Narrative Review of the Use of Genomic-Adjusted Radiation Dose (GARD) in Radiotherapy
Simple Summary
Abstract
1. Introduction
2. GARD Calculation
3. Evaluation of GARD in Cancer Studies
4. GARD-Personalized Dosing in Clinical Trial
5. Discussion and Future Directions
6. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
References
- Bleaney, C.W.; Abdelaal, H.; Reardon, M.; Anandadas, C.; Hoskin, P.; Choudhury, A.; Forker, L. Clinical biomarkers of tumour radiosensitivity and predicting benefit from radiotherapy: A systematic review. Cancers 2024, 16, 1942. [Google Scholar] [CrossRef]
- Mondal, D.; Pareek, V.; Barthwal, M. Personalized medicine in radiation oncology and radiation sensitivity index: Pathbreaking genomic way to define the role of radiation in cancer management. J. Cancer Res. Ther. 2023, 19 (Suppl. S2), S508–S512. [Google Scholar] [CrossRef]
- Sutera, P.; Skinner, H.; Witek, M.; Mishra, M.; Kwok, Y.; Davicioni, E.; Feng, F.; Song, D.; Nichols, E.; Tran, P.T.; et al. Histology Specific Molecular Biomarkers: Ushering in a New Era of Precision Radiation Oncology. In Seminars in Radiation Oncology; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Fukunaga, H.; Yokoya, A.; Taki, Y.; Butterworth, K.T.; Prise, K.M. Precision radiotherapy and radiation risk assessment: How do we overcome radiogenomic diversity? Tohoku J. Exp. Med. 2019, 247, 223–235. [Google Scholar] [CrossRef]
- Ahmed, K.A.; Chinnaiyan, P.; Fulp, W.J.; Eschrich, S.; Torres-Roca, J.F.; Caudell, J.J. The radiosensitivity index predicts for overall survival in glioblastoma. Oncotarget 2015, 6, 34414. [Google Scholar] [CrossRef]
- Meehan, J.; Gray, M.; Martínez-Pérez, C.; Kay, C.; Pang, L.Y.; Fraser, J.A.; Poole, A.V.; Kunkler, I.H.; Langdon, S.P.; Argyle, D.; et al. Precision medicine and the role of biomarkers of radiotherapy response in breast cancer. Front. Oncol. 2020, 10, 628. [Google Scholar] [CrossRef]
- Willers, H.; Keane, F.K.; Kamran, S.C. Toward a new framework for clinical radiation biology. Hematol. Oncol. Clin. 2019, 33, 929–945. [Google Scholar] [CrossRef]
- Scott, J.G.; Berglund, A.; Schell, M.J.; Mihaylov, I.; Fulp, W.J.; Yue, B.; Welsh, E.; Caudell, J.J.; Ahmed, K.; Strom, T.S.; et al. A genome-based model for adjusting radiotherapy dose (GARD): A retrospective, cohort-based study. Lancet Oncol. 2017, 18, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.G.; Sedor, G.; Ellsworth, P.; Scarborough, J.A.; Ahmed, K.A.; Oliver, D.E.; Eschrich, S.A.; Kattan, M.W.; Torres-Roca, J.F. Pan-cancer prediction of radiotherapy benefit using genomic-adjusted radiation dose (GARD): A cohort-based pooled analysis. Lancet Oncol. 2021, 22, 1221–1229. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.L.; Chan, K.S.K.; Li, H.; Ng, W.T.; Chow, J.C.H.; Choi, H.C.W.; Lam, K.O.; Lee, V.H.F.; Ngan, R.K.C.; Lee, A.W.M.; et al. Using the genomic adjusted radiation dose (GARD) to personalize the radiation dose in nasopharyngeal cancer. Radiother. Oncol. 2024, 196, 110287. [Google Scholar] [CrossRef] [PubMed]
- Kashihara, T.; Kashihara, K. Radiotherapy with genomic-adjusted radiation dose. Lancet Oncol. 2021, 22, e468. [Google Scholar] [CrossRef]
