Clinical, Histopathological, Dermoscopic Features, and BRAF, NRAS, and Cell Cycle Genes’ Mutation Status in Cutaneous Melanoma
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Mutation Analysis
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AHM | Amelanotic/hypomelanotic melanoma |
CI | Confidence interval |
CSD | Cumulative sun damage |
FFPE | Formalin-fixed-paraffin-embedded |
HIF-1α | Hypoxia-Inducible Factor-1 alpha |
MAPK | Mitogen-activated protein kinase |
NGS | Next-generation sequencing |
NM | Nodular melanoma |
OR | Odds ratio |
SSM | Superficial spreading melanoma |
TILs | Tumor-infiltrating lymphocytes |
VEGF-A | Vascular endothelial growth factor-A |
WT | Wild-type |
References
- Yélamos, O.; Braun, R.P.; Liopyris, K.; Wolner, Z.J.; Kerl, K.; Gerami, P.; Marghoob, A.A. Usefulness of Dermoscopy to Improve the Clinical and Histopathologic Diagnosis of Skin Cancers. J. Am. Acad. Dermatol. 2019, 80, 365–377. [Google Scholar] [CrossRef]
- Lee, J.-H.; Choi, J.-W.; Kim, Y.-S. Frequencies of BRAF and NRAS Mutations Are Different in Histological Types and Sites of Origin of Cutaneous Melanoma: A Meta-Analysis. Br. J. Dermatol. 2011, 164, 776–784. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Network. Genomic Classification of Cutaneous Melanoma. Cell 2015, 161, 1681–1696. [Google Scholar] [CrossRef]
- Tan, J.-M.; Tom, L.N.; Soyer, H.P.; Stark, M.S. Defining the Molecular Genetics of Dermoscopic Naevus Patterns. Dermatology 2019, 235, 19–34. [Google Scholar] [CrossRef]
- Yelamos, O.; Braun, R.P.; Liopyris, K.; Wolner, Z.J.; Kerl, K.; Gerami, P.; Marghoob, A.A. Dermoscopy and dermatopathology correlates of cutaneous neoplasms. J. Am. Acad. Dermatol. 2019, 80, 341–363. [Google Scholar] [CrossRef]
- Marghoob, A.A.; Braun, R.; Jaimes, N. Atlas of Dermoscopy, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Manca, A.; Paliogiannis, P.; Colombino, M.; Casula, M.; Lissia, A.; Botti, G.; Caracò, C.; Ascierto, P.A.; Sini, M.C.; Palomba, G.; et al. Mutational concordance between primary and metastatic melanoma: A next-generation sequencing approach. J. Transl. Med. 2019, 17, 289. [Google Scholar] [CrossRef] [PubMed]
- Gershenwald, J.E.; Scolyer, R.A.; Hess, K.R.; Sondak, V.K.; Long, G.V.; Ross, M.I.; Lazar, A.J.; Faries, M.B.; Kirkwood, J.M.; McArthur, G.A.; et al. Melanoma Staging: Evidence-Based Changes in the American Joint Committee on Cancer Eighth Edition Cancer Staging Manual. CA Cancer J. Clin. 2017, 67, 472–492. [Google Scholar] [CrossRef] [PubMed]
- Gershenwald, J.E.; Scolyer, R.A. Melanoma Staging: American Joint Committee on Cancer (AJCC) 8th Edition and Beyond. Ann. Surg. Oncol. 2018, 25, 2105–2110. [Google Scholar] [CrossRef] [PubMed]
