The Role of Epigenetic Biomarkers as Diagnostic, Predictive and Prognostic Factors in Colorectal Cancer
Simple Summary
Abstract
1. Introduction
2. Diagnosis of CRC
2.1. Cohort Studies
2.1.1. DNA Methylation
Stool
Blood
2.1.2. ncRNA
miRNA
lncRNA
circRNA
3. Prediction of Clinical Outcome in CRC
3.1. Epigenetic Factors in Prediction of Treatment Response
3.1.1. DNA Methylation
3.1.2. miRNAs
3.1.3. lncRNAs
3.2. Epigenetic Factors in CRC Prognosis
3.2.1. DNA Methylation
3.2.2. ncRNAs
miRNAs
lncRNAs
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AA | advanced adenoma |
ADHFE1 | alcohol dehydrogenase iron containing 1 |
AFAP1-AS1 | actin filament associated protein 1-Antisense RNA 1 |
APC | adenomatous polyposis coli |
ARST | ALDOA-related specific transcript |
ASB16-AS1 | ASB 16 antisense RNA 1 |
ATB | anlotinib |
AUC | area under curve |
BCAT1 | branched-chain amino acid transaminase 1 |
BMP3 | bone morphogenetic protein 3 |
CEP112 | centrosomal protein 112 |
ceRNA | competitive endogenous RNA |
CIMP | CpG island methylator phenotype |
circRNAs | circular RNAs |
CIN | chromosomal instability |
CLIP4 | CAP-Gly domain containing linker protein family member 4 |
COL4A1 | collagen type IV alpha 1 chain |
COL4A2 | collagen type IV alpha 2 chain |
CRC | Colorectal Cancer |
C9orf50 | chromosome 9 open reading frame 50 |
DAB1 | disabled homolog 1 |
DFS | disease-free survival |
DNMTs | DNA methyltransferases |
EGFR | epidermal growth factor receptor |
EOCRC | early-onset CRC |
ERCC1 | excision repair 1, endonuclease non-catalytic subunit |
ERK1/ERK2 | extracellular signal-regulated kinase 1 and 2 |
EVI2B | ecotropic viral integration site 2B |
FAM19A5 | family with sequence similarity 19 member A5 |
FAM30A | family with sequence similarity 30 member A |
FAP | familial adenomatous polyposis |
FITs | fecal immunochemical tests |
FOLFIRI | an abbreviation for a chemotherapy combination (leucovorin calcium, fluorouracil, irinotecan) used to treat advanced colorectal cancer |
FOLFOX | an abbreviation for a chemotherapy regimen (leucovorin calcium, fluorouracil, oxaliplatin) used to treat colorectal cancer |
FOXE1 | forkhead box E1 |
FOXF1 | forkhead box protein F1 |
GALNT9 | polypeptide N-acetylgalactosaminyltransferase 9 |
GUF1 | GTP binding elongation factor |
HAND1 | heart and neural crest derivatives expressed 1 |
HANR | HCC associated long non-coding RNA |
HC | healthy controls |
HDMs | histone demethylases |
HDRA | histocultural drug response assay |
HMTs | histone methyltransferases |
HNPCC | Hereditary non-polyposis colorectal cancer |
HR | hazard ratio |
IARC | International Agency for Research on Cancer |
IC50 | Half-maximal inhibitory concentration |
IGF2 | insulin-like growth factor 2 |
IGFBP3 | insulin-like growth factor binding protein 3 |
IKZF1 | IKAROS family zinc finger 1 |
IRF4 | interferon regulatory factor 4 |
ITGA4 | integrin subunit alpha 4 |
KCNJ12 | potassium inwardly rectifying channel subfamily J member 12) |
KCNQ5 | Potassium Voltage-gated Channel subfamily Q member 5 |
KLF4 | Krüppel-like factor 4 |
KRAS | Kristen rat sarcoma viral oncogene homolog |
Linc-A | long intergenic non-coding RNA for kinase activation |
LINC01094 | long intergenic non-protein coding RNA 1094 |
LINE-1 | long interspersed nuclear element-1 |
LMX1A | LIM homeobox transcription factor 1 alpha |
lncRNAs | long non-coding RNAs |
LNM | lymph node metastasis |
MEK1/MEK2 | mitogen-activated protein kinase 1 and 2 |
MGMT | O6-methylguanine-DNA-methyltransferase |
MHENCR | melanoma highly expressed non-coding RNA |
miRNAs | microRNAs |
MLH1 | MutL protein homolog 1 |
mSEPT9 | methylated septin 9 |
MSI | microsatellite instability |
mTOR | mammalian target of rapamycin |
MYO1-G | myosin 1G |
ncRNAs | non-coding RNAs |
NDRG | N-myc downstream regulated gene |
NEAT1 | nuclear-enriched abundant transcript 1 |
NKX6.1 | NK6 homeobox 1 |
Non-PD | non-progression of disease |
OR | odds ratio |
ORR | objective response rate |
OS | overall survival |
PAX8 | paired box 8 |
PD | progressive disease |
PFS | progression-free survival |
PI3K | phosphoinositide 3-kinase |
PPP2R5C | protein phosphatase 2, B’ gamma isoform |
PR | partial response |
PRDM12 | PR domain containing 12 |
qRT-PCR | quantitative real-time PCR |
Raf-MEK-ERK | rapidly accelerated fibrosarcoma—mitogen-activated protein kinase/ERK kinase—extracellular signal-regulated kinase |
RASSF1A | ras association domain family member 1 |
RBPs | RNA-binding proteins |
RFS | recurrence-free survival |
RMV | relative methylation value |
RR | relative risk |
SCNAs | somatic copy number alterations |
SD | stable disease |
SDC2 | syndecan 2 |
SEPT9 | septin 9 |
SFRP1 | secreted frizzled-related protein 1 |
SFRP2 | secreted frizzled related protein 2 |
SLPI | secretory leukocyte protease inhibitor |
SOX1 | SRY-box transcription factor 1 |
TFPI2 | tissue factor pathway inhibitor 2 |
TGF-β | transforming growth factor beta |
THOR | testis-associated highly conserved oncogenic long non-coding RNA |
TLX2 | T-cell leukemia homeobox 2 |
TNM | tumor-node-metastasis |
TNNI2 | troponin I2 |
TWIST1 | twist related protein 1 |
UPF3A | up-frameshift regulator of nonsense transcripts homolog A |
VIM | vimentin |
Wnt | wingless-related integration site |
XELOX | a chemotherapy regimen consisting of capecitabine (Xeloda) and oxaliplatin used for the treatment of advanced-stage colorectal cancer |
ZNF132 | zinc finger protein 132 |
ZNF177 | zinc finger protein 177 |
5-FU | 5-fluororacil |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, V.A.; Gheorghe, G.; Bacalbasa, N.; Chiotoroiu, A.L.; Diaconu, C. Colorectal Cancer: From Risk Factors to Oncogenesis. Medicina 2023, 59, 1646. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Mullins, C.S.; Schafmayer, C.; Zeißig, S.; Linnebacher, M. A Global Assessment of Recent Trends in Gastrointestinal Cancer and Lifestyle-Associated Risk Factors. Cancer Commun 2021, 41, 1137–1151. [Google Scholar] [CrossRef]
- Matsuda, T.; Fujimoto, A.; Igarashi, Y. Colorectal Cancer: Epidemiology, Risk Factors, and Public Health Strategies. Digestion 2025, 106, 91–99. [Google Scholar] [CrossRef]
- Keum, N.N.; Giovannucci, E. Global Burden of Colorectal Cancer: Emerging Trends, Risk Factors and Prevention Strategies. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 713–732. [Google Scholar] [CrossRef]
- Siegel, R.L.; Jakubowski, C.D.; Fedewa, S.A.; Davis, A.; Azad, N.S. Colorectal Cancer in the Young: Epidemiology, Prevention, Management. Am. Soc. Clin. Oncol. Educ. Book 2020, 40, e75–e88. [Google Scholar] [CrossRef]
- Song, M.; Chan, A.T.; Sun, J. Influence of the Gut Microbiome, Diet, and Environment on Risk of Colorectal Cancer. Gastroenterology 2020, 158, 322–340. [Google Scholar] [CrossRef]
- Jayasinghe, M.; Prathiraja, O.; Caldera, D.; Jena, R.; Coffie-Pierre, J.A.; Silva, M.S.; Siddiqui, O.S. Colon Cancer Screening Methods: 2023 Update. Cureus 2023, 15, e37509. [Google Scholar] [CrossRef]
- Hossain, M.S.; Karuniawati, H.; Jairoun, A.A.; Urbi, Z.; Ooi, D.J.; John, A.; Lim, Y.C.; Kaderi Kibria, K.M.; Mohiuddin, A.K.M.; Ming, L.C.; et al. Colorectal Cancer: A Review of Carcinogenesis, Global Epidemiology, Current Challenges, Risk Factors, Preventive and Treatment Strategies. Cancers 2022, 14, 1732. [Google Scholar] [CrossRef]