- Eschrich, S.A.; Pramana, J.; Zhang, H.; Zhao, H.; Boulware, D.; Lee, J.-H.; Bloom, G.; Rocha-Lima, C.; Kelley, S.; Calvin, D.P.; et al. A gene expression model of intrinsic tumor radiosensitivity: Prediction of response and prognosis after chemoradiation. Int. J. Radiat. Oncol. Biol. Phys. 2009, 75, 489–496. [Google Scholar] [CrossRef]
- Yuan, Z.; Grass, G.; Azizi, M.; Ahmed, K.A.; Yoder, G.S.J.; Welsh, E.A.; Fulp, W.J.; Dhillon, J.; Torres-Roca, J.F.; Giuliano, A.R.; et al. Intrinsic radiosensitivity, genomic-based radiation dose and patterns of failure of penile cancer in response to adjuvant radiation therapy. Rep. Pract. Oncol. Radiother. 2019, 24, 593–599. [Google Scholar] [CrossRef]
- Yang, G.; Yuan, Z.; Ahmed, K.; Welsh, E.A.; Fulp, W.J.; Gonzalez, R.J.; Mullinax, J.E.; Letson, D.; Bui, M.; Harrison, L.B.; et al. Genomic identification of sarcoma radiosensitivity and the clinical implications for radiation dose personalization. Transl. Oncol. 2021, 14, 101165. [Google Scholar] [CrossRef]
- Scott, J.G.; Sedor, G.; Scarborough, J.A.; Kattan, M.W.; Peacock, J.; Grass, G.D.; Mellon, E.A.; Thapa, R.; Schell, M.; Waller, A.; et al. Personalizing radiotherapy prescription dose using genomic markers of radiosensitivity and normal tissue toxicity in NSCLC. J. Thorac. Oncol. 2021, 16, 428–438. [Google Scholar] [CrossRef]
- Nolan, B.; O’sullivan, B.; Golden, A. Exploring breast and prostate cancer RNA-seq derived radiosensitivity with the Genomic Adjusted Radiation Dose (GARD) model. Clin. Transl. Radiat. Oncol. 2022, 36, 127–131. [Google Scholar] [CrossRef]
- Ho, E.; Cecco, L.D.; Eschrich, S.A.; Cavalieri, S.; Sedor, G.; Hoebers, F.; Brakenhoff, R.H.; Scheckenbach, K.; Poli, T.; Yang, K.; et al. A clinicogenomic model including GARD predicts outcome for radiation treated patients with HPV+ oropharyngeal squamous cell carcinoma. medRxiv 2023. [Google Scholar] [CrossRef]
- Naghavi, A.O.; Bryant, J.M.; Kim, Y.; Weygand, J.; Redler, G.; Sim, A.J.; Miller, J.; Coucoules, K.; Michael, L.T.; Gloria, W.E.; et al. Habitat escalated adaptive therapy (HEAT): A phase 2 trial utilizing radiomic habitat-directed and genomic-adjusted radiation dose (GARD) optimization for high-grade soft tissue sarcoma. BMC Cancer 2024, 24, 437. [Google Scholar] [CrossRef]
- Kaida, A.; Nojima, H.; Miura, M. Estimating Impacts of p16 Status on Tumor Radiosensitivity in Head and Neck Cancer using Predictive Models. Radiat. Res. 2024, 202, 605–609. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.A.; Liveringhouse, C.L.; Mills, M.N.; Figura, N.B.; Grass, G.D.; Washington, I.R.; Harris, E.E.; Czerniecki, B.J.; Blumencranz, P.W.; Eschrich, S.A.; et al. Utilizing the genomically adjusted radiation dose (GARD) to personalize adjuvant radiotherapy in triple negative breast cancer management. EBioMedicine 2019, 47, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Li, Z.; Lin, Y.; Lin, Y.; Zeng, L.; Xu, B.; Yao, Q.; Zheng, R. Validation of a genome-based model for adjusting radiotherapy dose (GARD) in patients with locally advanced rectal cancer. Sci. Rep. 2024, 14, 21572. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.C.; Salama, J.K. Dose escalation for unresectable locally advanced non-small cell lung cancer: End of the line? Transl. Lung Cancer Res. 2016, 5, 126. [Google Scholar]