- Allais, B.S.; Beatson, M.; Wang, H.; Shahbazi, S.; Bijelic, L.; Jang, S.; Venna, S. Five-Year Survival in Patients with Nodular and Superficial Spreading Melanomas in the US Population. J. Am. Acad. Dermatol. 2021, 84, 1015–1022. [Google Scholar] [CrossRef]
- Strazzulla, L.C.; Li, X.; Zhu, K.; Okhovat, J.-P.; Lee, S.J.; Kim, C.C. Clinicopathologic, Misdiagnosis, and Survival Differences between Clinically Amelanotic Melanomas and Pigmented Melanomas. J. Am. Acad. Dermatol. 2019, 80, 1292–1298. [Google Scholar] [CrossRef]
- Pozzobon, F.C.; Puig-Butillé, J.A.; González-Alvarez, T.; Carrera, C.; Aguilera, P.; Alos, L.; Badenas, C.; Grichnik, J.M.; Malvehy, J.; Puig, S. Dermoscopic Criteria Associated with BRAF and NRAS Mutation Status in Primary Cutaneous Melanoma. Br. J. Dermatol. 2014, 171, 754–759. [Google Scholar] [CrossRef]
- Bombonato, C.; Ribero, S.; Pozzobon, F.C.; Puig-Butille, J.A.; Badenas, C.; Carrera, C.; Malvehy, J.; Moscarella, E.; Lallas, A.; Piana, S.; et al. Association between Dermoscopic and Reflectance Confocal Microscopy Features of Cutaneous Melanoma with BRAF Mutational Status. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 643–649. [Google Scholar] [CrossRef]
- Pizzichetta, M.A.; Kittler, H.; Stanganelli, I.; Bono, R.; Cavicchini, S.; De Giorgi, V.; Ghigliotti, G.; Quaglino, P.; Rubegni, P.; Argenziano, G.; et al. Pigmented Nodular Melanoma: The Predictive Value of Dermoscopic Features Using Multivariate Analysis. Br. J. Dermatol. 2015, 173, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Kalkhoran, S.; Milne, O.; Zalaudek, I.; Puig, S.; Malvehy, J.; Kelly, J.W.; Marghoob, A.A. Historical, Clinical, and Dermoscopic Characteristics of Thin Nodular Melanoma. Arch. Dermatol. 2010, 146, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Segura, S.; Pellacani, G.; Puig, S.; Longo, C.; Bassoli, S.; Guitera, P.; Palou, J.; Menzies, S.; Seidenari, S.; Malvehy, J. In Vivo Microscopic Features of Nodular Melanomas: Dermoscopy, Confocal Microscopy, and Histopathologic Correlates. Arch. Dermatol. 2008, 144, 1311–1320. [Google Scholar] [CrossRef]
- Pizzichetta, M.A.; Canzonieri, V.; Soyer, P.H.; Rubegni, P.; Talamini, R.; Massone, C. Negative Pigment Network and Shiny White Streaks: A Dermoscopic-Pathological Correlation Study. Am. J. Dermatopathol. 2014, 36, 433–438. [Google Scholar] [CrossRef]
- Balagula, Y.; Braun, R.P.; Rabinovitz, H.S.; Dusza, S.W.; Scope, A.; Liebman, T.N.; Mordente, I.; Siamas, K.; Marghoob, A.A. The Significance of Crystalline/Chrysalis Structures in the Diagnosis of Melanocytic and Nonmelanocytic Lesions. J. Am. Acad. Dermatol. 2012, 67, 194.e1–194.e8. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Lomba, E.; Lozano-Masdemont, B.; Nieto-Benito, L.M.; Hernández de la Torre, E.; Suárez-Fernández, R.; Avilés-Izquierdo, J.A. Dermoscopic Predictors of Tumor Thickness in Cutaneous Melanoma: A Retrospective Analysis of 245 Melanomas. Dermatol. Pract. Concept. 2021, 11, e2021059. [Google Scholar] [CrossRef]
