S.; Shimizu, S.; Tanaka, M. Prolonged peri-firing compression with a linear stapler prevents pancreatic fistula in laparoscopic distal pancreatectomy. Surg. Endosc. 2011, 25, 867–871. [Google Scholar] [CrossRef]
- Izumi, H.; Yoshii, H.; Fujino, R.; Takeo, S.; Nomura, E.; Mukai, M.; Makuuchi, H. Efficacy of Pancreatic Dissection with a Triple-row Stapler in Laparoscopic Distal Pancreatectomy: A Retrospective Observational Study. Surg. Laparosc. Endosc. Percutan Tech. 2024, 34, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Aoki, T.; Mansour, D.A.; Koizumi, T.; Matsuda, K.; Kusano, T.; Wada, Y.; Hakozaki, T.; Tomioka, K.; Hirai, T.; Yamazaki, T.; et al. Preventing clinically relevant pancreatic fistula with combination of linear stapling plus continuous suture of the stump in laparoscopic distal pancreatectomy. BMC Surg. 2020, 20, 223. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhu, F.; Shen, M.; Tian, R.; Shi, C.J.; Wang, X.; Jiang, J.X.; Hu, J.; Wang, M.; Qin, R.Y. Systematic review and meta-analysis comparing three techniques for pancreatic remnant closure following distal pancreatectomy. Br. J. Surg. 2015, 102, 4–15. [Google Scholar] [CrossRef] [PubMed]
- van Bodegraven, E.A.; Balduzzi, A.; van Ramshorst, T.M.; Malleo, G.; Vissers, F.L.; van Hilst, J.; Festen, S.; Hilal, M.A.; Asbun, H.J.; Michiels, N.; et al. Prophylactic abdominal drainage after distal pancreatectomy (PANDORINA): An international, multicentre, open-label, randomised controlled, non-inferiority trial. Lancet Gastroenterol. Hepatol. 2024, 9, 438–447. [Google Scholar] [CrossRef]
- Klaiber, U.; Collins, P.M.; Trinkler, S.; Gustorff, C.; Schindl, M.; Sahora, K.; Leonhardt, C.S.; Strobel, O. A systematic review and meta-analysis of morbidity and pancreatic fistula after distal pancreatectomy with versus without prophylactic intra-abdominal drainage. Int. J. Surg. 2024, 110, 7215–7224. [Google Scholar] [CrossRef]
- Chen, K.; Liu, Z.; Yang, B.; Ma, Y.; Zhang, S.; Shao, Z.; Yang, Y.; Tian, X. Efficacy and safety of early drain removal following pancreatic resections: A meta-analysis. HPB 2023, 25, 485–496. [Google Scholar] [CrossRef]
- Baba, H.; Oba, A.; Tanaka, K.; Miura, T.; Ban, D.; Edanami, M.; Ishikawa, Y.; Ohgi, K.; Tanaka, H.; Shintakuya, R.; et al. The efficacy of wrapping with polyglycolic acid mesh and fibrin glue in preventing clinically relevant pancreatic fistula after minimally invasive distal pancreatectomy (WRAP Study): Study protocol for a multicenter randomized controlled trial in Japan. BMC Surg. 2024, 24, 314. [Google Scholar] [CrossRef]
- Montorsi, M.; Zago, M.; Mosca, F.; Capussotti, L.; Zotti, E.; Ribotta, G.; Fegiz, G.; Fissi, S.; Roviaro, G.; Peracchia, A.; et al. Efficacy of octreotide in the prevention of pancreatic fistula after elective pancreatic resections: A prospective, controlled, randomized clinical trial. Surgery 1995, 117, 26–31. [Google Scholar] [CrossRef]
- Allen, P.J.; Gönen, M.; Brennan, M.F.; Bucknor, A.A.; Robinson, L.M.; Pappas, M.M.; Carlucci, K.E.; D’Angelica, M.I.; DeMatteo, R.P.; Kingham, T.P.; et al. Pasireotide for postoperative pancreatic fistula. N. Engl. J. Med. 2014, 370, 2014–2022. [Google Scholar] [CrossRef]
- Kunstman, J.W.; Goldman, D.A.; Gönen, M.; Balachandran, V.P.; D’Angelica, M.I.; Kingham, T.P.; Jarnagin, W.R.; Allen, P.J. Outcomes after Pancreatectomy with Routine Pasireotide Use. J. Am. Coll. Surg. 2019, 228, 161–170 e2. [Google Scholar] [CrossRef]
