Predictors of Successful Whole-Body Hyperthermia in Cancer Patients: Target Temperature Achievement and Safety Analysis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Baseline Characteristics
2.2. Whole-Body Hyperthermia
2.3. Assessment of Side Effects
2.4. Statistical Analysis
3. Results
3.1. WBH Treatment
3.2. Adverse Side Effects
3.3. Logistic Regression Analyses
3.4. Explorative Analysis
4. Discussion
- A high success rate (90.1%) in reaching the target temperature of 38.5 °C was achieved, while a higher temperature of 39 °C was reached in 62% of patients.
- Serum creatinine and secale cornutum/galena emerged as independent predictors of WBH success.
- Concomitant medication of special interest (CMSI; i.e., thyroid medication, beta blockers, NSAIDs, and metamizole) did not significantly impact the ability to reach target temperatures.
- We also observed an indirect association suggesting the potential effectiveness of supportive remedies such as phosphorus D6 and secale cornutum/galena in reaching target temperatures.
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liebl, C.M.; Kutschan, S.; Dörfler, J.; Käsmann, L.; Hübner, J. Systematic Review about Complementary Medical Hyperthermia in Oncology. Clin. Exp. Med. 2022, 22, 519–565. [Google Scholar] [CrossRef] [PubMed]
- Lassche, G.; Crezee, J.; Van Herpen, C.M.L. Whole-Body Hyperthermia in Combination with Systemic Therapy in Advanced Solid Malignancies. Crit. Rev. Oncol. Hematol. 2019, 139, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Yi, G.Y.; Kim, M.J.; Kim, H.I.; Park, J.; Baek, S.H. Hyperthermia Treatment as a Promising Anti-Cancer Strategy: Therapeutic Targets, Perspective Mechanisms and Synergistic Combinations in Experimental Approaches. Antioxidants 2022, 11, 625. [Google Scholar] [CrossRef]
- Wehner, H.; Wey, S.; Meyer, A. Whole-Body Hyperthermia Guideline; Deutsche Gesellschaft Für Hyperthermie e.V: Oldenburg, Germany, 2018. [Google Scholar]
- Peeters, H.; Van Zwol, E.M.; Brancato, L.; Da, M.C.; Cunha, M.G.; Bogers, J. Systematic Review of the Registered Clinical Trials for Oncological Hyperthermia Treatment. Int. J. Hyperth. 2022, 39, 806–812. [Google Scholar] [CrossRef]
- Vaupel, P.; Piazena, H.; Notter, M.; Thomsen, A.R.; Grosu, A.-L.; Scholkmann, F.; Pockley, A.G.; Multhoff, G. From Localized Mild Hyperthermia to Improved Tumor Oxygenation: Physiological Mechanisms Critically Involved in Oncologic Thermo-Radio-Immunotherapy. Cancers 2023, 15, 1394. [Google Scholar] [CrossRef]
- Paulides, M.M.; Dobsicek Trefna, H.; Curto, S.; Rodrigues, D.B. Recent Technological Advancements in Radiofrequency- Andmicrowave-Mediated Hyperthermia for Enhancing Drug Delivery. Adv. Drug Deliv. Rev. 2020, 163–164, 3–18. [Google Scholar] [CrossRef]
- Adnan, A.; Muñoz, N.M.; Prakash, P.; Habibollahi, P.; Cressman, E.N.K.; Sheth, R.A. Hyperthermia and Tumor Immunity. Cancers 2021, 13, 2507. [Google Scholar] [CrossRef]
- Phung, D.C.; Nguyen, H.T.; Phuong Tran, T.T.; Jin, S.G.; Yong, C.S.; Truong, D.H.; Tran, T.H.; Kim, J.O. Combined Hyperthermia and Chemotherapy as a Synergistic Anticancer Treatment. J. Pharm. Investig. 2019, 49, 519–526. [Google Scholar] [CrossRef]