- Sedlak, J.C.; Yilmaz, O.H.; Roper, J. Metabolism and Colorectal Cancer. Annu. Rev. Pathol. Mech. Dis. 2022, 18, 467. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Goel, A.; Chung, D.C. Pathways of Colorectal Carcinogenesis. Gastroenterology 2020, 158, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Tirendi, S.; Marengo, B.; Domenicotti, C.; Bassi, A.M.; Almonti, V.; Vernazza, S. Colorectal Cancer and Therapy Response: A Focus on the Main Mechanisms Involved. Front. Oncol. 2023, 13, 1208140. [Google Scholar] [CrossRef] [PubMed]
- Constantinou, V.; Constantinou, C. Focusing on Colorectal Cancer in Young Adults (Review). Mol. Clin. Oncol. 2023, 20, 8. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Ming, T.; Tang, S.; Ren, S.; Yang, H.; Liu, M.; Tao, Q.; Xu, H. Wnt Signaling in Colorectal Cancer: Pathogenic Role and Therapeutic Target. Mol. Cancer 2022, 21, 144. [Google Scholar] [CrossRef]
- Zhu, G.; Pei, L.; Xia, H.; Tang, Q.; Bi, F. Role of Oncogenic KRAS in the Prognosis, Diagnosis and Treatment of Colorectal Cancer. Mol. Cancer 2021, 20, 143. [Google Scholar] [CrossRef]
- Jin, H.; Huang, X.; Pan, Q.; Ma, N.; Xie, X.; Wei, Y.; Yu, F.; Wen, W.; Zhang, B.; Zhang, P.; et al. The EIF3H-HAX1 Axis Increases RAF-MEK-ERK Signaling Activity to Promote Colorectal Cancer Progression. Nat. Commun. 2024, 15, 2551. [Google Scholar] [CrossRef]
- Dang, T.; Guan, X.; Cui, L.; Ruan, Y.; Chen, Z.; Zou, H.; Lan, Y.; Liu, C.; Zhang, Y. Epigenetics and Immunotherapy in Colorectal Cancer: Progress and Promise. Clin. Epigenetics 2024, 16, 123. [Google Scholar] [CrossRef]
- Li, Y. Modern Epigenetics Methods in Biological Research. Methods 2021, 187, 104–113. [Google Scholar] [CrossRef]
- Martisova, A.; Holcakova, J.; Izadi, N.; Sebuyoya, R.; Hrstka, R.; Bartosik, M. DNA Methylation in Solid Tumors: Functions and Methods of Detection. Int. J. Mol. Sci. 2021, 22, 4247. [Google Scholar] [CrossRef]
- Nishiyama, A.; Nakanishi, M. Navigating the DNA Methylation Landscape of Cancer. Trends Genet. 2021, 37, 1012–1027. [Google Scholar] [CrossRef]
- Jung, G.; Hernández-Illán, E.; Moreira, L.; Balaguer, F.; Goel, A. Epigenetics of Colorectal Cancer: Biomarker and Therapeutic Potential. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 111–130. [Google Scholar] [CrossRef]
- Liang, T.J.; Wang, H.X.; Zheng, Y.Y.; Cao, Y.Q.; Wu, X.; Zhou, X.; Dong, S.X. APC Hypermethylation for Early Diagnosis of Colorectal Cancer: A Meta-Analysis and Literature Review. Oncotarget 2017, 8, 46468–46479. [Google Scholar] [CrossRef] [PubMed]
- Naito, T.; Nosho, K.; Ito, M.; Igarashi, H.; Mitsuhashi, K.; Yoshii, S.; Aoki, H.; Nomura, M.; Sukawa, Y.; Yamamoto, E.; et al. IGF2 Differentially Methylated Region Hypomethylation in Relation to Pathological and Molecular Features of Serrated Lesions. World J. Gastroenterol. WJG 2014, 20, 10050–10061. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Li, Y.N.; Wang, F.; Zhang, W.M.; Geng, X. S-Adenosylmethionine Inhibits the Growth of Cancer Cells by Reversing the Hypomethylation Status of c-Myc and H-Ras in Human Gastric Cancer and Colon Cancer. Int. J. Biol. Sci. 2010, 6, 784–795. [Google Scholar] [CrossRef] [PubMed]
- Salek Farrokhi, A.; Mohammadlou, M.; Abdollahi, M.; Eslami, M.; Yousefi, B. Histone Deacetylase Modifications by Probiotics in Colorectal Cancer. J. Gastrointest. Cancer 2020, 51, 754–764. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Z.; Jia, J.; Du, T.; Zhang, N.; Tang, Y.; Fang, Y.; Fang, D. Overview of Histone Modification. Adv. Exp. Med. Biol. 2021, 1283, 1–16. [Google Scholar] [CrossRef]
- Liang, B.; Wang, Y.; Xu, J.; Shao, Y.; Xing, D. Unlocking the Potential of Targeting Histone-Modifying Enzymes for Treating IBD and CRC. Clin. Epigenetics 2023, 15, 146. [Google Scholar] [CrossRef]
- Nemeth, K.; Bayraktar, R.; Ferracin, M.; Calin, G.A. Non-Coding RNAs in Disease: From Mechanisms to Therapeutics. Nat. Rev. Genet. 2024, 25, 211–232. [Google Scholar] [CrossRef]
- Chen, L.L.; Kim, V.N. Small and Long Non-Coding RNAs: Past, Present, and Future. Cell 2024, 187, 6451–6485. [Google Scholar] [CrossRef]
- Smolarz, B.; Durczyński, A.; Romanowicz, H.; Szyłło, K.; Hogendorf, P. MiRNAs in Cancer (Review of Literature). Int. J. Mol. Sci. 2022, 23, 2805. [Google Scholar] [CrossRef]
- Hill, M.; Tran, N. MiRNA Interplay: Mechanisms and Consequences in Cancer. Dis. Model. Mech. 2021, 14, dmm047662. [Google Scholar] [CrossRef] [PubMed]
- Wang, H. MicroRNAs and Apoptosis in Colorectal Cancer. Int. J. Mol. Sci. 2020, 21, 5353. [Google Scholar] [CrossRef] [PubMed]
- Mattick, J.S.; Amaral, P.P.; Carninci, P.; Carpenter, S.; Chang, H.Y.; Chen, L.L.; Chen, R.; Dean, C.; Dinger, M.E.; Fitzgerald, K.A.; et al. Long Non-Coding RNAs: Definitions, Functions, Challenges and Recommendations. Nat. Rev. Mol. Cell Biol. 2023, 24, 430. [Google Scholar] [CrossRef] [PubMed]
- Ghafouri-Fard, S.; Hussen, B.M.; Gharebaghi, A.; Eghtedarian, R.; Taheri, M. LncRNA Signature in Colorectal Cancer. Pathol. Res. Pract. 2021, 222, 153432. [Google Scholar] [CrossRef]
- Alsaab, H.O. Pathological Role of Long Non-Coding (Lnc) RNA in the Regulation of Wnt/β-Catenin Signaling Pathway during Epithelial-Mesenchymal Transition (EMT). Pathol. Res. Pract. 2023, 248, 154566. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, W.; Zhou, Q.; Chen, C.; Yuan, W.; Liu, J.; Li, X.; Sun, Z. Roles of CircRNAs in the Tumour Microenvironment. Mol. Cancer 2020, 19, 14. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, J.; Yang, W.; Ye, W.C. CircRNAs in Colorectal Cancer: Potential Biomarkers and Therapeutic Targets. Cell Death Dis. 2023, 14, 353. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, X.; Hu, G. Circulating Non-Coding RNAs as New Biomarkers and Novel Therapeutic Targets in Colorectal Cancer. Clin. Transl. Oncol. 2021, 23, 2220–2236. [Google Scholar] [CrossRef]
- Liu, C.; Yu, C.; Song, G.; Fan, X.; Peng, S.; Zhang, S.; Zhou, X.; Zhang, C.; Geng, X.; Wang, T.; et al. Comprehensive Analysis of MiRNA-MRNA Regulatory Pairs Associated with Colorectal Cancer and the Role in Tumor Immunity. BMC Genom. 2023, 24, 724. [Google Scholar] [CrossRef]
- Recillas-Targa, F. Cancer Epigenetics: An Overview. Arch. Med. Res. 2022, 53, 732–740. [Google Scholar] [CrossRef]
- Shaukat, A.; Levin, T.R. Current and Future Colorectal Cancer Screening Strategies. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 521. [Google Scholar] [CrossRef]
- Kamel, F.; Eltarhoni, K.; Nisar, P.; Soloviev, M. Colorectal Cancer Diagnosis: The Obstacles We Face in Determining a Non-Invasive Test and Current Advances in Biomarker Detection. Cancers 2022, 14, 1889. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Zhang, B.; Li, P.; Zhao, Y. Methods and Biomarkers for Early Detection, Prediction, and Diagnosis of Colorectal Cancer. Biomed. Pharmacother. 2023, 163, 114786. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S. Screening for Colorectal Cancer. Hematol. /Oncol. Clin. N. Am. 2022, 36, 393–414. [Google Scholar] [CrossRef] [PubMed]