- Young, S.; Sung, M.L.; Lee, J.A.; DiFronzo, L.A.; O’Connor, V.V. Pasireotide is not effective in reducing the development of postoperative pancreatic fistula. HPB 2018, 20, 834–840. [Google Scholar] [CrossRef] [PubMed]
- Elliott, I.A.; Dann, A.M.; Ghukasyan, R.; Damato, L.; Girgis, M.D.; King, J.C.; Hines, O.J.; Reber, H.A.; Donahue, T.R. Pasireotide does not prevent postoperative pancreatic fistula: A prospective study. HPB 2018, 20, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Dalton, E.C.; Johns, M.S.; Rhodes, L.; Merritt III, W.T.; Petrelli, N.J.; Tiesi, G.J. Meta-Analysis on the Effect of Pasireotide for Prevention of Postoperative Pancreatic Fistula. Am. Surg. 2020, 86, 1728–1735. [Google Scholar] [CrossRef] [PubMed]
- Hallet, J.; Theodosopoulos, E.; Abou-Khalil, J.; Bertens, K.; Pelletier, J.S.; Segedi, M.; Ouellet, J.F.; Barkun, J.; Coburn, N. Prevention of postoperative pancreatic fistula after pancreatectomy: Results of a Canadian RAND/UCLA appropriateness expert panel. Can. J. Surg. 2022, 65, E135–E142. [Google Scholar] [CrossRef]
- Pillarisetty, V.G.; Abbasi, A.; Park, J.O.; Sham, J.G. A phase II trial of lanreotide for the prevention of postoperative pancreatic fistula. HPB 2022, 24, 2029–2034. [Google Scholar] [CrossRef]
- Gaujoux, S.; Regimbeau, J.M.; Piessen, G.; Truant, S.; Foissac, F.; Barbier, L.; Buc, E.; Adham, M.; Fuks, D.; Deguelte, S.; et al. Somatostatin Versus Octreotide for Prevention of Postoperative Pancreatic Fistula: The PREFIPS Randomized Clinical Trial: A FRENCH 007-ACHBT Study. Ann. Surg. 2024, 280, 179–187. [Google Scholar] [CrossRef]
- Schorn, S.; Vogel, T.; Demir, I.E.; Demir, E.; Safak, O.; Friess, H.; Ceyhan, G.O. Do somatostatin-analogues have the same impact on postoperative morbidity and pancreatic fistula in patients after pancreaticoduodenectomy and distal pancreatectomy? A systematic review with meta-analysis of randomized-controlled trials. Pancreatology 2020, 20, 1770–1778. [Google Scholar] [CrossRef]
- Antila, A.; Siiki, A.; Sand, J.; Laukkarinen, J. Perioperative hydrocortisone treatment reduces postoperative pancreatic fistula rate after open distal pancreatectomy. A randomized placebo-controlled trial. Pancreatology 2019, 19, 786–792. [Google Scholar] [CrossRef]
- Tarvainen, T.; Sirén, J.; Kokkola, A.; Sallinen, V. Effect of Hydrocortisone vs Pasireotide on Pancreatic Surgery Complications in Patients with High Risk of Pancreatic Fistula: A Randomized Clinical Trial. JAMA Surg. 2020, 155, 291–298. [Google Scholar] [CrossRef]
- Tanaka, T.; Kuroki, T.; Adachi, T.; Ono, S.; Kitasato, A.; Hirabaru, M.; Takatsuki, M.; Eguchi, S. Development of a novel rat model with pancreatic fistula and the prevention of this complication using tissue-engineered myoblast sheets. J. Gastroenterol. 2013, 48, 1081–1089. [Google Scholar] [CrossRef]
- Kaneko, H.; Kokuryo, T.; Yokoyama, Y.; Yamaguchi, J.; Yamamoto, T.; Shibata, R.; Gotoh, M.; Murohara, T.; Ito, A.; Nagino, M. Novel therapy for pancreatic fistula using adipose-derived stem cell sheets treated with mannose. Surgery 2017, 161, 1561–1569. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.R.; Yi, H.J.; Lee, Y.N.; Park, J.Y.; Hoffman, R.M.; Okano, T.; Shim, I.K.; Kim, S.C. Engineered mesenchymal stem-cell-sheets patches prevents postoperative pancreatic leakage in a rat model. Sci. Rep. 2018, 8, 360. [Google Scholar] [CrossRef] [PubMed]