- Carrie, C.; Tanguy, R. Prostate cancer and hypofractionation: Really a new standard of care? Transl. Androl. Urol. 2016, 5, 966. [Google Scholar] [CrossRef]
- Brand, D.H.; Tree, A.C. Fractionation choice for elective lymph node radiation therapy in prostate cancer: Slightly more to chirp about. Int. J. Radiat. Oncol. Biol. Phys. 2022, 114, 108–110. [Google Scholar] [CrossRef]
- Haviland, J.S.; Owen, J.R.; Dewar, J.A.; Agrawal, R.K.; Barrett, J.; Barrett-Lee, P.J.; Dobbs, H.J.; Hopwood, P.; Lawton, P.A.; Magee, B.J.; et al. The UK Standardisation of Breast Radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer: 10-year follow-up results of two randomised controlled trials. Lancet Oncol. 2013, 14, 1086–1094. [Google Scholar] [CrossRef] [PubMed]
- Koulis, T.A.; Phan, T.; Olivotto, I.A. Hypofractionated whole breast radiotherapy: Current perspectives. Breast Cancer Targets Ther. 2015, 7, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Calvaruso, M.; Pucci, G.; Alberghina, C.; Minafra, L. Radiation Therapy Personalization in Cancer Treatment: Strategies and Perspectives. Int. J. Mol. Sci. 2025, 26, 6375. [Google Scholar] [CrossRef]
- Freidlin, B.; Korn, E.L.; George, S.L.; Gray, R. Randomized clinical trial design for assessing noninferiority when superiority is expected. J. Clin. Oncol. 2007, 25, 5019–5023. [Google Scholar] [CrossRef] [PubMed]
- Eschrich, S.A.; Fulp, W.J.; Pawitan, Y.; Foekens, J.A.; Smid, M.; Martens, J.W.; Echevarria, M.; Kamath, V.; Lee, J.-H.; Harris, E.E.; et al. Validation of a radiosensitivity molecular signature in breast cancer. Clin. Cancer Res. 2012, 18, 5134–5143. [Google Scholar] [CrossRef]
- Mistry, H.B. Radiosensitivity index is not fit to be used for dose adjustments: A pan-cancer analysis. Clin. Oncol. 2023, 35, 565–570. [Google Scholar] [CrossRef]
- Barretina, J.; Caponigro, G.; Stransky, N.; Venkatesan, K.; Margolin, A.A.; Kim, S.; Wilson, C.J.; Lehár, J.; Kryukov, G.V.; Sonkin, D.; et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012, 483, 603–607. [Google Scholar] [CrossRef]
- Ghandi, M.; Huang, F.W.; Jané-Valbuena, J.; Kryukov, G.V.; Lo, C.C.; McDonald, E.R., III; Barretina, J.; Gelfand, E.T.; Bielski, C.M.; Li, H.; et al. Next-generation characterization of the cancer cell line encyclopedia. Nature 2019, 569, 503–508. [Google Scholar] [CrossRef]
- Nusinow, D.P.; Szpyt, J.; Ghandi, M.; Rose, C.M.; McDonald, E.R.; Kalocsay, M.; Jané-Valbuena, J.; Gelfand, E.; Schweppe, D.K.; Jedrychowski, M.; et al. Quantitative proteomics of the cancer cell line encyclopedia. Cell 2020, 180, 387–402.e16. [Google Scholar] [CrossRef]
- Yang, W.; Soares, J.; Greninger, P.; Edelman, E.J.; Lightfoot, H.; Forbes, S.; Bindal, N.; Beare, D.; Smith, J.A.; Thompson, I.R.; et al. Genomics of Drug Sensitivity in Cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2012, 41, D955–D961. [Google Scholar] [CrossRef] [PubMed]
- Garnett, M.J.; Edelman, E.J.; Heidorn, S.J.; Greenman, C.D.; Dastur, A.; Lau, K.W.; Greninger, P.; Thompson, I.R.; Luo, X.; Soares, J.; et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 2012, 483, 570–575. [Google Scholar] [CrossRef]
