Clinicopathological Features and Pathogenesis of Thymoma Complicated with Alopecia Areata: A Multicenter, Matched Case Analysis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources and Diagnostic Criteria
2.2. Follow-Up and Symptom Assessment
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hsu, C.H.; Chan, J.K.; Yin, C.H.; Lee, C.C.; Chern, C.U.; Liao, C.I. Trends in the incidence of thymoma, thymic carcinoma, and thymic neuroendocrine tumor in the United States. PLoS ONE 2019, 14, e0227197. [Google Scholar] [CrossRef]
- Engels, E.A. Epidemiology of thymoma and associated malignancies. J. Thorac. Oncol. 2010, 5, S260–S265. [Google Scholar] [CrossRef]
- Radovich, M.; Pickering, C.R.; Felau, I.; Ha, G.; Zhang, H.; Jo, H.; Hoadley, K.A.; Anur, P.; Zhang, J.; McLellan, M.; et al. The Integrated Genomic Landscape of Thymic Epithelial Tumors. Cancer Cell 2018, 33, 244–258.e10. [Google Scholar] [CrossRef]
- Marx, A.; Willcox, N.; Leite, M.I.; Chuang, W.Y.; Schalke, B.; Nix, W.; Strobel, P. Thymoma and paraneoplastic myasthenia gravis. Autoimmunity 2010, 43, 413–427. [Google Scholar] [CrossRef]
- Zhao, J.; Bhatnagar, V.; Ding, L.; Atay, S.M.; David, E.A.; McFadden, P.M.; Stamnes, S.; Lechtholz-Zey, E.; Wightman, S.C.; Detterbeck, F.C.; et al. A systematic review of paraneoplastic syndromes associated with thymoma: Treatment modalities, recurrence, and outcomes in resected cases. J. Thorac. Cardiovasc. Surg. 2020, 160, 306–314.e14. [Google Scholar] [CrossRef] [PubMed]
- Evoli, A.; Lancaster, E. Paraneoplastic disorders in thymoma patients. J. Thorac. Oncol. 2014, 9, S143–S147. [Google Scholar] [CrossRef]
- Lee, H.H.; Gwillim, E.; Patel, K.R.; Hua, T.; Rastogi, S.; Ibler, E.; Silverberg, J.I. Epidemiology of alopecia areata, ophiasis, totalis, and universalis: A systematic review and meta-analysis. J. Am. Acad. Dermatol. 2020, 82, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Strazzulla, L.C.; Wang, E.H.C.; Avila, L.; Lo Sicco, K.; Brinster, N.; Christiano, A.M.; Shapiro, J. Alopecia areata: Disease characteristics, clinical evaluation, and new perspectives on pathogenesis. J. Am. Acad. Dermatol. 2018, 78, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Pratt, C.H.; King, L.E., Jr.; Messenger, A.G.; Christiano, A.M.; Sundberg, J.P. Alopecia areata. Nat. Rev. Dis. Primers 2017, 3, 17011. [Google Scholar] [CrossRef]
- Muller, S.A.; Winkelmann, R.K. Alopecia Areata. An Evaluation of 736 Patients. Arch. Dermatol. 1963, 88, 290–297. [Google Scholar] [CrossRef]
- Marx, A.; Chan, J.K.C.; Chalabreysse, L.; Dacic, S.; Detterbeck, F.; French, C.A.; Hornick, J.L.; Inagaki, H.; Jain, D.; Lazar, A.J.; et al. The 2021 WHO Classification of Tumors of the Thymus and Mediastinum: What Is New in Thymic Epithelial, Germ Cell, and Mesenchymal Tumors? J. Thorac. Oncol. 2022, 17, 200–213. [Google Scholar] [CrossRef] [PubMed]
- WHO Classification of Tumours Editorial Board. Thoracic Tumours, 5th ed.; International Agency for Research on Cancer: Lyon, France, 2021. [Google Scholar]
- Jaretzki, A., 3rd; Barohn, R.J.; Ernstoff, R.M.; Kaminski, H.J.; Keesey, J.C.; Penn, A.S.; Sanders, D.B. Myasthenia gravis: Recommendations for clinical research standards. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Neurology 2000, 55, 16–23. [Google Scholar] [PubMed]
- Anderson, M.S.; Su, M.A. Aire and T cell development. Curr. Opin. Immunol. 2011, 23, 198–206. [Google Scholar] [CrossRef]
- Zhou, C.; Li, X.; Wang, C.; Zhang, J. Alopecia Areata: An Update on Etiopathogenesis, Diagnosis, and Management. Clin. Rev. Allergy Immunol. 2021, 61, 403–423. [Google Scholar] [CrossRef]