- Takagi, T.; Tsujimoto, H.; Torii, H.; Ozamoto, Y.; Hagiwara, A. New polyglycolic acid fabric for the prevention of postoperative pancreatic fistulas. Asian J. Surg. 2018, 41, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Kemmochi, A.; Tamura, T.; Shimizu, Y.; Owada, Y.; Ozawa, Y.; Hisakura, K.; Oda, T.; Kawano, Y.; Hanawa, T.; Ohkohchi, N. A novel hydrogel sheet prevents postoperative pancreatic fistula in a rat model. J. Hepatobiliary Pancreat. Sci. 2021, 28, 192–201. [Google Scholar] [CrossRef]
- He, W.; Wang, Y.; Li, X.; Ji, Y.; Yuan, J.; Yang, W.; Yan, S.; Yan, J. Sealing the Pandora’s vase of pancreatic fistula through entrapping the digestive enzymes within a dextrorotary (D)-peptide hydrogel. Nat. Commun. 2024, 15, 7235. [Google Scholar] [CrossRef]
- Kuroshima, N.; Tanaka, T.; Kuroki, T.; Kitasato, A.; Adachi, T.; Ono, S.; Matsushima, H.; Hirayama, T.; Soyama, A.; Hidaka, M. Triple-drug therapy to prevent pancreatic fistula after pancreatectomy in a rat model. Pancreatology 2016, 16, 917–921. [Google Scholar] [CrossRef]
- Lee, S.C.; Hong, T.H.; Kim, O.H.; Cho, S.J.; Kim, K.H.; Song, J.S.; Hwang, K.S.; Jung, J.K.; Hong, H.E.; Seo, H.; et al. A Novel Way of Preventing Postoperative Pancreatic Fistula by Directly Injecting Profibrogenic Materials into the Pancreatic Parenchyma. Int. J. Mol. Sci. 2020, 21, 1759. [Google Scholar] [CrossRef]
- Kaneda, Y.; Kimura, Y.; Saito, A.; Ohzawa, H.; Ae, R.; Kawahira, H.; Lefor, A.K.; Sata, N.; Kimura, Y. Innovative Pancreas Ligation Band for Distal Pancreatectomy: A Pilot In Vivo Porcine Study. Cureus 2021, 13, e18238. [Google Scholar] [CrossRef]
- Yamashita, Y.I.; Yamao, T.; Nakao, Y.; Miyata, T.; Ikegami, Y.; Yamane, S.; Ito, T.; Furukawa, T.; Cho, J.; Wu, F.; et al. Efficacy of a newly developed bioabsorbable pancreatic clip for distal pancreatectomy in swine. Surg. Today 2022, 52, 1109–1114. [Google Scholar] [CrossRef]
Clinical Factor | Association with CR-POPF | Studies |
---|---|---|
Smoking | Increased risk | [3] |
Diabetes mellitus | Decreased risk | [3,5,6] |
Open approach | Increased risk | [3] |
High BMI | Increased risk | [5,6,7,8] |
Young age | Increased risk | [5,7,9] |
Pancreatic thickness | Increased risk | [4,5,6,8] |
Hypoalbuminemia (<3.5 g/dL) | Increased risk | [7] |
Lack of epidural anesthesia | Increased risk | [7] |
Neuroendocrine or non-malignant pathology | Increased risk | [7,10] |
Splenectomy | Increased risk | [7] |
Vascular resection | Increased risk | [7] |
Longer operative time | Increased risk | [4,8,9] |
High drain fluid amylase on POD1 and POD3 | Increased risk | [9] |
Complications | Risk of Complication with CR-POPF | Studies |
---|---|---|
Intra-abdominal abscess | 25–55% | [18,19,20] |
Delayed gastric emptying (DGE) | 2–24% | [21,22,23] |
Hemorrhage | 3–15% | [24,25] |
Sepsis | 2–10% | [26,27] |
Wound infection | 3–11% | [28,29] |
Reoperation | 3–6% | [26,30] |
Re-admission | 11–23% | [31,32,33] |
Mortality | 0.5–4% | [31,33,34] |
Hernia | 4–20% | [35,36] |
Intervention | Population | Outcome (CR-POPF Reduction) | Conclusion | Reference |
---|---|---|---|---|
Prophylactic PD stenting | Single cohort study, 9 patients, Japan | 0% CR-POPF | May offer benefit, needs further validation | [43] |
Prophylactic PD stenting | Non-randomized cohort study, 48 patients, Germany | ↓POPF: 0% vs. 22% | May offer benefit, needs further validation | [44] |
Prophylactic PD stenting | RCT, 58 patients, Sweden | No change in CR-POPF: 42% vs. 22% | No reduction in POPF | [45] |