- Datta, N.R.; Ordóñez, S.G.; Gaipl, U.S.; Paulides, M.M.; Crezee, H.; Gellermann, J.; Marder, D.; Puric, E.; Bodis, S. Local Hyperthermia Combined with Radiotherapy And-/or Chemotherapy: Recent Advances and Promises for the Future. Cancer Treat. Rev. 2015, 41, 742–753. [Google Scholar] [CrossRef]
- Atanackovic, D.; Nierhaus, A.; Neumeier, M.; Hossfeld, D.K.; Hegewisch-Becker, S. 41.8 °C Whole Body Hyperthermia as an Adjunct to Chemotherapy Induces Prolonged T Cell Activation in Patients with Various Malignant Diseases. Cancer Immunol. Immunother. CII 2002, 51, 603–613. [Google Scholar] [CrossRef] [PubMed]
- Douwes, F.R. Local and Whole Body Hyperthermia in Chemoresistant Ovarian Cancer. Oncothermia J. 2023, 7, 70. [Google Scholar]
- Bull, J.M.C.; Scott, G.L.; Strebel, F.R.; Nagle, V.L.; Oliver, D.; Redwine, M.; Rowe, R.W.; Ahn, C.W.; Koch, S.M. Fever-Range Whole-Body Thermal Therapy Combined with Cisplatin, Gemcitabine, and Daily Interferon-Alpha: A Description of a Phase I-II Protocol. Int. J. Hyperth. Off. J. Eur. Soc. Hyperthermic Oncol. N. Am. Hyperth. Group 2008, 24, 649–662. [Google Scholar] [CrossRef] [PubMed]
- Hohneck, A.L.; Sadikaj, L.; Heinemann, L.; Schroeder, M.; Riess, H.; Gerhards, A.; Burkholder, I.; Heckel-Reusser, S.; Gottfried, J.; Hofheinz, R.-D. Patients with Advanced Pancreatic Cancer Treated with Mistletoe and Hyperthermia in Addition to Palliative Chemotherapy: A Retrospective Single-Center Analysis. Cancers 2023, 15, 4929. [Google Scholar] [CrossRef] [PubMed]
- Wust, P.; Riess, H.; Hildebrandt, B.; Löffel, J.; Deja, M.; Ahlers, O.; Kerner, T.; von Ardenne, A.; Felix, R. Feasibility and Analysis of Thermal Parameters for the Whole-Body-Hyperthermia System IRATHERM-2000. Int. J. Hyperth. Off. J. Eur. Soc. Hyperthermic Oncol. N. Am. Hyperth. Group 2000, 16, 325–339. [Google Scholar] [CrossRef]
- Kerner, T.; Deja, M.; Ahlers, O.; Löffel, J.; Hildebrandt, B.; Wust, P.; Gerlach, H.; Riess, H. Whole Body Hyperthermia: A Secure Procedure for Patients with Various Malignancies? Intensive Care Med. 1999, 25, 959–965. [Google Scholar] [CrossRef]
- Chauhan, A.; Saini, A.; Sharma, D. The Evolution of Integrated Magnetic Hyperthermia and Chemodynamic Therapy for Combating Cancer: A Comprehensive Viewpoint. Nanoscale Adv. 2025, 7, 4820–4836. [Google Scholar] [CrossRef]
- Kim, Y.; Hur, J.; Hong, S.-C.; Jung, J.; Park, C.-H.; Park, J.B.; Yoon, T.J.; Kim, J.B.; Yang, S.-H. Modulated Electro-Hyperthermia Therapy Combined with Korean Mistletoe Extract Treatment Exerts a Strong Anti-Tumor Activity by Enhancing Cellular and Humoral Immune Responses in Mice. Anim. Cells Syst. 2025, 29, 163–172. [Google Scholar] [CrossRef]
- Zheng, N.; Xu, A.; Lin, X.; Mo, Z.; Xie, X.; Huang, Z.; Liang, Y.; Cai, Z.; Tan, J.; Shao, X. Whole-body hyperthermia combined with chemotherapy and intensity-modulated radiotherapy for treatment of advanced nasopharyngeal carcinoma: a retrospective study with propensity score matching. Int. J. Hyperth. 2021, 38, 1304–1312. [Google Scholar] [CrossRef]
- van der Horst, A.; Versteijne, E.; Besselink, M.G.H.; Daams, J.G.; Bulle, E.B.; Bijlsma, M.F.; Wilmink, J.W.; van Delden, O.M.; van Hooft, J.E.; Franken, N.A.P.; et al. The Clinical Benefit of Hyperthermia in Pancreatic Cancer: A Systematic Review. Int. J. Hyperth. Off. J. Eur. Soc. Hyperthermic Oncol. N. Am. Hyperth. Group 2018, 34, 969–979. [Google Scholar] [CrossRef]