- Jabbari, A.; Cerise, J.E.; Chen, J.C.; Mackay-Wiggan, J.; Duvic, M.; Price, V.; Hordinsky, M.; Norris, D.; Clynes, R.; Christiano, A.M. Molecular signatures define alopecia areata subtypes and transcriptional biomarkers. EBioMedicine 2016, 7, 240–247. [Google Scholar] [CrossRef]
- Sempowski, G.; Thomasch, J.; Gooding, M.; Hale, L.; Edwards, L.; Ciafaloni, E.; Sanders, D.; Massey, J.; Douek, D.; Koup, R.; et al. Effect of thymectomy on human peripheral blood T cell pools in myasthenia gravis. J. Immunol. 2001, 166, 2808–2817. [Google Scholar] [CrossRef]
- Suzuki, S.; Utsugisawa, K.; Suzuki, N. Overlooked non-motor symptoms in myasthenia gravis. J. Neurol. Neurosurg. Psychiatry 2013, 84, 989–994. [Google Scholar] [CrossRef]
- Marx, A.; Pfister, F.; Schalke, B.; Saruhan-Direskeneli, G.; Melms, A.; Strobel, P. The different roles of the thymus in the pathogenesis of the various myasthenia gravis subtypes. Autoimmun. Rev. 2013, 12, 875–884. [Google Scholar] [CrossRef]
- Shelly, S.; Agmon-Levin, N.; Altman, A.; Shoenfeld, Y. Thymoma and autoimmunity. Cell. Mol. Immunol. 2011, 8, 199–202. [Google Scholar] [CrossRef]
- Raskov, H.; Orhan, A.; Christensen, J.P.; Gogenur, I. Cytotoxic CD8(+) T cells in cancer and cancer immunotherapy. Br. J. Cancer 2021, 124, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Giles, J.R.; Globig, A.M.; Kaech, S.M.; Wherry, E.J. CD8(+) T cells in the cancer-immunity cycle. Immunity 2023, 56, 2231–2253. [Google Scholar] [CrossRef]
- Chia, S.B.; Johnson, B.J.; Hu, J.; Valenca-Pereira, F.; Chadeau-Hyam, M.; Guntoro, F.; Montgomery, H.; Boorgula, M.P.; Sreekanth, V.; Goodspeed, A.; et al. Respiratory viral infections awaken metastatic breast cancer cells in lungs. Nature 2025, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Gooden, M.J.; de Bock, G.H.; Leffers, N.; Daemen, T.; Nijman, H.W. The prognostic influence of tumour-infiltrating lymphocytes in cancer: A systematic review with meta-analysis. Br. J. Cancer 2011, 105, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.P.; Ke, Y.L.; Li, X. Prognostic value of CD8(+) tumor-infiltrating T cells in patients with breast cancer: A systematic review and meta-analysis. Oncol. Lett. 2023, 25, 39. [Google Scholar] [CrossRef] [PubMed]
- Chow, A.; Perica, K.; Klebanoff, C.A.; Wolchok, J.D. Clinical implications of T cell exhaustion for cancer immunotherapy. Nat. Rev. Clin. Oncol. 2022, 19, 775–790. [Google Scholar] [CrossRef]
- Jiang, W.; He, Y.; He, W.; Wu, G.; Zhou, X.; Sheng, Q.; Zhong, W.; Lu, Y.; Ding, Y.; Lu, Q.; et al. Exhausted CD8+T Cells in the Tumor Immune Microenvironment: New Pathways to Therapy. Front. Immunol. 2020, 11, 622509. [Google Scholar] [CrossRef]
- Hoffacker, V.; Schultz, A.; Tiesinga, J.J.; Gold, R.; Schalke, B.; Nix, W.; Kiefer, R.; Muller-Hermelink, H.K.; Marx, A. Thymomas alter the T-cell subset composition in the blood: A potential mechanism for thymoma-associated autoimmune disease. Blood 2000, 96, 3872–3879. [Google Scholar] [CrossRef]
- Blum, T.G.; Misch, D.; Kollmeier, J.; Thiel, S.; Bauer, T.T. Autoimmune disorders and paraneoplastic syndromes in thymoma. J. Thorac. Dis. 2020, 12, 7571–7590. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Shimoda, M.; Kawamura, M.; Sato, H.; Nogawa, S.; Tanaka, K.; Suzuki, N.; Kuwana, M. Myasthenia gravis accompanied by alopecia areata: Clinical and immunogenetic aspects. Eur. J. Neurol. 2005, 12, 566–570. [Google Scholar] [CrossRef]
- Qiao, J.; Zhou, G.; Ding, Y.; Zhu, D.; Fang, H. Multiple paraneoplastic syndromes: Myasthenia gravis, vitiligo, alopecia areata, and oral lichen planus associated with thymoma. J. Neurol. Sci. 2011, 308, 177–179. [Google Scholar] [CrossRef]
- Cho, Y.R.; Kim, J.H.; Kim, K.H. Surgical Removal of a Thymoma without Myasthenia Gravis Can Have a Therapeutic Effect on Concurrent Alopecia Areata: A Case Report. Ann. Dermatol. 2022, 34, 287–290. [Google Scholar] [CrossRef] [PubMed]
