Intracellular Targeted Nanocapsules Containing Nanobiotherapeutic Suppress Lung, Liver, Breast and Cervix Cancer Cell Lines by Prodrug Activation or Removal of Intracellular Tyrosine
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cell Culture
2.3. Preparation of PolyHb-Tyr
2.4. Preparation of Quercetin Nanocapsules
2.5. Measurement of Tyrosinase Activity
2.6. Three-Dimensional Culture Studies
2.7. Intracellular Tyrosine Concentration Measurement
2.8. O-Quinone Concentration Measurement
2.9. Colony Study
2.10. Multi-Dose Viability Study
2.11. Fluorescence Nanocapsule Entry Study
2.12. Statistical Analysis
3. Results
3.1. Quercetin-Nano, PolyHb–Tyr–nano, and PolyHb–Tyr–nano+ Quercetin-Nano: Effect on Four Cancer Cell Lines
3.1.1. Cell Viability Study
3.1.2. Average Live Cell Count
3.1.3. Colony Study
3.2. Quercetin-Nano and PolyHb–Tyr–nano Exert Antitumor Activities by Activating Prodrug to O-Quinone and Reducing Intracellular Tyrosine
3.2.1. Intracellular Tyrosine Measurement Study
3.2.2. O-Quinone Measurement Study
3.3. PolyHb–Tyr–nano Suppresses Liver Cancer Cells Without Cytotoxicity in Normal Liver Cells
3.4. Confirmation of Effective Nanocapsule Cell Entry
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, T.M. Semipermeable microcapsules. Science 1964, 146, 524–525. [Google Scholar] [CrossRef]
- Chang, T.M.S. ARTIFICIAL CELL evolves into nanomedicine, biotherapeutics, blood substitutes, drug delivery, enzyme/gene therapy, cancer therapy, cell/stem cell therapy, nanoparticles, liposomes, bioencapsulation, replicating synthetic cells, cell encapsulation/scaffold, biosorbent/immunosorbent haemoperfusion/plasmapheresis, regenerative medicine, encapsulated microbe, nanobiotechnology, nanotechnology. Artif. Cells Nanomed. Biotechnol. 2019, 47, 997–1013. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.M. The in vivo effects of semipermeable microcapsules containing L-asparaginase on 6c3hed lymphosarcoma. Nature 1971, 229, 117–118. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.M. Therapeutic applications of polymeric artificial cells. Nat. Rev. Drug Discov. 2005, 4, 221–235. [Google Scholar] [CrossRef]
- Meadows, G.G.; Pierson, H.F.; Abdallah, R.M.; Desai, P.R. Dietary influence of tyrosine and phenylalanine on the response of B16 melanoma to carbidopa-levodopa methyl ester chemotherapy. Cancer Res. 1982, 42, 3056–3063. [Google Scholar] [PubMed]
- Meadows, G.G.; Fu, Y.M. Dietary restriction of specific amino acids modulates tumor and host interactions. In Cancer Growth and Progression; Springer: Dordrecht, The Netherlands, 2005; pp. 271–283. [Google Scholar] [CrossRef]
- Yu, B.; Chang, T.M. In vitro and in vivo effects of polyhaemoglobin–tyrosinase on murine B16F10 melanoma. Melanoma Res. 2004, 14, 197–202. [Google Scholar] [CrossRef]
- Wang, Y.; Chang, T.M. Nanobiotechnological nanocapsules containing polyhemoglobin-tyrosinase: Effects on murine B16F10 melanoma cell proliferation and attachment. J. Ski. Cancer 2012, 2012, 673291. [Google Scholar] [CrossRef]
- Wang, Y.; Chang, T.M.S. A polymer–lipid membrane artificial cell nanocarrier containing enzyme–oxygen biotherapeutic inhibits the growth of B16F10 melanoma in 3D culture and in a mouse model. Artif. Cells Nanomed. Biotechnol. 2021, 49, 461–470. [Google Scholar] [CrossRef]
- Butler, M.; van der Meer, L.T.; van Leeuwen, F.N. Amino acid depletion therapies: Starving cancer cells to death. Trends Endocrinol. Metab. 2021, 32, 367–381. [Google Scholar] [CrossRef]
- Wilder, C.S.; Chen, Z.; DiGiovanni, J. Pharmacologic approaches to amino acid depletion for cancer therapy. Mol. Carcinog. 2022, 61, 127–152. [Google Scholar] [CrossRef]
- Fung, M.K.; Chan, G.C.F. Drug-induced amino acid deprivation as strategy for cancer therapy. J. Hematol. Oncol. 2017, 10, 144. [Google Scholar] [CrossRef]