- Kockelmann, F.; Giger-Pabst, U.; Ouaissi, M.; Bucur, P.; Barbey, S.; VON Ardenne, A.; Zieren, J. First Clinical Safety and Feasibility Data of Whole-Body Hyperthermia Pressurized Intraperitoneal Aerosol Chemotherapy (WBH-PIPAC) for Peritoneal Surface Malignancies. Anticancer. Res. 2024, 44, 3043–3050. [Google Scholar] [CrossRef]
- Suvernev, A.V.; Ivanov, G.V.; Efremov, A.V.; Tchervov, R. Whole Body Hyperthermia at 43.5–44 °C: Dreams or Reality? In Madame Curie Bioscience Database [Internet]; Landes Bioscience: Austin, TX, USA, 2013. [Google Scholar]
- Park, M.Y.; Ahn, J.; Bae, S.; Chung, B.H.; Myong, J.-P.; Lee, J.; Kang, M.-Y. Effects of Cold and Hot Temperatures on the Renal Function of People with Chronic Disease. J. Occup. Health 2024, 66, uiae037. [Google Scholar] [CrossRef] [PubMed]
- Nijssen, E.C.; Rennenberg, R.J.; Nelemans, P.J.; Essers, B.A.; Janssen, M.M.; Vermeeren, M.A.; van Ommen, V.; Wildberger, J.E. Prophylactic Hydration to Protect Renal Function from Intravascular Iodinated Contrast Material in Patients at High Risk of Contrast-Induced Nephropathy (AMACING): A Prospective, Randomised, Phase 3, Controlled, Open-Label, Non-Inferiority Trial. Lancet Lond. Engl. 2017, 389, 1312–1322. [Google Scholar] [CrossRef] [PubMed]
- Yulistiani, N.; Tiffany, C.; Ugrasena, I.D.G.; Qibtiyah, M. Hydration Effect on Kidney Function and Serum Electrolyte in Children with Tumor Lysis Syndrome (TLS) and Risk of TLS. J. Basic Clin. Physiol. Pharmacol. 2021, 32, 603–609. [Google Scholar] [CrossRef]
- Pryor, R.R.; Pryor, J.L.; Vandermark, L.W.; Adams, E.L.; Brodeur, R.M.; Schlader, Z.J.; Armstrong, L.E.; Lee, E.C.; Maresh, C.M.; Casa, D.J. Acute Kidney Injury Biomarker Responses to Short-Term Heat Acclimation. Int. J. Environ. Res. Public Health 2020, 17, 1325. [Google Scholar] [CrossRef]
- Chapman, C.L.; Johnson, B.D.; Parker, M.D.; Hostler, D.; Pryor, R.R.; Schlader, Z. Kidney Physiology and Pathophysiology during Heat Stress and the Modification by Exercise, Dehydration, Heat Acclimation and Aging. Temperature 2021, 8, 108–159. [Google Scholar] [CrossRef]
- Sato, Y.; Roncal-Jimenez, C.A.; Andres-Hernando, A.; Jensen, T.; Tolan, D.R.; Sanchez-Lozada, L.G.; Newman, L.S.; Butler-Dawson, J.; Sorensen, C.; Glaser, J.; et al. Increase of Core Temperature Affected the Progression of Kidney Injury by Repeated Heat Stress Exposure. Am. J. Physiol. Ren. Physiol. 2019, 317, F1111–F1121. [Google Scholar] [CrossRef]
- Samra, M.; Abcar, A.C. False Estimates of Elevated Creatinine. Perm. J. 2012, 16, 51–52. [Google Scholar] [CrossRef]
- Emerson, D.M.; Chen, S.C.L.; Kelly, M.R.; Parnell, B.; Torres-McGehee, T.M. Non-Steroidal Anti-Inflammatory Drugs on Core Body Temperature during Exercise: A Systematic Review. J. Exerc. Sci. Fit. 2021, 19, 127–133. [Google Scholar] [CrossRef] [PubMed]
N = 397 | |
---|---|
Sex (female), % | 304 (76.6) |
Age at time of first diagnosis | 53 (27–87) |
Age at time of study inclusion | 58 (33–88) |
Advanced disease stage | 217 (54.7) |
Barthel index | 100 (80–100) |
Chemotherapy | 43 (10.8) |
Radiotherapy | 161 (40.6) |
Ongoing hormone therapy | 99 (24.9) |