- van Rossum, L.G.; van Rijn, A.F.; Laheij, R.J.; van Oijen, M.G.; Fockens, P.; van Krieken, H.H.; Verbeek, A.L.; Jansen, J.B.; Dekker, E. Random Comparison of Guaiac and Immunochemical Fecal Occult Blood Tests for Colorectal Cancer in a Screening Population. Gastroenterology 2008, 135, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Bretthauer, M.; Løberg, M.; Wieszczy, P.; Kalager, M.; Emilsson, L.; Garborg, K.; Rupinski, M.; Dekker, E.; Spaander, M.; Bugajski, M.; et al. Effect of Colonoscopy Screening on Risks of Colorectal Cancer and Related Death. N. Engl. J. Med. 2022, 387, 1547–1556. [Google Scholar] [CrossRef]
- Ladabaum, U.; Dominitz, J.A.; Kahi, C.; Schoen, R.E. Strategies for Colorectal Cancer Screening. Gastroenterology 2020, 158, 418–432. [Google Scholar] [CrossRef]
- Shinji, S.; Yamada, T.; Matsuda, A.; Sonoda, H.; Ohta, R.; Iwai, T.; Takeda, K.; Yonaga, K.; Masuda, Y.; Yoshida, H. Recent Advances in the Treatment of Colorectal Cancer: A Review. J. Nippon. Med. Sch. 2022, 89, 246–254. [Google Scholar] [CrossRef]
- Li, F.; Lin, Y.; Li, R.; Shen, X.; Xiang, M.; Xiong, G.; Zhang, K.; Xia, T.; Guo, J.; Miao, Z.; et al. Molecular Targeted Therapy for Metastatic Colorectal Cancer: Current and Evolving Approaches. Front. Pharmacol. 2023, 14, 1165666. [Google Scholar] [CrossRef]
- Vendrely, V.; Rivin Del Campo, E.; Modesto, A.; Jolnerowski, M.; Meillan, N.; Chiavassa, S.; Serre, A.A.; Gérard, J.P.; Créhanges, G.; Huguet, F.; et al. Rectal Cancer Radiotherapy. Cancer Radiother. 2022, 26, 272–278. [Google Scholar] [CrossRef]
- Knol, J.; Keller, D.S. Total Mesorectal Excision Technique-Past, Present, and Future. Clin. Colon. Rectal. Surg. 2020, 33, 134–143. [Google Scholar] [CrossRef]
- Martínez-Escribano, C.; Moreno, F.A.; Pérez-López, M.; Cunha-Pérez, C.; Belenguer-Varea, Á.; Peredo, D.C.; González, F.J.B.; Tarazona-Santabalbina, F.J. Malnutrition and Increased Risk of Adverse Outcomes in Elderly Patients Undergoing Elective Colorectal Cancer Surgery: A Case-Control Study Nested in a Cohort. Nutrients 2022, 14, 207. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Collins, G.; Wang, H.; Toh, J.W.T. Pathological Features and Prognostication in Colorectal Cancer. Curr. Oncol. 2021, 28, 5356–5383. [Google Scholar] [CrossRef] [PubMed]
- Ciardiello, F.; Ciardiello, D.; Martini, G.; Napolitano, S.; Tabernero, J.; Cervantes, A. Clinical Management of Metastatic Colorectal Cancer in the Era of Precision Medicine. CA A Cancer J. Clin. 2022, 72, 372–401. [Google Scholar] [CrossRef]
- Okugawa, Y.; Grady, W.M.; Goel, A. Epigenetic Alterations in Colorectal Cancer: Emerging Biomarkers. Gastroenterology 2015, 149, 1204–1225. [Google Scholar] [CrossRef]
- Tepus, M.; Yau, T.O. Non-Invasive Colorectal Cancer Screening: An Overview. Gastrointest. Tumors 2020, 7, 62–73. [Google Scholar] [CrossRef]
- Song, D.; Wang, F.; Ju, Y.; He, Q.; Sun, T.; Deng, W.; Ding, R.; Zhang, C.; Xu, Q.; Qi, C.; et al. Application and Development of Noninvasive Biomarkers for Colorectal Cancer Screening: A Systematic Review. Int. J. Surg. 2023, 109, 925–935. [Google Scholar] [CrossRef]
- Church, T.R.; Wandell, M.; Lofton-Day, C.; Mongin, S.J.; Burger, M.; Payne, S.R.; Castaños-Vélez, E.; Blumenstein, B.A.; Rösch, T.; Osborn, N.; et al. Prospective Evaluation of Methylated SEPT9 in Plasma for Detection of Asymptomatic Colorectal Cancer. Gut 2014, 63, 317–325. [Google Scholar] [CrossRef]
- Jin, P.; Kang, Q.; Wang, X.; Yang, L.; Yu, Y.; Li, N.; He, Y.Q.; Han, X.; Hang, J.; Zhang, J.; et al. Performance of a Second-Generation Methylated SEPT9 Test in Detecting Colorectal Neoplasm. J. Gastroenterol. Hepatol. 2015, 30, 830–833. [Google Scholar] [CrossRef]
- Tóth, K.; Sipos, F.; Kalmár, A.; Patai, Á.V.; Wichmann, B.; Stoehr, R.; Golcher, H.; Schellerer, V.; Tulassay, Z.; Molnár, B. Detection of Methylated SEPT9 in Plasma Is a Reliable Screening Method for Both Left- and Right-Sided Colon Cancers. PLoS ONE 2012, 7, e46000. [Google Scholar] [CrossRef]
- Imperiale, T.F.; Kisiel, J.B.; Itzkowitz, S.H.; Scheu, B.; Duimstra, E.K.; Statz, S.; Berger, B.M.; Limburg, P.J. Specificity of the Multi-Target Stool DNA Test for Colorectal Cancer Screening in Average-Risk 45-49 Year-Olds: A Cross-Sectional Study. Cancer Prev. Res. 2021, 14, 489–496. [Google Scholar] [CrossRef]
- Imperiale, T.F.; Ransohoff, D.F.; Itzkowitz, S.H.; Levin, T.R.; Lavin, P.; Lidgard, G.P.; Ahlquist, D.A.; Berger, B.M. Multitarget Stool DNA Testing for Colorectal-Cancer Screening. N. Engl. J. Med. 2014, 370, 1287–1297. [Google Scholar] [CrossRef]
- Liu, X.; Wen, J.; Li, C.; Wang, H.; Wang, J.; Zou, H. High-Yield Methylation Markers for Stool-Based Detection of Colorectal Cancer. Dig. Dis. Sci. 2020, 65, 1710–1719. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ming, H.; Xu, L.; Li, L.; Liu, Q.; Zhao, J.; Zhong, C.; Li, H. DNA Methylation Analysis of the SDC2, SEPT9 and VIM Genes in Fecal DNA for Colorectal Cancer Diagnosis. BMC Cancer 2024, 24, 1205. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Wang, D.; Yuan, T.; Fang, H.; Zhu, C.; Qin, J.; Xu, X.; Zhang, C.; Liu, J.; Zhang, Y.; et al. Novel DNA Methylation Biomarkers in Stool and Blood for Early Detection of Colorectal Cancer and Precancerous Lesions. Clin. Epigenetics 2023, 15, 26. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Liu, X.; Liu, Y.; Li, H.; Ma, Y.; Li, S.; Zhu, Y.; Miao, J.; Xiong, S.; Fei, S.; et al. Aberrant DNA Methylation of SEPT9 and SDC2 in Stool Specimens as an Integrated Biomarker for Colorectal Cancer Early Detection. Front. Genet. 2020, 11, 643. [Google Scholar] [CrossRef]
- Liu, C.; Xu, L.; Li, W.; Jie, M.; Xue, W.; Yu, W. Multiple Biomarker-Combined Screening for Colorectal Cancer Based on Bisulfate Conversion-Free Detection of Fecal DNA Methylation. BioMed Res. Int. 2021, 2021, 1479748. [Google Scholar] [CrossRef]
- Wang, J.; Liu, S.; Wang, H.; Zheng, L.; Zhou, C.; Li, G.; Huang, R.; Wang, H.; Li, C.; Fan, X.; et al. Robust Performance of a Novel Stool DNA Test of Methylated SDC2 for Colorectal Cancer Detection: A Multicenter Clinical Study. Clin. Epigenetics 2020, 12, 162. [Google Scholar] [CrossRef]
- Yun, P.; Kulaixijiang, K.; Pan, J.; Yang, L.; Wang, N.; Xu, Z.; Zhang, Y.; Cai, H.; Zhao, Z.Y.; Zhu, M.; et al. Early Colorectal Cancer Diagnosis: A Novel Methylated Stool DNA Model Enhanced the Diagnostic Efficiency. United Eur. Gastroenterol J. 2024, 13, 402–415. [Google Scholar] [CrossRef]
- Han, Y.D.; Oh, T.J.; Chung, T.H.; Jang, H.W.; Kim, Y.N.; An, S.; Kim, N.K. Early Detection of Colorectal Cancer Based on Presence of Methylated Syndecan-2 (SDC2) in Stool DNA. Clin. Epigenetics 2019, 11, 51. [Google Scholar] [CrossRef]
- Cao, Y.; Zhao, G.; Yuan, M.; Liu, X.; Ma, Y.; Cao, Y.; Miao, B.; Zhao, S.; Li, D.; Xiong, S.; et al. KCNQ5 and C9orf50 Methylation in Stool DNA for Early Detection of Colorectal Cancer. Front. Oncol. 2021, 10, 621295. [Google Scholar] [CrossRef] [PubMed]
- Long, L.; Sun, Q.; Yang, F.; Zhou, H.; Wang, Y.; Xiao, C.; He, Q.; Yi, B. Significance of SDC2 and NDRG4 Methylation in Stool for Colorectal Cancer Diagnosis. Clin. Biochem. 2024, 124, 110717. [Google Scholar] [CrossRef] [PubMed]
- Pakbaz, B.; Jabinin, R.; Soltani, N.; Ayatollahi, H.; Farzanehfar, M. Quantitative Study of Vimentin Gene Methylation in Stool Samples for Colorectal Cancer Screening. J. Adv. Pharm. Technol. Res. 2019, 10, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Lohsiriwat, V.; Mongkhonsupphawan, A.; Ovartchaiyapong, P. Diagnostic Accuracy of Multitarget Stool DNA Test for Colorectal Cancer Screening and Detecting in Thailand. Asian Pac. J. Cancer Prev. 2024, 25, 3661–3665. [Google Scholar] [CrossRef]