- Xiang, Y.; Stine, Z.E.; Xia, J.; Lu, Y.; O’Connor, R.S.; Altman, B.J.; Hsieh, A.L.; Gouw, A.M.; Thomas, A.G.; Gao, P.; et al. Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. J. Clin. Investig. 2015, 125, 2293–2306. [Google Scholar] [CrossRef]
- Delage, B.; Fennell, D.A.; Nicholson, L.; McNeish, I.; Lemoine, N.R.; Crook, T.; Szlosarek, P.W. Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer. Int. J. Cancer 2010, 126, 2762–2772. [Google Scholar] [CrossRef]
- Abakumova, O.I.; Podobed, O.V.; Karalkin, P.A.; Kondakova, L.I.; Sokolov, N.N. Antitumor activity of L-asparaginase from Erwinia carotovora from against different leukemic and solid tumour cell lines. Biomeditsinskaia Khimiia 2013, 59, 498–513. [Google Scholar] [CrossRef]
- Asgharian, P.; Tazekand, A.P.; Hosseini, K.; Forouhandeh, H.; Ghasemnejad, T.; Ranjbar, M.; Hasan, M.; Kumar, M.; Beirami, S.M.; Tarhriz, V.; et al. Potential mechanisms of quercetin in cancer prevention: Focus on cellular and molecular targets. Cancer Cell Int. 2022, 22, 257. [Google Scholar] [CrossRef]
- Bolton, J.L.; Dunlap, T. Formation and biological targets of quinones: Cytotoxic versus cytoprotective effects. Chem. Res. Toxicol. 2016, 30, 13–37. [Google Scholar] [CrossRef] [PubMed]
- Bolton, J.L.; Dunlap, T.L.; Dietz, B.M. Formation and biological targets of botanical o-quinones. Food Chem. Toxicol. 2018, 120, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Berlin, J.A.; Penning, T.M.; Field, J. Reactive oxygen species generated by PAH o-quinones cause change-in-function mutations in p53. Chem. Res. Toxicol. 2002, 15, 832–842. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Chang, T.M. Biodegradable polylactide nanocapsules containing quercetin for in vitro suppression of mouse B16F10 and human SK-Mel-28 melanoma cell lines. Pharmaceuticals 2025, 18, 980. [Google Scholar] [CrossRef]
- Zhao, C.; Chang, T.M. Superparamagnetic polyhemoglobin-tyrosinase nanocapsules: A novel biotherapeutic with enhanced tumor suppression with control by external magnetic field. Front. Bioeng. Biotechnol. 2025, 13, 1562145. [Google Scholar] [CrossRef]
- Swetha, T.A.; Ananthi, V.; Bora, A.; Sengottuvelan, N.; Ponnuchamy, K.; Muthusamy, G.; Arun, A. A review on biodegradable polylactic acid (PLA) production from fermentative food waste—Its applications and degradation. Int. J. Biol. Macromol. 2023, 234, 123703. [Google Scholar] [CrossRef]
- Luo, Y.; Lin, Z.; Guo, G. Biodegradation assessment of poly(lactic acid) filled with functionalized titania nanoparticles (PLA/TiO2) under compost conditions. Nanoscale Res. Lett. 2019, 14, 211. [Google Scholar] [CrossRef]
- Smith, S.A.; Selby, L.I.; Johnston, A.P.R.; Such, G.K. The endosomal escape of nanoparticles: Toward more efficient cellular delivery. Bioconjugate Chem. 2019, 30, 263–272. [Google Scholar] [CrossRef]
- Pietkiewicz, D.; Klupczynska-Gabryszak, A.; Plewa, S.; Misiura, M.; Horala, A.; Miltyk, W.; Nowak-Markwitz, E.; Kokot, Z.J.; Matysiak, J. Free amino acid alterations in patients with gynecological and breast cancer: A review. Pharmaceuticals 2021, 14, 731. [Google Scholar] [CrossRef]
- Mamtimin, B.; Kedena; Kong, B.; Hasim, A.; Matsidik, A.; Hizbulla, M.; Kurbantay, N.; Upur, H. Plasma amino acid profiling of cancer patients with abnormal Savda based on high-performance liquid chromatography. J. Tradit. Chin. Med. 2014, 34, 560–565. [Google Scholar] [CrossRef]
- Córdova-Rivas, S.; Araujo-Huitrado, J.G.; Rivera-Avalos, E.; Escalante-García, I.L.; Durón-Torres, S.M.; López-Hernández, Y.; Hernández-López, H.; López, L.; de Loera, D.; López, J.A. Differential proliferation effect of the newly synthesized valine, tyrosine and tryptophan–naphthoquinones in immortal and tumorigenic cervical cell lines. Molecules 2020, 25, 2058. [Google Scholar] [CrossRef] [PubMed]