Ongoing mistletoe therapy | 339 (85.4) |
Supportive (integrative) remedies | 267 (67.3) |
Tumor type, n (%) | |
Breast cancer | 208 (52.4) |
Prostate cancer | 52 (13.1) |
Gynecological cancers | 42 (10.6) |
Colorectal cancer | 30 (7.6) |
Hepato-pancreatico-biliary tumors | 14 (3.5) |
Lung cancer | 12 (3.0) |
Upper gastrointestinal cancer | 12 (3.0)) |
Urothelial cancer | 10 (2.5) |
Melanoma | 6 (1.5) |
ORL cancer | 4 (1.0) |
Others | 7 (1.8) |
N = 855 WBH Treatment Sessions | Target Temperature (38.5 °C) Achieved, n = 770 (90.1%) | Target Temperature Not Achieved, n = 85 (9.9%) | |
---|---|---|---|
Barthel index | 100 (80–100) | 100 (80–100) | 100 (90–100) |
Chemotherapy within the last 4 weeks | 70 (8.2) | 62 (8.1) | 8 (9.4) |
Radiotherapy within the last 4 weeks | 42 (4.9) | 38 (4.9) | 4 (4.7) |
Ongoing hormone therapy | 233 (27.3) | 215 (27.9) | 18 (21.2) |
Ongoing mistletoe therapy | 747 (87.4) | 672 (87.3) | 75 (88.2) |
Mistletoe therapy on the previous evening | 305 (35.7) | 274 (35.6) | 31 (36.5) |
Median treatment duration, minutes | 202 (0–321) | 202 (0–321) | 200 (0–245) |
Maximum temperature, °C | 39.1 (36.4–40.4) | 39.1 (38.5–40.4) | 38.2 (36.4–38.4) |
Time to maximum temperature, minutes | 145 (54–256) | 144 (54–256) | 154 (60–224) |
Time to 38.5 °C | 94 (9–212) | 94 (9–212) | - |
Fever time above 38.5 °C | 124 (5–196) | 124 (5–196) | - |
Hemoglobin, g/dL | 13.1 (7.1–16.4) | 13.0 (7.1–16.4) | 13.3 (10.4–15.9) |
Leukocytes, 109/L | 5.5 (2.3–45.0) | 5.5 (2.3–45.0) | 5.6 (2.7–21.9) |
Creatinine, mg/dL | 0.8 (0.4–2.7) | 0.8 (0.4–2.5) | 0.8 (0.6–2.7) |
Gamma-glutamyl transferase, U/L | 19.0 (0.9–1881) | 18.0 (0.9–1881) | 20.0 (7.0–165.0) |
Concomitant medication, n (%) | 664 (77.7) | 591 (76.8) | 73 (85.9) |
Betablocker | 93 (10.9) | 84 (10.9) | 9 (10.6) |
Thyroid hormones | 153 (17.9) | 130 (16.9) | 23 (27.1) |
NSAID | 162 (18.9) | 140 (18.2) | 22 (25.9) |
Metamizole | 95 (11.1) | 85 (11.0) | 10 (11.8) |
Supportiveremedies, n (%) | |||
Rosemary D3 | 40 (4.7) | 33 (4.3) | 7 (8.2) |
Phosphorus D6 | 329 (38.5) | 280 (36.4) | 49 (57.6) |
Secale cornutum/galena | 69 (8.1) | 54 (7.0) | 15 (17.6) |
Cardiodorone | 194 (22.7) | 181 (23.5) | 13 (15.3) |
Bryophyllum | 179 (20.9) | 170 (22.1) | 9 (10.6) |
Gelsemium | 156 (18.2) | 143 (18.6) | 13 (15.3) |
Others | 141 (16.5) | 132 (17.1) | 9 (10.6) |
Adverse side effects, n (%) | |||
Cardiac side effects | 80 (9.4) | 74 (9.6) | 6 (7.1) |
Maximum heart rate, bpm | 110 (49–211) | 110 (49–190) | 107 (66–211) |
RR > 160 mmHg | 58 (6.8) | 47 (6.1) | 11 (12.9) |
RR < 100 mmHg | 133 (15.6) | 124 (16.1) | 9 (10.6) |
Headache | 469 (54.9) | 420 (54.5) | 49 (57.6) |
Fever > 40 °C | 4 (0.5) | 4 (0.5) | - |
Skin reactions | 100 (11.7) | 88 (11.4) | 12 (14.1) |
Neurological side effects | 67 (7.8) | 61 (7.9) | 6 (7.1) |
Restlessness | 52 (6.1) | 48 (6.2) | 4 (4.7) |
Saline infusion, ml | 1000 (145–2000) | 1000 (160–2000) | 1000 (145–1000) |
Oxygen | 190 (22.2) | 164 (21.3) | 26 (30.6) |
Median duration of oxygen therapy, minutes | 94 (2–99) | 94 (2–99) | 91 (90–98) |
Parameter | Characteristics | p-Value | OR Estimator, 95% CI |
---|---|---|---|
Sex (N = 854) | female versus male | 0.40 | 1.32 [0.69, 2.52] |