- Sun, M.; Liu, J.; Hu, H.; Guo, P.; Shan, Z.; Yang, H.; Wang, J.; Xiao, W.; Zhou, X. A Novel Panel of Stool-Based DNA Biomarkers for Early Screening of Colorectal Neoplasms in a Chinese Population. J. Cancer Res. Clin. Oncol. 2019, 145, 2423–2432. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, C.; Wang, S.; Xiang, Z.; Dou, R.; Lin, Z.; Zheng, J.; Xiong, B. Sdc2 and Tfpi2 Methylation in Stool Samples as an Integrated Biomarker for Early Detection of Colorectal Cancer. Cancer Manag. Res. 2021, 13, 3601–3617. [Google Scholar] [CrossRef]
- Dai, Y.; Li, H.; Wu, Q.; Wang, J.; Wang, K.; Fei, S.; Pei, B.; Song, L.; Chen, G.; Ma, Y.; et al. A Sensitive and Robust Plasma-Based DNA Methylation Panel for Early Detection of Target Gastrointestinal Cancers. Neoplasia 2023, 46, 100941. [Google Scholar] [CrossRef]
- Bagheri, H.; Mosallaei, M.; Bagherpour, B.; Khosravi, S.; Salehi, A.R.; Salehi, R. TFPI2 and NDRG4 Gene Promoter Methylation Analysis in Peripheral Blood Mononuclear Cells Are Novel Epigenetic Noninvasive Biomarkers for Colorectal Cancer Diagnosis. J. Gene Med. 2020, 22, e3189. [Google Scholar] [CrossRef]
- Luo, H.; Zhao, Q.; Wei, W.; Zheng, L.; Yi, S.; Li, G.; Wang, W.; Sheng, H.; Pu, H.; Mo, H.; et al. Circulating Tumor DNA Methylation Profiles Enable Early Diagnosis, Prognosis Prediction, and Screening for Colorectal Cancer. Sci. Transl. Med. 2020, 12, eaax7533. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Q.; Xu, L.; Wang, H.; Liu, X.; Li, S.; Hu, T.; Liu, Y.; Peng, Q.; Chen, Z.; et al. Sensitive Detection of Colorectal Cancer in Peripheral Blood by a Novel Methylation Assay. Clin. Epigenetics 2021, 13, 90. [Google Scholar] [CrossRef]
- Lin, W.H.; Xiao, J.; Ye, Z.Y.; Wei, D.L.; Zhai, X.H.; Xu, R.H.; Zeng, Z.L.; Luo, H.Y. Circulating Tumor DNA Methylation Marker MYO1-G for Diagnosis and Monitoring of Colorectal Cancer. Clin. Epigenetics 2021, 13, 232. [Google Scholar] [CrossRef]
- Gallardo-Gómez, M.; Rodríguez-Girondo, M.; Planell, N.; Moran, S.; Bujanda, L.; Etxart, A.; Castells, A.; Balaguer, F.; Jover, R.; Esteller, M.; et al. Serum Methylation of GALNT9, UPF3A, WARS, and LDB2 as Noninvasive Biomarkers for the Early Detection of Colorectal Cancer and Advanced Adenomas. Clin. Epigenetics 2023, 15, 157. [Google Scholar] [CrossRef]
- Shavali, M.; Moradi, A.; Tahmaseb, M.; Mohammadian, K.; Ganji, S.M. Circulating-Tumour DNA Methylation of HAND1 Gene: A Promising Biomarker in Early Detection of Colorectal Cancer. BMC Med. Genom. 2024, 17, 117. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.B.; dos Reis, M.B.; Matsushita, M.; dos Reis, M.T.; de Oliveira, M.A.; Reis, R.M.; Guimarães, D.P. Combined SEPT9 and BMP3 Methylation in Plasma for Colorectal Cancer Early Detection and Screening in a Brazilian Population. Cancer Med. 2023, 12, 15854–15867. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, Z.; Zhao, G.; Ma, Y.; Chen, Y.; Xue, Q.; Zheng, M.; Fei, S. Performance of a Methylight Assay for Methylated Sfrp2 Dna Detection in Colorectal Cancer Tissue and Serum. Int. J. Biol. Markers 2019, 34, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Young, G.P.; Symonds, E.L.; Nielsen, H.J.; Ferm, L.; Christensen, I.J.; Dekker, E.; van der Vlugt, M.; Mallant-Hent, R.C.; Boulter, N.; Yu, B.; et al. Evaluation of a Panel of Tumor-Specific Differentially-Methylated DNA Regions in IRF4, IKZF1 and BCAT1 for Blood-Based Detection of Colorectal Cancer. Clin. Epigenetics 2021, 13, 14. [Google Scholar] [CrossRef]
- Long, Z.; Gao, Y.; Han, Z.; Yuan, H.; Yu, Y.; Pei, B.; Jia, Y.; Ye, J.; Shi, Y.; Zhang, M.; et al. Discovery and Validation of Methylation Signatures in Circulating Cell-Free DNA for the Detection of Colorectal Cancer. Biomolecules 2024, 14, 996. [Google Scholar] [CrossRef]
- Zhu, D.; Li, J.; Zhang, W.; Wang, Y.; Wang, H.; Fei, R.; Ye, Q.; Peng, D.; Luan, J.; Xu, C.; et al. Highly Specific Multiplex DNA Methylation Detection for Liquid Biopsy of Colorectal Cancer. Clin. Chim. Acta 2025, 565, 120026. [Google Scholar] [CrossRef]
- Jensen, S.Ø.; Øgaard, N.; Ørntoft, M.B.W.; Rasmussen, M.H.; Bramsen, J.B.; Kristensen, H.; Mouritzen, P.; Madsen, M.R.; Madsen, A.H.; Sunesen, K.G.; et al. Novel DNA Methylation Biomarkers Show High Sensitivity and Specificity for Blood-Based Detection of Colorectal Cancer- A Clinical Biomarker Discovery and Validation Study. Clin. Epigenetics 2019, 11, 158. [Google Scholar] [CrossRef]
- Dastafkan, Z.; Rezvani, N.; Amini, S. Diagnostic Value of FOXF1 Gene Promoter-Methylated DNA in the Plasma Samples of Patients with Colorectal Cancer. Int. J. Biol. Markers 2023, 38, 194–202. [Google Scholar] [CrossRef]
- Yue, C.; Zhang, Y.; Wang, Y.; Zhang, Z.; Zhang, M.; Wang, H.; Chen, W.; Shang, Z.; Xin, Y.; Zhang, X.; et al. The Application Value of Syndecan-2 Gene Methylation for Colorectal Cancer Diagnosis: A Clinical Study and Meta-Analyses. Front. Med. 2022, 9, 753545. [Google Scholar] [CrossRef]
- Lotfi, E.; Kholghi, A.; Golab, F.; Mohammadi, A.; Barati, M. Circulating MiRNAs and LncRNAs Serve as Biomarkers for Early Colorectal Cancer Diagnosis. Pathol. Res. Pract. 2024, 255, 155187. [Google Scholar] [CrossRef]
- Sabry, D.; El-Deek, S.E.M.; Maher, M.; El-Baz, M.A.H.; El-Bader, H.M.; Amer, E.; Hassan, E.A.; Fathy, W.; El-Deek, H.E.M. Role of MiRNA-210, MiRNA-21 and MiRNA-126 as Diagnostic Biomarkers in Colorectal Carcinoma: Impact of HIF-1α-VEGF Signaling Pathway. Mol. Cell. Biochem. 2019, 454, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Herreros-Villanueva, M.; Duran-Sanchon, S.; Martín, A.C.; Pérez-Palacios, R.; Vila-Navarro, E.; Marcuello, M.; Diaz-Centeno, M.; Cubiella, J.; Soledad, M.; Bujanda, L.; et al. Plasma MicroRNA Signature Validation for Early Detection of Colorectal Cancer. Clin. Transl. Gastroenterol. 2019, 10, e00003. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Lin, J.J.; Yang, X.F.; Gou, D.M.; Fu, L.W.; Li, F.R.; Yu, X.F. A Panel of Three Plasma MicroRNAs for Colorectal Cancer Diagnosis. Cancer Epidemiol. 2019, 60, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Bader El Din, N.G.; Ibrahim, M.K.; El-Shenawy, R.; Salum, G.M.; Farouk, S.; Zayed, N.; Khairy, A.; El Awady, M. MicroRNAs Expression Profiling in Egyptian Colorectal Cancer Patients. IUBMB Life 2020, 72, 275–284. [Google Scholar] [CrossRef]
- Ghareib, A.F.; Mohamed, R.H.; Abd el-Fatah, A.R.; Saadawy, S.F. Assessment of Serum MicroRNA-21 Gene Expression for Diagnosis and Prognosis of Colorectal Cancer. J. Gastrointest. Cancer 2020, 51, 818–823. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, Z. Serum MiR-92a-1 Is a Novel Diagnostic Biomarker for Colorectal Cancer. J. Cell. Mol. Med. 2020, 24, 8363–8367. [Google Scholar] [CrossRef]
- Salah, M.; Shaheen, I.A.; El-Shanawany, P.; Saad, N.E.; Saad, R.; Guibaly, M.; Momen, N. Detection of MiR-1246, MiR-23a and MiR-451 in Sera of Colorectal Carcinoma Patients: A Case-Control Study in Cairo University Hospital. Afr. Health Sci. 2020, 20, 1283–1291. [Google Scholar] [CrossRef]
- Serum MicroRNA-18a, MicroRNA-21 and MicroRNA-92a as Diagnostic Markers in Colorectal Cancer Patients—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/32862588/ (accessed on 12 June 2025).