Prophylactic PD stenting (meta-analysis) | Meta-analysis: 1 RCT, 3 non-RCT, 200 patients | ↓CR-POPF: 0.45 OR (CI 0.22–0.94) | May offer benefit, but a single RCT conflicts with other results | [48] |
Botulinum toxin injection | Non-randomized cohort study, 48 patients, Germany | ↓CR-POPF: 0% vs. 33% | May offer benefit, needs further validation | [49] |
Botulinum toxin injection | Non-randomized cohort study, 38 patients, Germany | No change in CR-POPF: 32% vs. 42% | No clear benefit, needs further validation | [50] |
Intervention | Population | Outcome (CR-POPF Reduction) | Conclusion | Reference |
---|---|---|---|---|
Fibrin Sealant Patch (TachoSil) | Multicenter RCT, 275 patients, 19 centers, Italy | No significant ↓ in CR-POPF: 8% vs. 14% without | No benefit, but ↓ drain amylase levels on POD1 | [52] |
Fibrin Sealant Patch (TachoSil) (FIABLE study) | Multicenter RCT, 270 patients, 45 centers, France | No significant ↓ in CR-POPF: 31% vs. 24% without | No benefit | [53] |
Fibrin Sealant Patch (TachoSil) | Multicenter RCT, 101 patients, 5 centers, South Korea | No significant ↓ in CR-POPF: 23% vs. 28% without | No benefit | [54] |
Fibrin Sealant Patch (TachoSil) (meta-analysis) | Meta-analysis: 2 RCTs, 2 non-RCTs, 738 patients | No significant ↓ in CR-POPF: 17.8% vs. 18.3% without | No benefit | [55] |
Fibrin Sealant Patch (TachoSil) (CPR trial) | Multicenter RCT, 247 patients, 7 centers, The Netherlands | No significant ↓ in CR-POPF: 20% vs. 24% without | No benefit | [56] |
Reinforced stapler (PGA or biologic) | RCT, 100 patients, USA | ↓CR-POPF: 1.9% vs. 20% | Supports mesh-reinforced stapler | [57] |
PGA mesh wrap | Multicenter RCT, 97 patients, 5 centers, South Korea | ↓CR-POPF: 11.4% vs. 28.3% | Supports PGA mesh wrap | [58] |
Reinforced stapler (PGA) | Multicenter RCT, 119 patients, 9 centers, Japan | No significant ↓ in CR-POPF: 16% vs. 27% without | May have been underpowered; benefit in pancreas <14 mm thick | [59] |
Reinforced stapler (biologic) | Multicenter RCT, 106 patients, 4 centers, Sweden | No significant ↓ in CR-POPF: 11% vs. 16% without | No benefit with biologic reinforcement | [60] |
Reinforced stapler (PGA) (REPLAY study) | Multicenter RCT, 199 patients, 7 centers, France | No significant ↓ in CR-POPF: 14% vs. 11% without | No benefit with PGA reinforcement | [61] |
PGA mesh (meta-analysis) | Meta-analysis: 3 RCTs, 3 non-RCTs, 615 patients | ↓CR-POPF: RR 0.31 (CI 0.21–0.46) | Benefit of PGA mesh reinforcement | [62] |
Reinforced stapler (meta-analysis) | Meta-analysis: 2 RCTs, 5 non-RCTs, 553 patients | ↓CR-POPF: OR 0.33 (CI 0.19–0.57) | Benefit to reinforced stapler, but heterogeneity between studies | [63] |
Reinforced Stapler (meta-analysis) | Meta-analysis: 3 RCTs, 5 non-RCTs, 743 patients | No significant ↓ in CR-POPF: OR 0.79 (CI 0.47–1.35) | Reinforced stapler not effective per RCTs | [64] |
Teres ligament patch (DISCOVER trial) | RCT, 152 patients, Germany | No significant ↓ in CR-POPF: 22% vs. 33% without | Fewer reoperations/re-admissions with patch | [65] |
Patch coverage (autologous) (meta-analysis) | Meta-analysis: 5 RCTs, 6 non-RCTs, 1359 patients | ↓CR-POPF: RR 0.50 (CI 0.32–0.78) | Autologous patches reduce CR-POPF but not fibrin patches | [66] |
Cyanoacrylate glue | Pilot study, 15 patients (terminated early), Germany | CR-POPF: 33.3% | Feasible, but no obvious benefit in small sample size | [67] |
Flowable hemostatic matrix vs. thrombin patch | RCT, 25 patients, South Korea | ↓CR-POPF: 8.3% vs. 46.2% | Flowable hemostatic matrix outperforms thrombin-coated patch | [68] |