NO. | Sex | Age (Years) | WHO Histology | M-K Stage | MGFA Clinical Classification | Serum Antibodies | CD4+/CD8+ T Lymphocyte | AA Appeared Later Than MG (Months) | Combined PNS (Except MG) | AA Improved Later Than MG (Months) | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AchR Antibody | Titin Antibody | Serum | Tumor | Peritumoral Tissue | |||||||||
1 | M | 40 | B2 | IVa | III | + | − | Inverted | Inverted | Normal | 3 | Dermatomyositis | 3 |
2 | M | 41 | B3 | IVb | V | + | + | Inverted | Inverted | Normal | 10 | Leucoderma, Lichen planus | 5 |
3 | M | 47 | B2 | IIIb | III | + | + | Inverted | Inverted | Normal | 7 | Hyperthyroidism | 6 |
4 | F | 44 | B2 | IVa | V | + | + | Inverted | Inverted | Normal | 51 | Good’s syndrome, Interstitial pneumonia | 5 (AA reappeared when the tumor recurred) |
5 | F | 45 | B2 mixed with B3 | IVa | V | + | + | Inverted | Inverted | Normal | 170 | Good’s syndrome, Erythroderma | The tumor recurred and became alopecia total |
6 | F | 46 | B3 | IVa | IV | + | + | Inverted | Inverted | Normal | 12 | Pure red cell aplasia | 9 (AA reappeared when the tumor recurred) |
7 | F | 53 | B2 mixed with B3 | IVa | I | + | + | Inverted | Inverted | Normal | 6 | No confirmed PNS | 9 |
8 | F | 59 | B2 | IIIa | I | + | + | Inverted | Inverted | Normal | 3 | Limbic encephalopathy | 3 |
9 | F | 72 | B1 | I | I | + | − | Inverted | Inverted | Normal | 1 | Autoimmune thyroiditis, Autoimmune myocardioptis, Sicca syndrome, Agranulocytosis | 2 |
Clinicopathological and Immunological Features | Thymoma Patients with AA (n = 9) | Thymoma Patients without AA (n = 45 or 30) | p-Value |
---|---|---|---|
Proportion of female | 66.67% (6/9) | 66.67% (30/45) | >0.999 |
Age [Median (IQR)] | 46 (44, 53) | 46 (43, 53) | 0.889 |
B2/B3 type | 88.89% (8/9) | 55.56% (25/45) | 0.075 |
IV Stage | 66.67% (6/9) | 8.89% (4/45) | 0.001 |
Combined MG | 100% (9/9) | 66.67% (30/45) | 0.049 |
Class IV-V of MGFA | 44.44% (4/9) | 20.00% (6/30) † | 0.197 |
Postoperative Myasthenic Crisis Occurrence | 22.22% (2/9) | 6.67% (1~2/30) † | 0.223 |
Combined PNSs other than MG | 88.89% (8/9) | 6.67% (3/45) | <0.001 |
AchR antibody (+) | 100% (9/9) | 84.44% (38/45) | 0.586 |
Titin antibody (+) | 77.79% (7/9) | 71.11% (32/45) | >0.999 |
CD4+/CD8+ T lymphocytes was inverted in serum | 100% (9/9) | 24.44% (11/45) | <0.001 |
CD4+/CD8+ T lymphocytes was inverted in tumor | 100% (9/9) | 86.67% (39/45) | 0.574 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, X.; Gao, X.; Cui, J.; Yu, X.; Huang, C.; Chen, Y.; Guo, C.; Zhang, Y.; Gao, C.; Diao, X.; et al. Clinicopathological Features and Pathogenesis of Thymoma Complicated with Alopecia Areata: A Multicenter, Matched Case Analysis. Cancers 2025, 17, 2672. https://doi.org/10.3390/cancers17162672
Du X, Gao X, Cui J, Yu X, Huang C, Chen Y, Guo C, Zhang Y, Gao C, Diao X, et al. Clinicopathological Features and Pathogenesis of Thymoma Complicated with Alopecia Areata: A Multicenter, Matched Case Analysis. Cancers. 2025; 17(16):2672. https://doi.org/10.3390/cancers17162672
Chicago/Turabian StyleDu, Xin, Xuehan Gao, Jian Cui, Xintao Yu, Cheng Huang, Yeye Chen, Chao Guo, Ye Zhang, Chao Gao, Xiayao Diao, and et al. 2025. "Clinicopathological Features and Pathogenesis of Thymoma Complicated with Alopecia Areata: A Multicenter, Matched Case Analysis" Cancers 17, no. 16: 2672. https://doi.org/10.3390/cancers17162672
APA StyleDu, X., Gao, X., Cui, J., Yu, X., Huang, C., Chen, Y., Guo, C., Zhang, Y., Gao, C., Diao, X., Yu, L., & Li, S. (2025). Clinicopathological Features and Pathogenesis of Thymoma Complicated with Alopecia Areata: A Multicenter, Matched Case Analysis. Cancers, 17(16), 2672. https://doi.org/10.3390/cancers17162672