- Wang, X.; Li, Z.; Fu, J.; Xu, W.; Li, Z. Diagnostic Value and Prognostic Significance of LI-Cadherin and MiR-378e in Colorectal Cancer. Oncol. Lett. 2020, 20, 2456–2464. [Google Scholar] [CrossRef]
- Shi, Y.; Zhuang, Y.; Zhang, J.; Chen, M.; Wu, S. Four Circulating Exosomal MiRNAs as Novel Potential Biomarkers for the Early Diagnosis of Human Colorectal Cancer. Tissue Cell 2021, 70, 101499. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.Y.; Zhou, L.; Yin, T.F.; Zhou, Y.C.; Zhou, G.Y.J.; Wang, Q.Q.; Yao, S.K. Circulating MiR-627-5p and MiR-199a-5p Are Promising Diagnostic Biomarkers of Colorectal Neoplasia. World J. Clin. Cases 2022, 10, 5165–5184. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, H.A.; El Amin, H.A.; Ahmed, E.S.M.; Kenawy, A.G.; El-Ebidi, A.M.; Elnakeeb, I.; Kholef, E.F.M.; Elsewify, W.A.E. Role of MicroRNA-223 and MicroRNA-182 as Novel Biomarkers in Early Detection of Colorectal Cancer. Int. J. Gen. Med. 2022, 15, 3281–3291. [Google Scholar] [CrossRef]
- Pardini, B.; Ferrero, G.; Tarallo, S.; Gallo, G.; Francavilla, A.; Licheri, N.; Trompetto, M.; Clerico, G.; Senore, C.; Peyre, S.; et al. A Fecal MicroRNA Signature by Small RNA Sequencing Accurately Distinguishes Colorectal Cancers: Results From a Multicenter Study. Gastroenterology 2023, 165, 582–599.e8. [Google Scholar] [CrossRef]
- Liu, X.; Xu, X.; Pan, B.; He, B.; Chen, X.; Zeng, K.; Xu, M.; Pan, Y.; Sun, H.; Xu, T.; et al. Circulating MiR-1290 and MiR-320d as Novel Diagnostic Biomarkers of Human Colorectal Cancer. J. Cancer 2019, 10, 43–50. [Google Scholar] [CrossRef]
- Huang, G.; Wei, B.; Chen, Z.; Wang, J.; Zhao, L.; Peng, X.; Liu, K.; Lai, Y.; Ni, L. Identification of a Four-MicroRNA Panel in Serum as Promising Biomarker for Colorectal Carcinoma Detection. Biomark. Med. 2020, 14, 749–760. [Google Scholar] [CrossRef]
- Peng, X.; Wang, J.; Zhang, C.; Liu, K.; Zhao, L.; Chen, X.; Huang, G.; Lai, Y. A Three-MiRNA Panel in Serum as a Noninvasive Biomarker for Colorectal Cancer Detection. Int. J. Biol. Markers 2020, 35, 74–82. [Google Scholar] [CrossRef]
- Pan, Z.; Miao, L. Serum Microrna-592 Serves as a Novel Potential Biomarker for Early Diagnosis of Colorectal Cancer. Oncol. Lett. 2020, 20, 1119–1126. [Google Scholar] [CrossRef]
- Li, L.; Wang, A.; Cai, M.; Tong, M.; Chen, F.; Huang, L. Identification of Stool MiR-135b-5p as a Non-Invasive Diaognostic Biomarker in Later Tumor Stage of Colorectal Cancer. Life Sci. 2020, 260, 118417. [Google Scholar] [CrossRef]
- Nakamura, K.; Hernández, G.; Sharma, G.G.; Wada, Y.; Banwait, J.K.; González, N.; Perea, J.; Balaguer, F.; Takamaru, H.; Saito, Y.; et al. A Liquid Biopsy Signature for the Detection of Patients With Early-Onset Colorectal Cancer. Gastroenterology 2022, 163, 1242–1251. [Google Scholar] [CrossRef]
- Radwan, E.; Shaltout, A.S.; Mansor, S.G.; Shafik, E.A.; Abbas, W.A.; Shehata, M.R.; Ali, M. Evaluation of Circulating MicroRNAs-211 and 25 as Diagnostic Biomarkers of Colorectal Cancer. Mol. Biol. Rep. 2021, 48, 4601–4610. [Google Scholar] [CrossRef] [PubMed]
- Matboli, M.; Shafei, A.E.; Ali, M.A.; El-Din Ahmed, T.S.; Naser, M.; Abdel-Rahman, T.; Anber, N.; Ali, M. Role of Extracellular LncRNA-SNHG14/MiRNA-3940-5p/NAP12 MRNA in Colorectal Cancer. Arch. Physiol. Biochem. 2021, 127, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Shi, W.J.; Xie, Y.B.; Zhang, Z.G. Diagnostic Value of Four Serum Exosome MicroRNAs Panel for the Detection of Colorectal Cancer. World J. Gastrointest. Oncol. 2021, 13, 970–979. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Liu, D.; Guan, S.; Dong, M. Diagnostic Role of Circulating MiR-21 in Colorectal Cancer: A Update Meta-Analysis. Ann. Med. 2021, 53, 87–102. [Google Scholar] [CrossRef]
- Zhao, Y.; Du, T.; Du, L.; Li, P.; Li, J.; Duan, W.; Wang, Y.; Wang, C. Long Noncoding RNA LINC02418 Regulates MELK Expression by Acting as a CeRNA and May Serve as a Diagnostic Marker for Colorectal Cancer. Cell Death Dis. 2019, 10, 568. [Google Scholar] [CrossRef]
- Radwan, A.F.; Shaker, O.G.; El-boghdady, N.A.; Senousy, M.A. Association of Malat1 and Pvt1 Variants, Expression Profiles and Target Mirna-101 and Mirna-186 with Colorectal Cancer: Correlation with Epithelial-mesenchymal Transition. Int. J. Mol. Sci. 2021, 22, 6147. [Google Scholar] [CrossRef]
- Elabd, N.S.; Soliman, S.E.; Elhamouly, M.S.; Gohar, S.F.; Elgamal, A.; Alabassy, M.M.; Soliman, H.A.; Gadallah, A.A.; Elbahr, O.D.; Soliman, G.; et al. Long Non-Coding RNAs ASB16-AS1 and AFAP1-AS1: Diagnostic, Prognostic Impact and Survival Analysis in Colorectal Cancer. Appl. Clin. Genet. 2022, 15, 97–109. [Google Scholar] [CrossRef]
- Hu, Z.; Wu, J.; Tan, S.; Yang, L.; Huang, J.; Mo, C.; Chen, H.; Ruan, X.; Qin, X. Diagnostic Value of Long Noncoding RNA LINC01485 in Patients with Colorectal Cancer. Clin. Biochem. 2022, 102, 34–43. [Google Scholar] [CrossRef]
- Salman, I.T.; Abulsoud, A.I.; Abo-Elmatty, D.M.; Fawzy, A.; Mesbah, N.M.; Saleh, S.M. The Long Non-Coding RNA ZFAS1 Promotes Colorectal Cancer Progression via MiR200b/ZEB1 Axis. Pathol. Res. Pract. 2023, 247, 154567. [Google Scholar] [CrossRef]
- Liu, H.; Ye, D.; Chen, A.; Tan, D.; Zhang, W.; Jiang, W.; Wang, M.; Zhang, X. A Pilot Study of New Promising Non-Coding RNA Diagnostic Biomarkers for Early-Stage Colorectal Cancers. Clin. Chem. Lab. Med. 2019, 57, 1073–1083. [Google Scholar] [CrossRef]
- Li, N.; Li, J.; Mi, Q.; Xie, Y.; Li, P.; Wang, L.; Binang, H.; Wang, Q.; Wang, Y.; Chen, Y.; et al. Long Non-Coding RNA ADAMTS9-AS1 Suppresses Colorectal Cancer by Inhibiting the Wnt/β-Catenin Signalling Pathway and Is a Potential Diagnostic Biomarker. J. Cell. Mol. Med. 2020, 24, 11318–11329. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Han, X.; Zheng, Y.; Sui, J.; Bi, W. Long Non-Coding RNA NKILA Serves as a Biomarker in the Early Diagnosis and Prognosis of Patients with Colorectal Cancer. Oncol. Lett. 2019, 18, 2109–2117. [Google Scholar] [CrossRef] [PubMed]
- Gharib, E.; Nazemalhosseini-Mojarad, E.; Baghdar, K.; Nayeri, Z.; Sadeghi, H.; Rezasoltani, S.; Jamshidi-Fard, A.; Larki, P.; Sadeghi, A.; Hashemi, M.; et al. Identification of a Stool Long Non-Coding RNAs Panel as a Potential Biomarker for Early Detection of Colorectal Cancer. J. Clin. Lab. Anal. 2021, 35, e23601. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Zong, W.; Feng, W.; Chen, E.; Ma, S.; Yuan, J.; Wang, G.; Gu, X.; Shen, X.; Ju, S. Upregulated Linc01836 in Serum Promisingly Serving as a Diagnostic and Prognostic Biomarker for Colorectal Cancer. Front. Pharmacol. 2022, 13, 840391. [Google Scholar] [CrossRef]
- Li, Z.; Wang, D.; Zhang, W.; Shi, H.; Zhu, M. Novel PBMC LncRNA Signatures as Diagnostic Biomarkers for Colorectal Cancer. Pathol. Res. Pract. 2024, 253, 154985. [Google Scholar] [CrossRef]
