Angiogenetic Factors in Hepatocellular Carcinoma During Transarterial Chemoembolization: A Pilot Study
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Method
2.3. Statistical Analysis
3. Results
3.1. Relative Changes in Angiogenesis Biomarkers
- •
- At 72 h after TACE, angiopoietin-2, HGF, and endothelin-1 all exhibited significant increases, reaching 123%, 148%, and 224% of their baseline values, respectively, before beginning to decline one month later.
- •
- In contrast, VEGF-A and EGF levels were significantly reduced within 24 h (81% and 0%, respectively). While EGF remained suppressed at 72 h (7%) with a partial recovery at 1 month (61%), VEGF-A showed a rebound at 72 h (116%) followed by a fall at 1 month (46%).
3.2. Time-Dependent Relative Changes
3.3. Preliminary Clinical Observations and Biomarker Interpretation
3.4. Summary of Biomarker Response Patterns
4. Discussion
4.1. Angiopoietin-2 and Tumor Vascular Remodeling
4.2. HGF and Tumor Cell Survival
4.3. Endothelin-1 and Hypoxia Adaptation
4.4. Limited Detection of FGF-1, FGF-2, and VEGF-A
4.5. VEGF-C and VEGF-D
4.6. Relative Changes in Angiogenesis Biomarkers
4.7. Clinical Implications and Future Directions
4.8. Methodological Considerations and Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HCC | Hepatocellular carcinoma |
TACE | Transarterial chemoembolization |
HGF | Hepatocyte growth factor |
FGF | Fibroblast growth factor |
VEGF | Vascular endothelial growth factor |
BCLC | Barcelona Clinic Liver Cancer |
cTACE | Conventional transarterial chemoembolization |
DEM-TACE | Drug-eluting microspheres transarterial chemoembolization |
HIFs | Hypoxia-inducible factors |
References
- Ducreux, M.; Abou-Alfa, G.K.; Bekaii-Saab, T.; Cheng, A.-L.; Furuse, J.; Galle, P.R.; Kudo, M.; Park, J.-W.; Zhu, A.X.; Johnson, P.; et al. The Management of Hepatocellular Carcinoma: Current Expert Opinion and Recommendations Derived From the 24th ESMO/World Congress on Gastrointestinal Cancer, Barcelona, 2022. ESMO Open 2023, 8, 101567. [Google Scholar] [CrossRef] [PubMed]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fabrega, J.; Burrel, M.; Garcia-Criado, A.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC Strategy for Prognosis Prediction and Treatment Recommendation: The 2022 update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; De Baere, T.; Kulik, L.; Haber, P.K.; Greten, T.F.; Meyer, T.; Lencioni, R.; Finn, R.S.; Raoul, J.-L.; Merle, P.; et al. Locoregional Therapies in the Era of Molecular and Immune Treatments for Hepatocellular Carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 293–313. [Google Scholar] [CrossRef] [PubMed]
- de Baere, T.; Ronot, M.; Chung, J.W.; Golfieri, R.; Kloeckner, R.; Park, J.W.; Gebauer, B.; Kibriya, N.; Ananthakrishnan, G.; Miyayama, S.; et al. Initiative on Superselective Conventional Transarterial Chemoembolization Results (INSPIRE). Cardiovasc. Interv. Radiol. 2022, 45, 1430–1440. [Google Scholar] [CrossRef] [PubMed]
- Lencioni, R.; de Baere, T.; Burrel, M.; Caridi, J.G.; Lammer, J.; Malagari, K.; Martin, R.C.; O’Grady, E.; Real, M.I.; Vogl, T.J.; et al. Transcatheter Treatment of Hepatocellular Carcinoma with Doxorubicin-loaded DC Bead (DEBDOX): Technical Recommendations. Cardiovasc. Interv. Radiol. 2012, 35, 980–985. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines on the Management of Hepatocellular Carcinoma. J. Hepatol. 2025, 82, 315–374. [Google Scholar] [CrossRef]