Age at time of treatment (N = 855) | continuous | 0.75 | 1.0 [0.97, 1.040] |
Metastases (N = 855) | existant versus none | 0.71 | 1.11 [0.63, 1.97] |
Chemotherapy within the last 4 weeks (N = 855) | yes versus no | 1.00 | 0.97 [0.41, 2.29] |
Ongoing hormone therapy (N = 855) | yes versus no | 0.43 | 1.30 [0.67, 2.53] |
Ongoing mistetoe therapy (N = 855) | yes versus no | 0.64 | 0.82 [0.36, 1.89] |
Mistletoe therapy on the previous evening (N = 855) | yes versus no | 0.69 | 0.89 [0.49, 1.59] |
Hb (N = 812) | continuous | 0.44 | 0.99 [0.98, 1.01] |
Leukocytes (N = 813) | continuous | 0.30 | 0.98 [0.93, 1.02] |
Creatinine (N = 785) | continuous | 0.01 | 0.31 [0.13, 0.78] |
Gamma GT (N = 798) | continuous | 0.26 | 1.00 [1.00, 1.01] |
Concomitant medication (N = 855) | yes versus no | 0.09 | 0.53 [0.25, 1.11] |
Betablocker (N = 855) | yes versus no | 0.65 | 1.25 [0.47, 3.29] |
Thyroid hormones (N = 854) | yes versus no | 0.07 | 0.53 [0.27, 1.04] |
NSAID (N = 854) | yes versus no | 0.33 | 0.72 [0.37, 1.40] |
Metamizole (N = 854) | yes versus no | 0.79 | 1.14 [0.45, 2.87] |
Rosemary D3 (N = 855) | yes versus no | 0.30 | 0.62 [0.25, 1.53] |
Phosphorus D6 (N = 855) | yes versus no | 0.01 | 0.506 [0.30, 0.86] |
Secale cornutum/galena (N = 854) | yes versus no | <0.001 | 0.27 [0.14, 0.53] |
Cardiodorone (N = 855) | yes versus no | 0.59 | 1.25 [0.56, 2.80] |
Bryophyllum (N = 853) | yes versus no | 0.07 | 2.34 [0.95, 5.76] |
Gelsenium (N = 851) | yes versus no | 0.97 | 0.98 [0.48, 2.02] |
Others (N = 853) | yes versus no | 0.47 | 1.35 [0.60, 3.01] |
Parameter | Characteristics | p-Value | OR Estimator, 95% CI |
---|---|---|---|
Creatinine (N = 780) | continuous | 0.01 | 0.30 [0.11, 0.78] |
Secale cornutum/galena (N = 780) | yes versus no | <0.001 | 0.26 [0.12, 0.54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hohneck, A.L.; Schmitz-Solheid, V.; Gencer, D.; Schroeder, M.; Riess, H.; Gerhards, A.; Burkholder, I.; Heckel-Reusser, S.; Gottfried, J.; Hofheinz, R.-D. Predictors of Successful Whole-Body Hyperthermia in Cancer Patients: Target Temperature Achievement and Safety Analysis. Cancers 2025, 17, 2716. https://doi.org/10.3390/cancers17162716
Hohneck AL, Schmitz-Solheid V, Gencer D, Schroeder M, Riess H, Gerhards A, Burkholder I, Heckel-Reusser S, Gottfried J, Hofheinz R-D. Predictors of Successful Whole-Body Hyperthermia in Cancer Patients: Target Temperature Achievement and Safety Analysis. Cancers. 2025; 17(16):2716. https://doi.org/10.3390/cancers17162716
Chicago/Turabian StyleHohneck, Anna Lena, Vivien Schmitz-Solheid, Deniz Gencer, Maik Schroeder, Hartmut Riess, Annette Gerhards, Iris Burkholder, Stefan Heckel-Reusser, Julia Gottfried, and Ralf-Dieter Hofheinz. 2025. "Predictors of Successful Whole-Body Hyperthermia in Cancer Patients: Target Temperature Achievement and Safety Analysis" Cancers 17, no. 16: 2716. https://doi.org/10.3390/cancers17162716
APA StyleHohneck, A. L., Schmitz-Solheid, V., Gencer, D., Schroeder, M., Riess, H., Gerhards, A., Burkholder, I., Heckel-Reusser, S., Gottfried, J., & Hofheinz, R.-D. (2025). Predictors of Successful Whole-Body Hyperthermia in Cancer Patients: Target Temperature Achievement and Safety Analysis. Cancers, 17(16), 2716. https://doi.org/10.3390/cancers17162716