- Shen, X.; Xue, Y.; Cong, H.; Wang, X.; Fan, Z.; Cui, X.; Ju, S. Circulating LncRNA DANCR as a Potential Auxillary Biomarker for the Diagnosis and Prognostic Prediction of Colorectal Cancer. Biosci. Rep. 2020, 40, BSR20191481. [Google Scholar] [CrossRef]
- Wang, W.; Xie, Y.; Chen, F.; Liu, X.; Zhong, L.L.; Wang, H.Q.; Li, Q.C. LncRNA MEG3 Acts a Biomarker and Regulates Cell Functions by Targeting ADAR1 in Colorectal Cancer. World J. Gastroenterol. 2019, 25, 3972–3984. [Google Scholar] [CrossRef]
- Abedini, P.; Fattahi, A.; Agah, S.; Talebi, A.; Beygi, A.H.; Amini, S.M.; Mirzaei, A.; Akbari, A. Expression Analysis of Circulating Plasma Long Noncoding RNAs in Colorectal Cancer: The Relevance of LncRNAs ATB and CCAT1 as Potential Clinical Hallmarks. J. Cell. Physiol. 2019, 234, 22028–22033. [Google Scholar] [CrossRef]
- Xie, Y.; Li, J.; Li, P.; Li, N.; Zhang, Y.; Binang, H.; Zhao, Y.; Duan, W.; Chen, Y.; Wang, Y.; et al. RNA-Seq Profiling of Serum Exosomal Circular RNAs Reveals Circ-PNN as a Potential Biomarker for Human Colorectal Cancer. Front. Oncol. 2020, 10, 982. [Google Scholar] [CrossRef]
- Lin, J.; Cai, D.; Li, W.; Yu, T.; Mao, H.; Jiang, S.; Xiao, B. Plasma Circular RNA Panel Acts as a Novel Diagnostic Biomarker for Colorectal Cancer. Clin. Biochem. 2019, 74, 60–68. [Google Scholar] [CrossRef]
- Zheng, R.; Zhang, K.; Tan, S.; Gao, F.; Zhang, Y.; Xu, W.; Wang, H.; Gu, D.; Zhu, L.; Li, S.; et al. Exosomal CircLPAR1 Functions in Colorectal Cancer Diagnosis and Tumorigenesis through Suppressing BRD4 via METTL3–EIF3h Interaction. Mol. Cancer 2022, 21, 49. [Google Scholar] [CrossRef]
- Jiang, H.; Yu, Q.; Chen, X.; Zhang, C.; Shen, J.; Shen, M.; Yang, Y.; Wang, B.; Pan, B.; Guo, W. Role of Blood MSEPT9 in Evaluating Tumor Burden and Disease Monitoring in Colorectal Cancer Patients. J. Clin. Lab. Anal. 2021, 35, e24030. [Google Scholar] [CrossRef] [PubMed]
- Boughanem, H.; Martin-Nuñez, G.M.; Torres, E.; Arranz-Salas, I.; Alcaide, J.; Morcillo, S.; Tinahones, F.J.; Crujeiras, A.B.; Macias-Gonzalez, M. Impact of Tumor LINE-1 Methylation Level and Neoadjuvant Treatment and Its Association with Colorectal Cancer Survival. J. Pers. Med. 2020, 10, 219. [Google Scholar] [CrossRef] [PubMed]
- Jamai, D.; Gargouri, R.; Selmi, B.; Khabir, A. ERCC1 and MGMT Methylation as a Predictive Marker of Relapse and FOLFOX Response in Colorectal Cancer Patients from South Tunisia. Genes 2023, 14, 1467. [Google Scholar] [CrossRef] [PubMed]
- Hagiwara, T.; Sugimoto, K.; Momose, H.; Irie, T.; Honjo, K.; Okazawa, Y.; Kawai, M.; Kawano, S.; Munakata, S.; Takahashi, M.; et al. CHFR-Promoter-Methylation Status Is Predictive of Response to Irinotecan-Based Systemic Chemotherapy in Advanced Colorectal Cancer. Anticancer. Res. 2022, 42, 697–707. [Google Scholar] [CrossRef]
- Horak, J.; Dolnikova, A.; Cumaogullari, O.; Cumova, A.; Navvabi, N.; Vodickova, L.; Levy, M.; Schneiderova, M.; Liska, V.; Andera, L.; et al. MiR-140 Leads to MRE11 Downregulation and Ameliorates Oxaliplatin Treatment and Therapy Response in Colorectal Cancer Patients. Front. Oncol. 2022, 12, 959407. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, Y.; Zhou, Y.; Wang, J.; Jiang, P.; Xue, L. MiRNA-31 Increases Radiosensitivity through Targeting STK40 in Colorectal Cancer Cells. Asia-Pac. J. Clin. Oncol. 2022, 18, 267–278. [Google Scholar] [CrossRef]
- Han, J.; Sun, W.; Liu, R.; Zhou, Z.; Zhang, H.; Chen, X.; Ba, Y. Plasma Exosomal MiRNA Expression Profile as Oxaliplatin-Based Chemoresistant Biomarkers in Colorectal Adenocarcinoma. Front. Oncol. 2020, 10, 1495. [Google Scholar] [CrossRef]
- Hao, Y.J.; Yang, C.Y.; Chen, M.H.; Chang, L.W.; Lin, C.P.; Lo, L.C.; Huang, S.C.; Lyu, Y.Y.; Jiang, J.K.; Tseng, F.G. Potential Values of Circulating MicroRNA-21 to Predict Early Recurrence in Patients with Colorectal Cancer after Treatments. J. Clin. Med. 2022, 11, 2400. [Google Scholar] [CrossRef]
- Shibamoto, J.; Arita, T.; Konishi, H.; Kataoka, S.; Furuke, H.; Takaki, W.; Kiuchi, J.; Shimizu, H.; Yamamoto, Y.; Komatsu, S.; et al. Roles of MiR-4442 in Colorectal Cancer: Predicting Early Recurrence and Regulating Epithelial-Mesenchymal Transition. Genes 2023, 14, 1414. [Google Scholar] [CrossRef]
- Fan, C.; Yuan, Q.; Liu, G.; Zhang, Y.; Yan, M.; Sun, Q.; Zhu, C. Long Non-Coding RNA MALAT1 Regulates Oxaliplatin-Resistance via MiR-324-3p/ADAM17 Axis in Colorectal Cancer Cells. Cancer Cell Int. 2020, 20, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Chen, K.; Chen, P.; Liu, Y.; Wu, Y.; Huang, J. Downregulation of LncRNA SNHG7 Sensitizes Colorectal Cancer Cells to Resist Anlotinib by Regulating MiR-181a-5p/GATA6. Gastroenterol. Res. Pract. 2023, 2023, 6973723. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Li, M.; Weng, J.; Li, S.; Guo, T.; Guo, Y.; Xu, Y. LncRNA GAS6-AS1 Contributes to 5-Fluorouracil Resistance in Colorectal Cancer by Facilitating the Binding of PCBP1 with MCM3. Cancer Lett. 2024, 589, 216828. [Google Scholar] [CrossRef] [PubMed]
- Constâncio, V.; Nunes, S.P.; Henrique, R.; Jerónimo, C. DNA Methylation-Based Testing in Liquid Biopsies as Detection and Prognostic Biomarkers for the Four Major Cancer Types. Cells 2020, 9, 624. [Google Scholar] [CrossRef]
- Li, W.; Guo, L.; Tang, W.; Ma, Y.; Wang, X.; Shao, Y.; Zhao, H.; Ying, J. Identification of DNA Methylation Biomarkers for Risk of Liver Metastasis in Early-Stage Colorectal Cancer. Clin. Epigenetics 2021, 13, 126. [Google Scholar] [CrossRef]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Tissue-Based Map of the Human Proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef]
- Sawaki, K.; Kanda, M.; Miwa, T.; Umeda, S.; Tanaka, H.; Tanaka, C.; Kobayashi, D.; Suenaga, M.; Hattori, N.; Hayashi, M.; et al. Troponin I2 as a Specific Biomarker for Prediction of Peritoneal Metastasis in Gastric Cancer. Ann. Surg. Oncol. 2018, 25, 2083–2090. [Google Scholar] [CrossRef]
- Panda, S.; Setia, M.; Kaur, N.; Shepal, V.; Arora, V.; Singh, D.K.; Mondal, A.; Teli, A.; Tathode, M.; Gajula, R.; et al. Noncoding RNA Ginir Functions as an Oncogene by Associating with Centrosomal Proteins. PLoS Biol. 2018, 16, e2004204. [Google Scholar] [CrossRef]
- Chung, H.H.; Kuo, C.C.; Hsiao, C.W.; Chen, C.Y.; Hu, J.M.; Hsu, C.H.; Chou, Y.C.; Lin, Y.W.; Shih, Y.L. A Novel Prognostic DNA Methylation Panel for Colorectal Cancer. Int. J. Mol. Sci. 2019, 20, 4672. [Google Scholar] [CrossRef]
- Ali, A.; Nimisha; Sharma, A.K.; Mishra, P.K.; Saluja, S.S. Clinical Significance of SPOP and APC Gene Alterations in Colorectal Cancer in Indian Population. Mol. Genet. Genomics 2023, 298, 1087–1105. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, P.; Pandey, A.; Gosipatala, S.B. IGFBP3 Gene Promoter Methylation Analysis and Its Association with Clinicopathological Characteristics of Colorectal Carcinoma. Mol. Biol. Rep. 2020, 47, 6919–6927. [Google Scholar] [CrossRef]