- Spratt, D.E.; Speers, C. RadioGx: A new preclinical tool to model intrinsic radiosensitivity. Cancer Res. 2019, 79, 6076–6078. [Google Scholar] [CrossRef] [PubMed]
- Manem, V.S.; Lambie, M.; Smith, I.; Smirnov, P.; Kofia, V.; Freeman, M.; Koritzinsky, M.; Abazeed, M.E.; Haibe-Kains, B.; Bratman, S.V. Modeling cellular response in large-scale radiogenomic databases to advance precision radiotherapy. Cancer Res. 2019, 79, 6227–6237. [Google Scholar] [CrossRef]
- Craig, A.J.; Von Felden, J.; Garcia-Lezana, T.; Sarcognato, S.; Villanueva, A. Tumour evolution in hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 139–152. [Google Scholar] [CrossRef]
- Navin, N.; Kendall, J.; Troge, J.; Andrews, P.; Rodgers, L.; McIndoo, J.; Cook, K.; Stepansky, A.; Levy, D.; Esposito, D.; et al. Tumour evolution inferred by single-cell sequencing. Nature 2011, 472, 90–94. [Google Scholar] [CrossRef]
- Laisné, M.; Lupien, M.; Vallot, C. Epigenomic heterogeneity as a source of tumour evolution. Nat. Rev. Cancer 2025, 25, 7–26. [Google Scholar] [CrossRef]
- Kaidar-Person, O.; Poortmans, P.; Salgado, R. Genomic-adjusted radiation dose to personalise radiotherapy. Lancet Oncol. 2021, 22, 1200–1201. [Google Scholar] [CrossRef] [PubMed]
- Fillon, M. Genomic-derived radiation dosage improves prediction of outcomes. Lancet Oncol. 2021, 22, 5. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Yang, J.; Shen, N.; Xu, Q.; Zhao, Q. Artificial intelligence in lung cancer diagnosis and prognosis: Current application and future perspective. In Seminars in Cancer Biology; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
Year | First Author | Country * | Sample Size | Cancer Type(s) | Summary | DOI |
---|---|---|---|---|---|---|
2017 | Scott JG [8] | USA; The Netherlands | 538 patients (5 cohorts) | Multi-cancer (20 tumor types; validated in breast, lung, pancreas, glioblastoma) | Developed GARD model; analyzed > 8000 tumors (TCC protocol); validated GARD as outcome predictor in 5 clinical cohorts (breast, lung, pancreas, glioblastoma). | 10.1016/S1470-2045(16)30648-9 |
2019 | Yuan Z [13] | USA | 34 patients | Penile squamous cell carcinoma (PeSCC) | 25 PeSCC samples analyzed for RSI and GARD; 34 patients reviewed; suggested standard PORT dose (50 Gy) often subtherapeutic, with GARD-based RT > 66 Gy more effective. | 10.1016/j.rpor.2019.09.006 |
2019 | Ahmed KA [20] | USA; The Netherlands; France | 113 TNBC patients (Cohort 1: 58; Cohort 2: 55) | Triple-negative breast cancer (TNBC) | GARD was significantly associated with local control in both cohorts. Patients with GARD < 21 had worse 5-year LC (71% vs. 96%). Dose modeling suggested that 91% of patients would require ≥ 70 Gy to optimize GARD, indicating standard dosing may undertreat most TNBC cases. | 10.1016/j.ebiom.2019.08.019 |
2021 | Scott JG [9] | USA | 1615 patients (pooled from 11 cohorts) | Multi-cancer (breast, head and neck, NSCLC, pancreas, endometrial, melanoma, glioma) | Pooled pan-cancer analysis of 11 cohorts (n = 1615, 7 cancer types); GARD associated with improved time to recurrence and OS; outperformed physical RT dose. | 10.1016/S1470-2045(21)00347-8 |