- Korsic, S.; Osredkar, J.; Smid, A.; Steblovnik, K.; Popovic, M.; Locatelli, I.; Trontelj, J.; Popovic, P. Idarubicin-loaded Drug-eluting Microspheres Transarterial Chemoembolization for Intermediate Stage Hepatocellular Carcinoma: Safety, Efficacy, and Pharmacokinetics. Radiol. Oncol. 2024, 58, 517–526. [Google Scholar] [CrossRef]
- Guiu, B.; Colombat, S.; Piron, L.; Rouers, A.; Allimant, C.; Pierredon-Foulongne, M.-A.; Assenat, E.; Aho-Glele, S.; Boulin, M. Transarterial Chemoembolization of Hepatocellular Carcinoma with Idarubicin-loaded Tandem Drug-eluting Embolics. Cancers 2019, 11, 987. [Google Scholar] [CrossRef]
- de Baere, T.; Guiu, B.; Ronot, M.; Aho, S.; Lagrange, C.; Teriitehau, C.; Cottereau, A.-S.; Piron, L.; Boulin, M.; Sibert, A.; et al. Real-life Prospective Evaluation of New Drug-eluting Platform for Chemoembolization of Patients with Hepatocellular Carcinoma: PARIS Registry. Cancers 2020, 12, 3405. [Google Scholar] [CrossRef]
- Roth, G.S.; Teyssier, Y.; Abousalihac, M.; Sebagh, M.; Luciani, A.; Valla, D.; Vilgrain, V.; Lotz, J.-P. Idarubicin vs Doxorubicin in Transarterial Chemoembolization of Intermediate Stage Hepatocellular Carcinoma. World J. Gastroenterol. 2020, 26, 311–318. [Google Scholar] [CrossRef]
- Boulin, M.; Guiu, S.; Chauffert, B.; Aho, S.; Cercueil, J.-P.; Ghiringhelli, F.; Krause, D.; Favelier, S.; Loffroy, R.; Hillon, P.; et al. Screening of Anticancer Drugs for Chemoembolization of Hepatocellular Carcinoma. Anti Cancer Drugs 2011, 22, 741–748. [Google Scholar] [CrossRef]
- Favelier, S.; Boulin, M.; Hamza, S.; Guiu, B.; Cercueil, J.-P.; Lepage, C.; Hillon, P.; Krause, D.; Loffroy, R. Lipiodol Transarterial Chemoembolization of Hepatocellular Carcinoma with Idarubicin: First Experience. Cardiovasc. Interv. Radiol. 2013, 36, 1039–1046. [Google Scholar] [CrossRef]
- Pinto, E.; Pelizzaro, F.; Farinati, F.; Russo, F.P. Angiogenesis and Hepatocellular Carcinoma: From Molecular Mechanisms to Systemic Therapies. Medicina 2023, 59, 1115. [Google Scholar] [CrossRef]
- Wang, B.; Xu, H.; Gao, Z.Q.; Ning, H.F.; Sun, Y.K.; Li, X.T.; Liu, Z.Y.; Chen, Y.X.; Xu, L.C. Increased Expression of Vascular Endothelial Growth Factor in Hepatocellular Carcinoma After Transcatheter Arterial Chemoembolization. Acta Radiol. 2008, 49, 523–529. [Google Scholar] [CrossRef]
- Zhu, A.X.; Duda, D.G.; Sahani, D.V.; Jain, R.K. HCC and Angiogenesis: Possible Targets and Future Directions. Nat. Rev. Clin. Oncol. 2011, 8, 292–301. [Google Scholar] [CrossRef]
- Wu, X.Z.; Xie, G.R.; Chen, D. Hypoxia and Hepatocellular Carcinoma: The Therapeutic Target for Hepatocellular Carcinoma. J. Gastroenterol. Hepatol. 2007, 22, 1178–1182. [Google Scholar] [CrossRef] [PubMed]
- Lencioni, R.; Llovet, J.M.; Han, G.; Tak, W.Y.; Yang, J.; Guglielmi, A.; Paik, S.W.; Reig, M.; Kim, D.Y.; Chau, G.-Y.; et al. Sorafenib or Placebo Plus TACE With Doxorubicin-eluting Beads for Intermediate Stage HCC: The SPACE trial. J. Hepatol. 2016, 64, 1090–1098. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Ueshima, K.; Ikeda, M.; Torimura, T.; Tanabe, N.; Aikata, H.; Izumi, N.; Yamasaki, T.; Nojiri, S.; Hino, K.; et al. Final Results of Tactics: A randomized, Prospective Trial Comparing Transarterial Chemoembolization Plus Sorafenib to Transarterial Chemoembolization Alone in Patients with Unresectable Hepatocellular Carcinoma. Liver Cancer 2022, 11, 354–367. [Google Scholar] [CrossRef] [PubMed]
- Sangro, B.; Kudo, M.; Erinjeri, J.P.; Meyer, T.; Qin, S.; Chan, S.L.; Knox, J.; Daniele, B.; Park, J.-W.; Han, K.-H.; et al. Durvalumab with or without Bevacizumab with Transarterial Chemoembolisation in Hepatocellular Carcinoma (EMERALD-1): A Multiregional, Randomised, Double-blind, Placebo-controlled, Phase 3 study. Lancet 2025, 405, 216–232. [Google Scholar] [CrossRef]