- Hu, F.; Chen, L.; Bi, M.Y.; Zheng, L.; He, J.X.; Huang, Y.Z.; Zhang, Y.; Zhang, X.L.; Guo, Q.; Luo, Y.; et al. Potential of RASSF1A Promoter Methylation as a Biomarker for Colorectal Cancer: Meta-Analysis and TCGA Analysis. Pathol. Res. Pract. 2020, 216, 153009. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Gosipatala, S.B.; Pandey, A.; Singh, P. Prognostic Relevance of SFRP1 Gene Promoter Methylation in Colorectal Carcinoma. Asian Pac. J. Cancer Prev. 2019, 20, 1571–1577. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Fu, J.; Bi, H.; Ge, A.; Xia, T.; Liu, Y.; Sun, H.; Li, D.; Zhao, Y. DNA Methylation of SFRP1, SFRP2, and WIF1 and Prognosis of Postoperative Colorectal Cancer Patients. BMC Cancer 2019, 19, 1212. [Google Scholar] [CrossRef] [PubMed]
- Falzone, L.; Scola, L.; Zanghì, A.; Biondi, A.; Di Cataldo, A.; Libra, M.; Candido, S. Integrated Analysis of Colorectal Cancer MicroRNA Datasets: Identification of MicroRNAs Associated with Tumor Development. Aging 2018, 10, 1000–1014. [Google Scholar] [CrossRef]
- Calvo-López, T.; Paz-Cabezas, M.; Llovet, P.; Ibañez, M.D.; Sastre, J.; Alonso-Orduña, V.; Viéitez, J.M.; Yubero, A.; Vera, R.; Asensio-Martínez, E.; et al. Association of miR-21 and miR-335 to Microsatellite Instability and Prognosis in Stage III Colorectal Cancer. Cancer Biomark. 2022, 34, 201–210. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, W.S.; Zhang, X.Y.; Tong, H.X.; Yang, H.; Liu, W.F.; Fan, J.; Zhou, J.; Hu, J. Low Expression of Exosomal miR-150 Predicts Poor Prognosis in Colorectal Cancer Patients after Surgical Resections. Carcinogenesis 2022, 43, 930–940. [Google Scholar] [CrossRef]
- Sanjabi, F.; Nekouian, R.; Akbari, A.; Mirzaei, R.; Fattahi, A. Plasma miR-183-5p in Colorectal Cancer Patients as Potential Predictive Lymph Node Metastasis Marker. J. Cancer Res. Ther. 2022, 18, 921–926. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, D. miR-1253, a Novel Tumor Suppressor Gene in Colon Cancer, Is Associated with Poor Patients Prognosis. Clin. Exp. Med. 2021, 21, 563–571. [Google Scholar] [CrossRef]
- Zhang, H.; Shen, Z.; Zhou, Y.; Zhang, Z.; Wang, Q.; Zhang, M.; Jiang, K.; Wang, S.; Ye, Y.; Wang, B. Downregulation of miR-654-3p in Colorectal Cancer Indicates Poor Prognosis and Promotes Cell Proliferation and Invasion by Targeting SRC. Front. Genet. 2020, 11, 577948. [Google Scholar] [CrossRef]
- Brînzan, C.; Aşchie, M.; Cozaru, G.; Dumitru, E.; Mitroi, A. The Diagnostic Value of miR-92a, -143, and -145 Expression Levels in Patients with Colorectal Adenocarcinoma from Romania. Medicine 2020, 99, e21895. [Google Scholar] [CrossRef]
- Lin, P.; Qin, X.; Yi, C.; Jiang, M.; Yi, L.; Liang, Y. Clinical Value and Regulatory Mechanism of miR-767-5p in Colorectal Cancer. Folia Biol. 2025, 71, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, S.; Sotiropoulou, C.D.; Vassiliu, P.; Danias, N.; Arkadopoulos, N.; Sideris, D.C. MicroRNA-675-5p Overexpression Is an Independent Prognostic Molecular Biomarker of Short-Term Relapse and Poor Overall Survival in Colorectal Cancer. Int. J. Mol. Sci. 2023, 24, 9990. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, T.; Jaygal, G.; Woo, J.; Kim, C.J.; Baek, M.J.; Jeong, D. Downregulation of miR-9 Correlates with Poor Prognosis in Colorectal Cancer. Pathol. Res. Pract. 2020, 216, 153044. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.; Chen, Y.; Xu, D. Circulating miR-449a Predicts Survival Outcome for Colorectal Cancer Following Curative Resection: An Observational Study. Medicine 2021, 100, e25022. [Google Scholar] [CrossRef]
- Kubota, N.; Taniguchi, F.; Nyuya, A.; Umeda, Y.; Mori, Y.; Fujiwara, T.; Tanioka, H.; Tsuruta, A.; Yamaguchi, Y.; Nagasaka, T. Upregulation of microRNA-31 Is Associated with Poor Prognosis in Patients with Advanced Colorectal Cancer. Oncol. Lett. 2020, 19, 2685–2694. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, H.; Ning, S.; Wei, C.; Li, J.; Wei, W.; Zhang, L. The High Ratio of the Plasma miR-96/miR-99b Correlated with Poor Prognosis in Patients with Metastatic Colorectal Cancer. Front. Mol. Biosci. 2022, 8, 799060. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, X.; Li, Q.; Jin, Y.; Liu, X.; Wang, F.; Mao, Y.; Hua, D. Integrated Analysis Identifies Low MicroRNA-215 Expression as Associated with a Poor Prognosis of Patients with Colorectal Cancer through the IKβ-α Signaling Pathway. Transl. Cancer Res. 2020, 9, 5233–5244. [Google Scholar] [CrossRef]
- Dong, L.; Liu, D.; Jing, D.; Xu, H.; Zhang, C.; Qi, D.; Liu, D. LncRNA ARST is a Novel Prognostic and Diagnostic Biomarker for Colorectal Cancer. Cancer Manag. Res. 2022, 14, 19–24. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.; Zhang, C.; Sun, Y. The Diagnostic and Prognostic Value of Serum lncRNA NEAT1 in Colorectal Cancer. Cancer Manag. Res. 2020, 12, 10985–10992. [Google Scholar] [CrossRef]
- Ye, G.; Chen, Y. LncRNA FAM30A Predicts Adverse Prognosis and Regulates Cellular Processes in Colorectal Cancer via Modulating miR-21-3p. Turk. J. Gastroenterol. 2024, 35, 532–538. [Google Scholar]
- Xu, M.; Guo, X.; Wang, R.D.; Zhang, Z.H.; Jia, Y.M.; Sun, X. Long Non-Coding RNA HANR as a Biomarker for the Diagnosis and Prognosis of Colorectal Cancer. Medicine 2020, 99, e19066. [Google Scholar] [CrossRef]
- Chu, F.; Cui, Y.; Li, K.; Xiao, X.; Zhang, L.; Zhang, L.; Wang, L.; Gao, L.; Yin, N.; Wu, H. Long Noncoding RNA THOR is Highly Expressed in Colorectal Cancer and Predicts a Poor Prognosis. Future Oncol. 2020, 16, 1911–1920. [Google Scholar] [CrossRef]
- Zhou, D.; Liao, Z.; Chen, X.; Fan, Y.; Zuo, H. LncRNA MHENCR Predicts Poor Outcomes in Patients with Colorectal Carcinoma and Modulates Tumorigenesis by Impairing MiR-532-3p. Tohoku J. Exp. Med. 2022, 259, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Gan, C.; Xiao, Y.; Liu, R.; Zhang, L.; Lan, T.; Ye, Y.; Tong, H.; Huang, Z.; Tang, C.; et al. High Expression of Long Non-Coding RNA Linc-A Associates with Poor Survival in Patients with Colorectal Cancer. Mol. Biol. Rep. 2020, 47, 7497–7504. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Gao, Y.; Yu, Z.; Su, H. Upregulated Long Intergenic Non-Protein Coding RNA 1094 (LINC01094) is Linked to Poor Prognosis and Alteration of Cell Function in Colorectal Cancer. Bioengineered 2022, 13, 8526–8537. [Google Scholar] [CrossRef] [PubMed]
Studied Biomarker(s) | Biomarker(s) Change | Study Material | Diagnostic Performance | Study Group [n] | Country/Nationality | Reference | |
---|---|---|---|---|---|---|---|
Sensitivity (SN) Specificity (SP) | AUC | ||||||