- Deinlein, T.; Arzberger, E.; Zalaudek, I.; Massone, C.; Garcias-Ladaria, J.; Oliveira, A.; Schulter, G.; Hofmann-Wellenhof, R. Dermoscopic Characteristics of Melanoma According to the Criteria “Ulceration” and “Mitotic Rate” of the AJCC 2009 Staging System for Melanoma. PLoS ONE 2017, 12, e0174871. [Google Scholar] [CrossRef]
- Cho, W.C.; Jour, G.; Aung, P.P. Role of Angiogenesis in Melanoma Progression: Update on Key Angiogenic Mechanisms and Other Associated Components. Semin. Cancer Biol. 2019, 59, 175–186. [Google Scholar] [CrossRef]
- Cazzato, G.; Ingravallo, G.; Ribatti, D. Angiogenesis Still Plays a Crucial Role in Human Melanoma Progression. Cancers 2024, 16, 1794. [Google Scholar] [CrossRef]
- Malekan, M.; Ebrahimzadeh, M.A.; Sheida, F. The Role of Hypoxia-Inducible Factor-1alpha and Its Signaling in Melanoma. Biomed. Pharmacother. 2021, 141, 111873. [Google Scholar] [CrossRef]
- Meierjohann, S. Hypoxia-Independent Drivers of Melanoma Angiogenesis. Front. Oncol. 2015, 5, 102. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, J.; Wang, J.; Zhang, T.; Xu, D.; Hu, W.; Feng, Z. The Interplay Between Tumor Suppressor P53 and Hypoxia Signaling Pathways in Cancer. Front. Cell Dev. Biol. 2021, 9, 648808. [Google Scholar] [CrossRef]
- Rocha, L.K.F.L.; Vilain, R.E.; Scolyer, R.A.; Lo, S.N.; Drummond, M.; Star, P.; Fogarty, G.B.; Hong, A.M.; Guitera, P. Confocal Microscopy, Dermoscopy, and Histopathology Features of Atypical Intraepidermal Melanocytic Proliferations Associated with Evolution to Melanoma in Situ. Int. J. Dermatol. 2022, 61, 167–174. [Google Scholar] [CrossRef]
- Pizzichetta, M.A.; Kittler, H.; Stanganelli, I.; Ghigliotti, G.; Corradin, M.T.; Rubegni, P.; Cavicchini, S.; De Giorgi, V.; Bono, R.; Alaibac, M.; et al. Dermoscopic Diagnosis of Amelanotic/Hypomelanotic Melanoma. Br. J. Dermatol. 2017, 177, 538–540. [Google Scholar] [CrossRef]
- Deinlein, T.; Longo, C.; Schulter, G.; Pizzichetta, M.A.; Zalaudek, I. The Prevailing Dermoscopic Vascular Pattern in Melanoma Is Influenced by Tumour Thickness and Pigmentation Type. Br. J. Dermatol. 2020, 182, 1049–1050. [Google Scholar] [CrossRef]
- Sgouros, D.; Lallas, A.; Kittler, H.; Zarras, A.; Kyrgidis, A.; Papageorgiou, C.; Puig, S.; Scope, A.; Argenziano, G.; Zalaudek, I.; et al. Dermatoscopic Features of Thin (≤2 Mm Breslow Thickness) vs. Thick (>2 Mm Breslow Thickness) Nodular Melanoma and Predictors of Nodular Melanoma versus Nodular Non-Melanoma Tumours: A Multicentric Collaborative Study by the International Dermoscopy Society. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 2541–2547. [Google Scholar] [CrossRef] [PubMed]
- Kashani-Sabet, M.; Sagebiel, R.W.; Ferreira, C.M.M.; Nosrati, M.; Miller, J.R. Tumor Vascularity in the Prognostic Assessment of Primary Cutaneous Melanoma. J. Clin. Oncol. 2002, 20, 1826–1831. [Google Scholar] [CrossRef] [PubMed]