- Su, J.L.; Yen, C.J.; Chen, P.S.; Chuang, S.E.; Hong, C.C.; Kuo, I.H.; Chen, H.Y.; Hung, M.C.; Kuo, M.L. The Role of the VEGF-C/VEGFR-3 Axis in Cancer Progression. Br. J. Cancer 2007, 96, 541–545. [Google Scholar] [CrossRef]
- Moris, D.; Martinino, A.; Schiltz, S.; Allen, P.J.; Barbas, A.; Sudan, D.; King, L.; Berg, C.; Kim, C.; Bashir, M.; et al. Advances in the Treatment of Hepatocellular Carcinoma: An Overview of the Current and Evolving Therapeutic Landscape for Clinicians. CA Cancer J. Clin. 2025. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, H.; Yu, J. Biomarkers in Hepatocellular Carcinoma: Current Status and Future Perspectives. Biomedicines 2020, 8, 576. [Google Scholar] [CrossRef]
- Sergio, A.; Cristofori, C.; Cardin, R.; Pivetta, G.; Ragazzi, R.; Baldan, A.; Girardi, L.; Cillo, U.; Burra, P.; Giacomin, A.; et al. Transcatheter Arterial Chemoembolization (TACE) in Hepatocellular Carcinoma (HCC): The Role of Angiogenesis and Invasiveness. Am. J. Gastroenterol. 2008, 103, 914–921. [Google Scholar] [CrossRef]
- Liu, K.; Min, X.-L.; Peng, J.; Yang, K.; Yang, L.; Zhang, X.-M. The Changes of HIF-1α and VEGF Expression After TACE in Patients with Hepatocellular Carcinoma. J. Clin. Med. Res. 2016, 8, 297–302. [Google Scholar] [CrossRef]
- Pinto, E.; Pelizzaro, F.; Cardin, R.; Battistel, M.; Palano, G.; Bertellini, F.; Kitenge, M.P.; Peserico, G.; Farinati, F.; Russo, F.P. HIF-1α and VEGF as Prognostic Biomarkers in Hepatocellular Carcinoma Patients Treated with Transarterial Chemoembolization. Dig. Liver Dis. 2024, 56, 872–879. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Sonveaux, P.; Liu, S.; Zhao, Y.; Mi, J.; Clary, B.M.; Li, C.-Y.; Kontos, C.D.; Dewhirst, M.W. Systemic Overexpression of Angiopoietin-2 Promotes Tumor Microvessel Regression and Inhibits Angiogenesis and Tumor Growth. Cancer Res. 2007, 67, 3835–3844. [Google Scholar] [CrossRef] [PubMed]
- Rigamonti, N.; Kadioglu, E.; Keklikoglou, I.; Wyser Rmili, C.; Leow, C.C.; De Palma, M. Role of Angiopoietin-2 in Adaptive Tumor Resistance to VEGF Signaling Blockade. Cell Rep. 2014, 8, 696–706. [Google Scholar] [CrossRef] [PubMed]
- Choi, G.H.; Jang, E.S.; Kim, J.W.; Jeong, S.H. Prognostic Role of Plasma Level of Angiopoietin-1, Angiopoietin-2, and Vascular Endothelial Growth Factor in Hepatocellular Carcinoma. World J. Gastroenterol. 2021, 27, 4453–4467. [Google Scholar] [CrossRef]
- Ballı, H.T.; Aikimbaev, K.; Burak, İ.G.; Pişkin, F.C. Short-term Changes of Angiogenesis Factors After Transarterial Radioembolization in Hepatocellular Carcinoma patients. Diagn. Interv. Radiol. 2023, 29, 704–709. [Google Scholar] [CrossRef]
- Nakamura, T.; Mizuno, S. The Discovery of Hepatocyte Growth Factor (HGF) and its Significance for Cell Biology, Life Sciences and Clinical Medicine. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2010, 86, 588–610. [Google Scholar] [CrossRef]
- Owusu, B.Y.; Galemmo, R.; Janetka, J.; Klampfer, L. Hepatocyte Growth Factor, a Key Tumor-promoting Factor in the Tumor Microenvironment. Cancers 2017, 9, 35. [Google Scholar] [CrossRef] [PubMed]
- Yap, T.A.; Sandhu, S.K.; Alam, S.M.; de Bono, J.S. HGF/c-MET targeted therapeutics: Novel strategies for cancer medicine. Curr. Drug Targets 2011, 12, 2045–2058. [Google Scholar] [CrossRef] [PubMed]