Hemopatch | Multicenter RCT, 315 patients, 17 centers, Europe | No significant ↓ in CR-POPF: 16% vs. 23% without | No benefit for CR-POPF, but fewer complications overall | [69] |
Hemopatch (PATCH-DP trial) | Multicenter single-arm trial, 52 patients, 7 centers, Canada | No significant ↓ in CR-POPF: 25% (vs. historical baseline 20%) | No benefit for CR-POPF, but limited study | [70] |
Actiseal patch (SHIELDS) | Multicenter single-arm trial, 40 patients, 8 centers, Europe | CR-POPF: 17.5% | Feasible; RCT needed | [71] |
Non-autologous reinforcement (meta-analysis) | Meta-analysis: 9 RCTs, 1497 patients | ↓CR-POPF: RR 0.677 (CI 0.479–0.956) | Non-TachoSil reinforcement is effective | [72] |
Prolonged stapler compression | Retrospective, 42 patients, Japan | ↓CR-POPF: 5.9% vs. 32% without | Slow compression is better than no compression | [73] |
No stapler compression | Retrospective, 59 patients, Japan | ↓ CR-POPF: 7.5% vs. 31.6% without | No compression is better than slow compression | [74] |
Stapler and suture vs. stapler alone | Cohort study, 22 patients, Japan | ↓ CR-POPF: 0% vs. 33% without | Combined stapler/suturing seems to reduce CR-POPF | [75] |
Stapler vs. suture vs. anastomosis vs. combined techniques (meta-analysis) | Meta-analysis: 2 RCTs, 35 non-RCTs, 5252 patients | No significant ↓ in CR-POPF: 14.2% stapler group vs. 17.4% suture group | POPF was reduced with a stapler vs. suture, but CR-POPF was equivalent with both | [76] |
No drain vs. drain (PANDORINA trial) | Multicenter RCT, 282 patients, 12 centers, Europe | ↓ CR-POPF: 12% without vs. 27% with drain | No drain improves CR-POPF rate | [77] |
No drain vs. drain (meta-analysis) | Meta-analysis: 2 RCTs, 6 non-RCTs, 3610 patients | ↓ CR-POPF: OR 0.38 (CI 0.25–0.56) | No drain improves CR-POPF rate | [78] |
Early drain removal (meta-analysis) | Meta-analysis: 1 RCT, 4 non-RCTs, 5343 patients | ↓ CR-POPF: RR 0.17 (CI 0.13–0.24) | Early removal improves the CR-POPF rate (based on non-RCTs) | [79] |
Intervention | Population | Outcome (CR-POPF Reduction) | Conclusion | Reference |
---|---|---|---|---|
Pasireotide | RCT, 80 DP patients, USA | ↓ CR-POPF: 7% vs. 23% without | Benefit to pasireotide | [82] |
Pasireotide | Cohort study, 29 DP patients, USA | No significant ↓ in CR-POPF: 27% vs. 11% without | No benefit | [84] |
Pasireotide | Cohort study, 81 DP patients, USA | No significant ↓ in CR-POPF: 15% vs. 21% without | No benefit | [85] |
Pasireotide (meta-analysis) | Meta-analysis: 1 RCT, 3 non-RCTs, 401 patients | No significant ↓ in CR-POPF: OR 0.70 (CI 0.30–1.63) | No benefit | [86] |
Lanreotide | Single cohort study, 36 DP patients, USA | 2.7% CR-POPF | May offer benefit, needs further validation | [88] |
Somatostatin vs. octreotide (PREFIPS Trial) | Multicenter RCT, 170 DP patients, 15 centers, France | No significant ↓ in CR-POPF: 18% vs. 17% | No benefit to somatostatin over octreotide | [89] |
Somatostatin analogues (meta-analysis) | Meta-analysis: 3 RCTs, 209 patients | ↓ CR-POPF: OR 0.41 (CI 0.18–0.91) | Benefit to analogues (driven by single RCT), but not octreotide | [90] |
Hydro-cortisone | RCT, 31 patients, Finland | ↓ CR-POPF: 6% vs. 43% without | Strong promising effect | [91] |
Hydro-cortisone vs. pasireotide | RCT, 60 patients, Finland | No significant ↓ in CR-POPF: 20% vs. 13% | No difference in CR-POPF, but more POPF and complications with hydrocortisone | [92] |