- Depasquale, I.; Thompson, W.D. Microvessel Density for Melanoma Prognosis. Histopathology 2005, 47, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Lallas, K.; Kyrgidis, A.; Chrysostomidis, A.; Vakirlis, E.; Apalla, Z.; Lallas, A. Clinical, Dermatoscopic, Histological and Molecular Predictive Factors of Distant Melanoma Metastasis: A Systematic Review and Meta-Analysis. Crit. Rev. Oncol. Hematol. 2024, 202, 104458. [Google Scholar] [CrossRef] [PubMed]
- Ryu, G.W.; Choi, Y.D.; Ryu, Y.J.; Lee, J.-B.; Shin, M.-H.; Yun, S.J. Risk Factors Affecting the First Metastasis of Acral Melanoma: Low-Pigmentation Independently Predicts a First Lung Metastasis. J. Am. Acad. Dermatol. 2021, 84, 1739–1742. [Google Scholar] [CrossRef] [PubMed]
- Ryu, G.W.; Choi, Y.D.; Jin, S.; Chung, I.-J.; Shin, M.-H.; Yun, S.J. Volar Location and Degree of Pigmentation Are Associated with Poor Survival and First Metastasis Pattern in Acral Melanoma. Pigment. Cell Melanoma Res. 2021, 34, 1094–1104. [Google Scholar] [CrossRef] [PubMed]
Characteristics | All Patients | Mutated Gene | |||||||
---|---|---|---|---|---|---|---|---|---|
BRAF | NRAS | Cell Cycle | Wild Type All Genes | ||||||
n | n | (%) | n | (%) | n | (%) | n | (%) | |
All | 55 | 25 | (45.5) | 12 | (21.8) | 20 | (36.4) | 12 | (21.8) |
Gender | |||||||||
Male | 27 | 12 | (44.4) | 3 | (11.1) | 10 | (37.0) | 7 | (25.9) |
Female | 28 | 13 | (46.4) | 9 | (32.1) | 10 | (35.7) | 5 | (17.9) |
Fisher’s exact test | p = 1.000 | p = 0.101 | p = 1.000 | p = 0.528 | |||||
Age (years) | |||||||||
<60 | 34 | 15 | (44.1) | 5 | (14.7) | 12 | (35.3) | 9 | (26.5) |
≥60 | 21 | 10 | (47.6) | 7 | (33.3) | 8 | (38.1) | 3 | (14.3) |
Fisher’s exact test | p = 1.000 | p = 0.178 | p = 1.000 | p = 0.337 | |||||
Site | |||||||||
Trunk and back | 26 | 11 | (42.3) | 4 | (15.4) | 11 | (42.3) | 7 | (29.9) |
Lower limbs | 15 | 7 | (46.7) | 3 | (20.0) | 3 | (20.0) | 4 | (26.7) |
Upper limbs | 10 | 5 | (50.0) | 5 | (50.0) | 5 | (50.0) | 0 | (0.0) |
Other | 4 | 2 | (50.0) | 0 | (0.0) | 1 | (25.0) | 1 | (25.0) |
Fisher’s exact test | p = 0.975 | p = 0.127 | p = 0.358 | p = 0.271 | |||||
Melanoma type a | |||||||||
Pigmented | 37 | 14 | (37.8) | 4 | (10.8) | 11 | (29.7) | 12 | (32.4) |
Amelanotic/hypomelanotic | 17 | 10 | (70.0) | 8 | (40.0) | 8 | (47.1) | 0 | (0.0) |
Fisher’s exact test | p = 0.238 | p = 0.005 | p = 0.237 | p = 0.011 | |||||
Histological type b | |||||||||
Superficial spreading | 30 | 12 | (40.0) | 1 | (3.3) | 8 | (26.7) | 10 | (33.3) |
Nodular | 24 | 13 | (54.2) | 10 | (41.7) | 11 | (45.8) | 2 | (8.3) |
Fisher’s exact test | p = 0.411 | p = 0.001 | p = 0.164 | p = 0.046 | |||||
Breslow thickness (mm) | |||||||||
≤1 | 25 | 7 | (28.0) | 2 | (8.0) | 7 | (28.0) | 10 | (40.0) |