- Venepalli, N.K.; Goff, L. Targeting the HGF-cMET Axis in Hepatocellular Carcinoma. Int. J. Hepatol. 2013, 2013, 341636. [Google Scholar] [CrossRef]
- Harrison, M.; Zinovkin, D.; Pranjol, M.Z.I. Endothelin-1 and its Role in Cancer and Potential Therapeutic Opportunities. Biomedicines 2024, 12, 511. [Google Scholar] [CrossRef]
- Karimi, A.; Yarmohammadi, H.; Erinjeri, J.P. Immune Effects of Intra-arterial Liver-directed Therapies. J. Vasc. Interv. Radiol. 2024, 35, 178–184. [Google Scholar] [CrossRef]
- Li, H.; Su, K.; Guo, L.; Zhang, X.; Zhang, Y.; Liu, X.; Wang, Y. PD-1 Inhibitors Combined with Antiangiogenic Therapy with or without Transarterial Chemoembolization in the Treatment of Hepatocellular Carcinoma: A Propensity Matching Analysis. J. Hepatocell. Carcinoma 2023, 10, 1257–1266. [Google Scholar] [CrossRef]
- Lohela, M.; Bry, M.; Tammela, T.; Alitalo, K. VEGFs and Receptors Involved in Angiogenesis Versus Lymphangiogenesis. Curr. Opin. Cell Biol. 2009, 21, 154–165. [Google Scholar] [CrossRef]
- Kang, S.; Bai, X.; Chen, S.; Song, Y.; Liu, L. The Potential Combinational Immunotherapies for Treatment of Hepatocellular Carcinoma. J. Interv. Med. 2019, 2, 47–51. [Google Scholar] [CrossRef]
- Xiao, E.H.; Guo, D.; Bian, D.J. Effect of Preoperative Transcatheter Arterial Chemoembolization on Angiogenesis of Hepatocellular Carcinoma Cells. World J. Gastroenterol. 2009, 15, 4582–4586. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.F.; Yi, J.L.; Li, X.G.; Yang, Z.F.; Deng, W.; Tian, G. Expression of Angiogenic Factors in Hepatocellular Carcinoma after Transcatheter Arterial Chemoembolization. Curr. Med. Sci. 2003, 23, 280–282. [Google Scholar] [CrossRef]
pre-TACE | 24 h After TACE | 72 h After TACE | 1 Month After TACE | |
---|---|---|---|---|
Angiopoietin-2 | 4524.2 ± 6291.30 | 4439.3 ± 5941.87 | 5578.7 ± 6869.23 | 4758.4 ± 4026.21 |
Endoglin | 4011.85 ± 2232.37 | 3406.4 ± 1947.87 | 4074.42 ± 1585.61 | 3879.17 ± 1472.43 |
HGF | 500.27 ± 679.12 | 675.87 ± 411.02 | 738.08 ± 539.76 | 637.33 ± 590.04 |
Endothelin-1 | 27.28 ± 26.56 | 37.39 ± 25.82 | 61.19 ± 36.29 | 24.99 ± 23.74 |
FGF-1 | 3.31 ± 284.76 | 4.17 ± 257.88 | 3.17 ± 84.81 | 3.45 ± 54.21 |
FGF-2 | 143.24 ± 96.20 | 106.72 ± 109.03 | 143.84 ± 148.88 | 118.54 ± 96.24 |
VEGF-A | 78.1 ± 285.49 | 63.5 ± 363.20 | 90.79 ± 191.80 | 35.7 ± 184.89 |
VEGF-C | 363.31 ± 400.61 | 268.03 ± 177.47 | 283.06 ± 529.75 | 248.69 ± 239.77 |
VEGF-D | 363.5 ± 582.91 | 255.75 ± 650.69 | 319.28 ± 629.35 | 383.07 ± 399.41 |
EGF | 98.3 | OOR< | 7.19 ± 33.15 | 60.1 ± 9.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osredkar, J.; Koršič, Š.; Prosenc Zmrzljak, U.; Trček, H.; Popović, P. Angiogenetic Factors in Hepatocellular Carcinoma During Transarterial Chemoembolization: A Pilot Study. Cancers 2025, 17, 2642. https://doi.org/10.3390/cancers17162642
Osredkar J, Koršič Š, Prosenc Zmrzljak U, Trček H, Popović P. Angiogenetic Factors in Hepatocellular Carcinoma During Transarterial Chemoembolization: A Pilot Study. Cancers. 2025; 17(16):2642. https://doi.org/10.3390/cancers17162642
Chicago/Turabian StyleOsredkar, Joško, Špela Koršič, Uršula Prosenc Zmrzljak, Hana Trček, and Peter Popović. 2025. "Angiogenetic Factors in Hepatocellular Carcinoma During Transarterial Chemoembolization: A Pilot Study" Cancers 17, no. 16: 2642. https://doi.org/10.3390/cancers17162642
APA StyleOsredkar, J., Koršič, Š., Prosenc Zmrzljak, U., Trček, H., & Popović, P. (2025). Angiogenetic Factors in Hepatocellular Carcinoma During Transarterial Chemoembolization: A Pilot Study. Cancers, 17(16), 2642. https://doi.org/10.3390/cancers17162642