Intervention | Animal Model | Outcome | Conclusion | Reference |
---|---|---|---|---|
Tissue-engineered myoblast sheet patches | Rat splenic duct transection model | ↓ ascitic amylase and lipase; ↓ adhesions and inflammation at pancreatic stump | Myoblast sheets may prevent POPF and promote healing | [93] |
Mannose-enhanced ADSC sheets | Rat splenic duct transection model | ↓ascitic amylase and lipase; ↑ FGF2; improved healing | Mannose-enhanced sheets may reduce POPF | [94] |
Mesenchymal stem cell (MSC) sheets from adipose (rADSC) and bone marrow (rBMSC) | Rat DP/splenectomy model | ↓ ascites volume; ↓ inflammation; ↓ amylase levels; improved histology | Promising biomaterial approach; enhances healing | [95] |
PGA fabric scaffold for pancreatic stump | Rat ventral pancreas cauterization model | ↓ peritonitis; ↑ survival; effective barrier with ↑ fibroblast infiltration | PGA scaffold is effective in preventing POPF in rats | [96] |
Polyvinyl alcohol (PVA) hydrogel sheet | Rat splenic duct transection model | ↓ ascitic amylase and lipase; ↓ saponification; ↓ inflammation | PVA hydrogel may be superior to PGA felt; it is a promising biomaterial | [97] |
D-Peptide hydrogel (CP-CNDS) for enzyme trapping | Rat common pancreatic duct transection model | ↓ ascitic amylase and lipase; 100% survival vs. 100% 5-day mortality | D-Peptide hydrogel is promising for POPF prevention and enzyme sequestration | [98] |
Triple-drug therapy (octreotide + gabexate mesilate + imipenem/cilastatin) | Rat splenic duct transection model | ↓ ascitic amylase and lipase; ↓ intra-abdominal adhesions; ↓ inflammation | Suggested efficacy in reducing POPF in rats | [99] |
Penicillin G injection for fibrosis | BALB/c mouse model | ↑ fibrosis via TGF-β1; ↑ hardness; reversible effects | Penicillin G induces fibrosis and may prevent POPF | [100] |
Pancreas ligation band | Porcine distal pancreatectomy model | No POPF in animals with maintained arterial flow; necrosis rates 24–31% (ligated with flow) vs. 83% (without flow) | Pancreas ligation band may reduce POPF by atraumatic ligation, preserving blood flow and reducing necrosis | [101] |
Bioabsorbable pancreatic clip (BioPaC device) | Porcine distal pancreatectomy model | BioPaC group: 0% POPF; linear stapler group: 1/2 Grade C POPF; better duct closure | BioPaC may prevent POPF by avoiding compression injury; it is a promising device for DP | [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvikas, J.; Dahiya, S.; Dubrovsky, G. A Review of Post-Operative Pancreatic Fistula Following Distal Pancreatectomy: Risk Factors, Consequences, and Mitigation Strategies. Cancers 2025, 17, 2741. https://doi.org/10.3390/cancers17172741
Alvikas J, Dahiya S, Dubrovsky G. A Review of Post-Operative Pancreatic Fistula Following Distal Pancreatectomy: Risk Factors, Consequences, and Mitigation Strategies. Cancers. 2025; 17(17):2741. https://doi.org/10.3390/cancers17172741
Chicago/Turabian StyleAlvikas, Jurgis, Shakti Dahiya, and Genia Dubrovsky. 2025. "A Review of Post-Operative Pancreatic Fistula Following Distal Pancreatectomy: Risk Factors, Consequences, and Mitigation Strategies" Cancers 17, no. 17: 2741. https://doi.org/10.3390/cancers17172741
APA StyleAlvikas, J., Dahiya, S., & Dubrovsky, G. (2025). A Review of Post-Operative Pancreatic Fistula Following Distal Pancreatectomy: Risk Factors, Consequences, and Mitigation Strategies. Cancers, 17(17), 2741. https://doi.org/10.3390/cancers17172741