>1 to 2 | 7 | 3 | (43.9) | 3 | (42.9) | 3 | (42.9) | 1 | (14.3) |
<2 to 4 | 15 | 9 | (60.0) | 5 | (33.3) | 7 | (46.7) | 1 | (6.7) |
>4 | 8 | 6 | (75.0) | 2 | (25.0) | 3 | (37.5) | 0 | (0.0) |
Fisher’s exact test | p = 0.063 | p = 0.080 | p = 0.657 | p = 0.028 | |||||
Histologic ulceration | |||||||||
Absent | 32 | 9 | (28.1) | 9 | (28.1) | 12 | (37.5) | 11 | (34.4) |
Present | 23 | 16 | (69.6) | 3 | (13.0) | 8 | (34.8) | 1 | (4.4) |
Fisher’s exact test | p = 0.003 | p = 0.321 | p = 1.000 | p = 0.007 | |||||
Histologic regression | |||||||||
Absent | 50 | 23 | (46.0) | 12 | (24.0) | 19 | (38.0) | 10 | (20.0) |
Present | 5 | 2 | (40.0) | 0 | (0.0) | 1 | (20.0) | 2 | (40.0) |
Fisher’s exact test | p = 1.000 | p = 0.574 | p = 0.643 | p = 0.298 | |||||
Mitotic rate (n/mm2) a | |||||||||
<2 | 27 | 6 | (22.2) | 4 | (14.8) | 7 | (25.9) | 11 | (40.7) |
2 to <5 | 16 | 10 | (62.5) | 6 | (37.5) | 9 | (56.3) | 0 | (0.0) |
≥5 | 11 | 8 | (72.7) | 2 | (18.2) | 3 | (27.3) | 1 | (9.1) |
Fisher’s exact test | p = 0.003 | p = 0.255 | p = 0.140 | p = 0.003 | |||||
Tumor infiltrating lymphocytes (TILs) | |||||||||
Absent | 10 | 7 | (70.0) | 2 | (20.0) | 4 | (40.0) | 0 | (0.0) |
Brisk | 11 | 4 | (36.4) | 2 | (18.2) | 6 | (54.6) | 3 | (27.3) |
Non-brisk | 34 | 14 | (41.2) | 8 | (23.5) | 10 | (29.4) | 9 | (26.5) |
Fisher’s exact test | p = 0.253 | p = 1.000 | p = 0.301 | p = 0.187 | |||||
Solar elastosis a | |||||||||
Absent | 27 | 10 | (37.0) | 7 | (25.9) | 10 | (37.0) | 6 | (22.2) |
Present | 23 | 13 | (56.5) | 4 | (17.4) | 8 | (34.8) | 5 | (21.7) |
Fisher’s exact test | p = 0.255 | p = 0.515 | p = 1.000 | p = 1.000 | |||||
Sentinel lymph node a | |||||||||
Negative | 20 | 10 | (50.0) | 6 | (30.0) | 9 | (45.0) | 3 | (15.0) |
Positive | 13 | 9 | (69.2) | 3 | (23.1) | 5 | (38.5) | 1 | (7.7) |
Not performed | 19 | 5 | (26.3) | 3 | (15.8) | 3 | (15.8) | 8 | (42.1) |
Fisher’s exact test | p = 0.061 | p = 0.649 | p = 0.139 | p = 0.069 |
Gene Dermoscopic Feature | Unmutated | Mutated | OR (95% CI) a | χ2 Test | ||
---|---|---|---|---|---|---|
n | (%) | n | (%) | |||
BRAF | 30 | 25 | ||||
White color | 14 | (46.7) | 18 | (72.0) | 2.94 (0.95–9.10) | p = 0.062 |
Brown dots/globules | 21 | (75.0) | 12 | (50.0) | 0.33 (0.10–1.08) | p = 0.067 |
Blue-white veil | 16 | (53.3) | 19 | (76.0) | 2.77 (0.86–8.88) | p = 0.086 |
Shiny white structures | 8 | (26.7) | 14 | (56.0) | 3.50 (1.13–10.84) | p = 0.030 |
Dotted vascular pattern | 4 | (13.3) | 9 | (36.0) | 3.66 (0.97–13.85) | p = 0.057 |
Arborizing vascular pattern | 1 | (3.3) | 5 | (20.0) | 7.25 (0.79–66.83) | p = 0.081 |
Polymorphous vascular pattern | 10 | (33.3) | 14 | (56.0) | 2.55 (0.85–7.61) | p = 0.095 |
NRAS | 43 | 12 | ||||
Black color | 34 | (79.1) | 6 | (50.0) | 0.27 (0.07–1.02) | p = 0.054 |
Homogeneous disorganized | 4 | (9.2) | 5 | (41.7) | 6.96 (1.49–32.53) | p = 0.014 |