- Qi, M.; Chu, H.; Chen, X.; Choi, J.; Wen, X.; Hammonds, J.; Ding, L.; Hunter, E.; Spearman, P. A tyrosine-based motif in the HIV-1 envelope glycoprotein tail mediates cell-type– and rab11-FIP1C–dependent incorporation into virions. Proc. Natl. Acad. Sci. USA 2015, 112, 7575–7580. [Google Scholar] [CrossRef] [PubMed]
- Hasim, A.; Aili, A.; Maimaiti, A.; Mamtimin, B.; Abudula, A.; Upur, H. Plasma-free amino acid profiling of cervical cancer and cervical intraepithelial neoplasia patients and its application for early detection. Mol. Biol. Rep. 2013, 40, 5853–5859. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Z.; Luo, L.; Shu, D.; Wang, K. Metabolomics in hepatocellular carcinoma: From biomarker discovery to precision medicine. Front. Med. Technol. 2023, 4, 1065506. [Google Scholar] [CrossRef] [PubMed]
- Tong, M.; Wong, T.-L.; Zhao, H.; Zheng, Y.; Xie, Y.-N.; Li, C.-H.; Zhou, L.; Che, N.; Yun, J.-P.; Man, K.; et al. Loss of tyrosine catabolic enzyme HPD promotes glutamine anaplerosis through mTOR signaling in liver cancer. Cell Rep. 2021, 36, 109617. [Google Scholar] [CrossRef]
- Cao, J.; Balluff, B.; Arts, M.; Dubois, L.J.; van Loon, L.J.C.; Hackeng, T.M.; van Eijk, H.M.H.; Eijkel, G.; Heij, L.R.; Soons, Z.; et al. Mass spectrometry imaging of L-[ring-13C6] labeled phenylalanine and tyrosine kinetics in non-small cell lung carcinoma. Cancer Metab. 2021, 9, 26. [Google Scholar] [CrossRef] [PubMed]
- Sivaganesh, V.; Sivaganesh, V.; Scanlon, C.; Iskander, A.; Maher, S.; Lê, T.; Peethambaran, B. Protein tyrosine phosphatases: Mechanisms in cancer. Int. J. Mol. Sci. 2021, 22, 12865. [Google Scholar] [CrossRef]
- Thomas, A.; Rajan, A.; Giaccone, G. Tyrosine kinase inhibitors in lung cancer. Hematol. Oncol. Clin. N. Am. 2012, 26, 589–605. [Google Scholar] [CrossRef] [PubMed]
- Vickers, S.M.; MacMillan-Crow, L.A.; Green, M.; Ellis, C.; Thompson, J.A. Association of increased immunostaining for inducible nitric oxide synthase and nitrotyrosine with fibroblast growth factor transformation in pancreatic cancer. Arch. Surg. 1999, 134, 245–251. [Google Scholar] [CrossRef] [PubMed]
Particle Size (nm) | Polydispersity Index (PDI) | Zeta Potential (mV) | Morphology (TEM/SEM) | Encapsulation Efficiency (%) | Preparation Method |
---|---|---|---|---|---|
180–220 | 0.12–0.19 | −19 to −21 | Smooth Spherical | 49–70% | Nanoprecipitation |
Treatments | LD50 Dose Liver Cancer (mg/mL) | LD50 Dose Hepatocytes (mg/mL) |
---|---|---|
Q-nano | 2.7264 | 74.18 |
PolyHb–Tyr–nano | 0.7808 | 84,181.8 |
PolyHb–Tyr–nano + Q-nano | 1.1648 | 20.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Chang, T.M.S. Intracellular Targeted Nanocapsules Containing Nanobiotherapeutic Suppress Lung, Liver, Breast and Cervix Cancer Cell Lines by Prodrug Activation or Removal of Intracellular Tyrosine. Cancers 2025, 17, 2698. https://doi.org/10.3390/cancers17162698
Zhao C, Chang TMS. Intracellular Targeted Nanocapsules Containing Nanobiotherapeutic Suppress Lung, Liver, Breast and Cervix Cancer Cell Lines by Prodrug Activation or Removal of Intracellular Tyrosine. Cancers. 2025; 17(16):2698. https://doi.org/10.3390/cancers17162698
Chicago/Turabian StyleZhao, ChenHui, and Thomas Ming Swi Chang. 2025. "Intracellular Targeted Nanocapsules Containing Nanobiotherapeutic Suppress Lung, Liver, Breast and Cervix Cancer Cell Lines by Prodrug Activation or Removal of Intracellular Tyrosine" Cancers 17, no. 16: 2698. https://doi.org/10.3390/cancers17162698
APA StyleZhao, C., & Chang, T. M. S. (2025). Intracellular Targeted Nanocapsules Containing Nanobiotherapeutic Suppress Lung, Liver, Breast and Cervix Cancer Cell Lines by Prodrug Activation or Removal of Intracellular Tyrosine. Cancers, 17(16), 2698. https://doi.org/10.3390/cancers17162698