2021 | Yang G [14] | USA | 399 patients | Soft-tissue sarcoma (STS) | 217 genomically profiled sarcomas and 399 treated STS patients; HRR subset required significantly higher biological effective radiation dose for optimized RT outcomes. | 10.1016/j.tranon.2021.101165 |
2021 | Scott JG [15] | USA | 1747 patients (genomic cohort) + 60 patients (validation cohort) | Non-small cell lung cancer (NSCLC) | NSCLC patients from two cohorts used to validate a personalized RT dosing model; GARD explains failure of RTOG 0617; proposes GARD-based dose optimization. | 10.1016/j.jtho.2020.11.008 |
2022 | Nolan B [16] | Ireland | 15 patients (1 breast; 14 prostate) | Breast (luminal B) and prostate cancer | RNA-seq data from 1 breast cancer and 14 prostate cancer patients; explored tumor vs. normal RSI and GARD values to propose individualized dosing strategies. | 10.1016/j.ctro.2022.08.002 |
2023 | Ho E [17] | USA; Italy; The Netherlands; Germany | 191 patients | Oropharyngeal squamous cell carcinoma (HPV-positive) | 234 HPV+ OPSCC samples (Affymetrix Clariom D); GARD predicted OS and outperformed NRG nomogram; virtual trial suggests a GARD-based dose de-escalation strategy. | 10.1101/2023.09.14.23295538 |
2024 | Chiang CL [10] | Hong Kong (China); USA | 92 patients | Nasopharyngeal carcinoma (NPC) | 92 NPC patients from a Phase III trial (NCT00379262); evaluated GARD and RxRSI to stratify patients by radiosensitivity; a GARD threshold of 45 associated with improved locoregional control. | 10.1016/j.radonc.2024.110287 |
2024 | Naghavi AO [18] | USA | Up to 43 patients (Phase II trial, planned) | High-grade soft tissue sarcoma (STS) | Phase II HEAT trial in high-grade STS using radiomics + GARD to boost RT in resistant tumor habitats; pre-treatment mpMRI and biopsies used for RT planning; NCT05301283. | 10.1186/s12885-024-12151-7 |
2024 | Huang X [21] | China | 64 patients (plus external validation from GSE40492) | Locally advanced rectal cancer (LARC) | Validated GARD in Chinese LARC patients; GARD > 17 predicted better DFS and response. Only 17% had doses within standard 45–50 Gy, highlighting need for personalized RT. | 10.1038/s41598-024-72818-w |
2024 | Kaida A [19] | Japan | ~110 patients (TCGA HNSC cohort) | Head and neck squamous cell carcinoma (HNSC, stratified by p16/HPV status) | Used TCGA data to estimate GARD in HNSC; p16+ tumors had higher radiosensitivity and therapeutic GARD; supports stratified RT by HPV status. | 10.1667/RADE-24-00066.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, J. Narrative Review of the Use of Genomic-Adjusted Radiation Dose (GARD) in Radiotherapy. Cancers 2025, 17, 2650. https://doi.org/10.3390/cancers17162650
Yin J. Narrative Review of the Use of Genomic-Adjusted Radiation Dose (GARD) in Radiotherapy. Cancers. 2025; 17(16):2650. https://doi.org/10.3390/cancers17162650
Chicago/Turabian StyleYin, Jun. 2025. "Narrative Review of the Use of Genomic-Adjusted Radiation Dose (GARD) in Radiotherapy" Cancers 17, no. 16: 2650. https://doi.org/10.3390/cancers17162650
APA StyleYin, J. (2025). Narrative Review of the Use of Genomic-Adjusted Radiation Dose (GARD) in Radiotherapy. Cancers, 17(16), 2650. https://doi.org/10.3390/cancers17162650