Multicomponent | 25 | (58.1) | 2 | (18.2) | 0.16 (0.03–0.83) | p = 0.029 |
Pigment network | 16 | (37.2) | 1 | (8.3) | 0.39 (0.13–1.14) | p = 0.086 |
Streaks/pseudopods | 18 | (41.9) | 1 | (8.3) | 0.35 (0.12–1.05) | p = 0.062 |
Cell cycle genes | 35 | 20 | ||||
Blue-white veil | 19 | (54.3) | 16 | (80.0) | 3.37 (0.94–12.14) | p = 0.063 |
Presence of vascular pattern | 14 | (40.0) | 15 | (75.0) | 4.50 (1.33–15.20) | p = 0.015 |
Linear irregular vessels | 10 | (28.6) | 12 | (60.0) | 3.75 (1.18–11.92) | p = 0.025 |
Polymorphous vascular pattern | 11 | (31.4) | 13 | (65.0) | 4.05 (1.27–12.97) | p = 0.018 |
Milky-red globules/areas | 13 | (34.1) | 13 | (65.0) | 3.14 (1.00–9.89) | p = 0.050 |
TP53 | 44 | 11 | ||||
Blue color | 24 | (54.6) | 10 | (90.9) | 8.33 (0.98–70.79) | p = 0.052 |
Black dots/globules | 21 | (51.2) | 9 | (81.8) | 4.29 (0.82–22.31) | p = 0.084 |
Blue-white veil | 24 | (54.6) | 11 | (100) | 35.84 (2.01–640.2) | p = 0.004 |
Linear irregular vessels | 15 | (34.1) | (63.6) | 3.38 (0.85–13.42) | p = 0.083 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pizzichetta, M.A.; Polesel, J.; Sini, M.C.; Manca, A.; Simi, S.; Paliogiannis, P.; Pinzani, C.; Corsetti, P.; Canzonieri, V.; Astorino, S.; et al. Clinical, Histopathological, Dermoscopic Features, and BRAF, NRAS, and Cell Cycle Genes’ Mutation Status in Cutaneous Melanoma. Cancers 2025, 17, 2688. https://doi.org/10.3390/cancers17162688
Pizzichetta MA, Polesel J, Sini MC, Manca A, Simi S, Paliogiannis P, Pinzani C, Corsetti P, Canzonieri V, Astorino S, et al. Clinical, Histopathological, Dermoscopic Features, and BRAF, NRAS, and Cell Cycle Genes’ Mutation Status in Cutaneous Melanoma. Cancers. 2025; 17(16):2688. https://doi.org/10.3390/cancers17162688
Chicago/Turabian StylePizzichetta, Maria A., Jerry Polesel, Maria C. Sini, Antonella Manca, Sara Simi, Panagiotis Paliogiannis, Caterina Pinzani, Paola Corsetti, Vincenzo Canzonieri, Stefano Astorino, and et al. 2025. "Clinical, Histopathological, Dermoscopic Features, and BRAF, NRAS, and Cell Cycle Genes’ Mutation Status in Cutaneous Melanoma" Cancers 17, no. 16: 2688. https://doi.org/10.3390/cancers17162688
APA StylePizzichetta, M. A., Polesel, J., Sini, M. C., Manca, A., Simi, S., Paliogiannis, P., Pinzani, C., Corsetti, P., Canzonieri, V., Astorino, S., Pasquini, P., Corradin, M. T., Sulfaro, S., Lombardo, M., Cerati, M., Moretti, G., Falduto, M., Maestrale, G. B., Cossu, A., ... Palmieri, G., on behalf of the Italian Melanoma Intergroup (IMI) and Società Italiana di Dermatologia Chirurgica, Oncologica, Correttiva ed Estetica (SIDCO). (2025). Clinical, Histopathological, Dermoscopic Features, and BRAF, NRAS, and Cell Cycle Genes’ Mutation Status in Cutaneous Melanoma. Cancers, 17(16), 2688. https://doi.org/10.3390/cancers17162688