Stool-Based | |||||||
COL4A2, COL4A1, TLX2, ITGA4 | hypermethylation | Stool | SN = 92.5%; SP = 91.6% (COL4A2) SN = 88.8%; SP = 88% (COL4A1) SN = 88.8%; SP = 96.4% (TLX2) SN = 82.5%; SP = 96.4% (ITGA4) SN = 91.3%; SP = 97.6% (COL4A2 and TLX2) | 0.97 (COL4A2) 0.97 (COL4A1) 0.96 (TLX2) 0.95 (ITGA4) 0.98 (COL4A2 and TLX2) | 240 (80 CRC, 77 A, 83 HC) (validation set) | China | [63] |
COL4A2, TLX2 | hypermethylation | Stool | SN = 91.3%; SP = 97.6% | 0.98 | 163 (80 CRC, 83 HC) | China | [63] |
SDC2, SEPT9, VIM | hypermethylation | Stool | SN = 91.4%; SP = 100% | 0.99 | 181 (83 CRC, 98 HC) | China | [64] |
cg13096260 (SDC2 promoter region) cg12993163 (SHOX2 gene body region) combined | hypermethylation | Stool | SN = 92.6%; SP = 90% (CRC vs. HC) SN = 93.6%; SP = 90% (CRC (I–II) vs. HC) SN = 66.7%; SP = 90% (AA vs. HC) | 0.94 (CRC vs. HC) 0.97 (CRC (I–II) vs. HC) 0.87 (AA vs. HC) | 109 (54 CRC, 15 AA, 40 HC) in the validation set | China | [65] |
SEPT9, SDC2 (ColoDefense) | hypermethylation | Stool | SN = 92.3%; SP = 93.2% | 0.98 | 92 (39 CRC, 59 HC)—validation set | China | [66] |
SEPT9, SDC2, SFRP2 | methylation status analysis | Stool | SN = 94.1%; SP = 89.2% | 0.94 | 1142 (180 CRC, 60 AA, 902 HC) | China | [67] |
SDC2 | hypermethylation | Stool | SN = 83.8% (CRC), 87% (CRC I–II); SP = 98% | 0.95 (CRC detection) | 1110 (359 CRC, 38 AA, 201 NACN, 512 HC) | China | [68] |
PRDM12, FOXE1, SDC2 | hypermethylation | Stool | SN = 92.8%; SP = 97.2% (CRC vs. HC); SN = 91.9%; SP = 95.2% (CRC, ADD vs. HC) | 0.95 (CRC vs. HC) 0.95(CRC, ADD vs. HC) | 800 (537 HC, 67 non-ADD, 10 ADD, 138 CRC, 47 IFD) | China | [69] |
SDC2 | hypermethylation | Stool | SN = 90.2% (CRC vs. HC) SN = 89.1% (CRC 0–II vs. HC); SP = 90.2% | 0.90 (CRC vs. HC) | 585 (245 CRC, 44 P, 245 HC) | South Korea | [70] |
KCNQ5, C9orf50 | hypermethylation | Stool | SN = 88.4%; SP = 89.4% (both) SN = 77.3%; SP = 91.5% (KCNQ5) SN = 85.9%; SP = 95% (c9ORF50) | 0.89 (both) 0.85 (KCNQ5) 0.90 (C9orf50) | 460 (20 AA, 198 CRC, 141 HC, 101 SP) | China | [71] |
NDRG4, SDC2 | hypermethylation | Stool | SN = 85.5%; SP = 84.6% | 0.85 | 378 (138 CRC, 27 AA, 35 P, 150 OID, 28 HC) | China | [72] |
VIM | hypermethylation | Stool | SN = 60%; SP = 100% | N/a | 79 (49 CRC, 30 HC) | Iran | [73] |
SDC2, ADHFE1, PPP2R5C | methylation status analysis | Stool | SN = 91.5%; SP = 90.3% | N/a | 274 (47 CRC, 17 AA, 49 A, 161 HC) | Thailand | [74] |
SDC2, SFRP2, KRAS (mutation), hemoglobin | hypermethylation (SDC2, SFRP2) | Stool | SN = 91.4%; SP = 86.1% | N/a | 233 (105 HC, 102 CRC, 20 CA, 6 HP) | China | [75] |
SDC2, TFPI2 | hypermethylation | Stool | SN = 93.4%; SP = 94.3% | N/a | 114 (61 CRC, 53 HC) | China | [76] |
Blood-Based | |||||||
R16, F9, F8, R13, QKI, NDRG4 | hypermethylation | Plasma | SN = 67.3%; SP = 98.2% | N/a | 263 (114 CRC, 47 AA, 45 BP, 57 HC) | China | [69] |
KCNQ5, C9orf50, CLIP4, ELMO1, ZNF582, TFPI2 | methylation status analysis | Plasma | SN = 91.7%; SP = 86.7% | 0.96 | 197 (82 GIC, 75 HC, 11 BT, 29 P) | China | [77] |
TFP2019I2, NDRG4 | hypermethylation | Peripheral blood | SN = 88%; SP = 92% (TFPI2) SN = 86%; SP = 92% (NDRG4) | 0.94 (TFPI2) 0.95 (NDRG4) | 100 (50 CRC, 50 HC) | Iran | [78] |
CpG cg10673833 | methylation status analysis | Plasma | SN = 89.7%; 86.8% | 0.90 | 1493 (1021 HC, 29 CRC, 78 APL, 114 NAA, 250 BL) | China | [79] |
C9orf50, KCNJ12, ZNF132, TWIST 1 | methylation status analysis | Plasma | SN = 80%; SP = 97.1% (validation set) | 0.91 | 67 (32 HC, 35 CRC) (validation set) | China | [80] |
MYO1-G | hypermethylation | Blood | SN = 84.3%, SP = 94.5% (CRC vs. HC) | 0.94 | 673 (272 CRC, 402 HC) | China | [81] |
GALNT9, UPF3A | hypermethylation (GALNT9), hypomethylation (UPF3A) | Serum | SN = 78.8%; SP = 100% (CRC, AA vs. HC) | 0.90 | 105 (15 NCF, 13 BEN, 11 NAA, 23 D-AA, 19 P-AA, 24 CRC) | Spain | [82] |
HAND1, SEPT9 | hypermethylation | Plasma | SN = 93.3%; SP = 80% (HAND1) SN = 66.7%; SP = 86.7% (SEPT9) | 0.85 (HAND1) 0.74 (SEPT9) | 45 (30 CRC, 15 HC) | Iran | [83] |
SEPT9, BMP3 | methylation status analysis | Plasma | SN = 80%; SP = 81% | 0.85 | 262 (38 CRC, 46 AA, 119 NAA, 3 SSL, 13 HP, 43 HC) | Brazil | [84] |
SFRP2 (Methyllight) | hypermethylation | Serum | SN = 69.4%, 87.3% | 0.82 | 117 (62 CRC, 55 HC) | China | [85] |
IRF4, IKZF1, BCAT1 | hypermethylation | Plasma | SN = 73.9%; SP = 90.1% (CRC vs. HC) | 0.82 | 1620 (184 CRC, 616 A, 820 HC) | Australian, Denmark, The Netherlands, Russia | [86] |
DAB1, PPP2R5C, FAM19A5 (cfDNA) | hypermethylation | Peripheral blood | SN = 64.2%; SP = 78.4% | 0.76 | 169 (95 CRC, 74 HC) | China | [87] |
C9orf50, KCNQ5, CLIP4 (Trimeth) | hypermethylation | Plasma | SN = 85%; SP = 99% | N/a | 234 (143 CRC, 91 HC) | Denmark | [89] |
FOXF1 promotor | hypermethylation | Plasma | SN = 78%; SP = 89.5% | N/a | 100 (50 CRC, 50 HC) | Iran | [90] |
Studied Biomarker(s) | Biomarker(s) Change | Study Material | Diagnostic Performance | Study Group | Country/Nationality | Reference | |
---|---|---|---|---|---|---|---|
Sensitivity (SN) Specificity (SP) | AUC | ||||||
miRNA | |||||||
miR-129, miR-410, miR-211, miR-139, miR-197 | Upregulated: miR-410, miR-211, miR-139, miR-197 Downregulated: miR-1298 | Serum | SN = 100% SP = 100% (miR-211); SN = 100%; SP = 100%(miR-197) SN = 70%; SP = 60% (miR-139); SN = 80%, SP = 60% (miR-410) SN = 73%, SP = 73% (miR-129) | 1.00 (miR-211), 1.00 (miR-197), 0.73 (miR-139), 0.72 (miR-410) 0.73 (miR-129) | 60 (30 CRC, 30 HC) | Iran | [92] |
miR-21, miR-210 | Upregulated | Serum | SN = 91.4%; SP = 95% (miR-21) SN = 88.6%; SP = 90.1% (miR-210) | 0.93 (miR-210) 0.97 (miR-21) | 187 (35 CRC, 51 A, 101 HC) | Egypt | [93] |
miR-19b, miR-19a, miR-15b, miR-29a, miR-335, miR-18a | Upregulated | Plasma | SN = 85%; SP = 90% | 0.92 | 297 (100 HC, 101 AA, 96 CRC) | Spain | [94] |
miR-144-3p, miR-425-5p, miR-1260b | Upregulated: miR-425-5p Downregulated: miR-144-3p, miR-1260b | Plasma | SN = 93.8%; SP = 91.3% | 0.95 | 115 (48 CRC, 47 HC, 20 NC) | China | [95] |
miR-21, miR-26a | Upregulated | Serum | SN = 91.8%; SP = 91.7% | 0.95 | 129 (84 CRC, 45 HC) | Egypt | [96] |
miR-21 | Upregulated | Serum | SN = 95.8%; SP = 91.7% | 0.94 | 96 (48 CRC, 48 HC) | Egypt | [97] |
miR-92a-1 | Upregulated | Serum | SN = 81.8%; SP = 95.6% | 0.91 | 216 (148 CRC, 68 HC) | China | [98] |
miR-1246, miR-451 | Upregulated: miR-1246 Downregulated: miR-451 | Serum | SN = 100%; SP = 80% (miR-1246) SN = 73%; SP = 80% (miR-451) | 0.92 (miR-1246) 0.76 (miR-451) | 67 (37 CRC, 30 HC) | Egypt | [99] |
miR-18a, miR-21, miR-92a | Upregulated | Serum | SN = 86%; SP = 90% (combined) SN = 84%; SP = 84% (miR-18a) SN = 84%; SP = 90% (miR-21) SN = 66%; SP = 68% (miR-92-a) | N/a (combined) 0.91 (miR-18a) 0.92 (miR-21) 0.67 (miR-92-a) | 100 (50 CRC, 50 HC) | Egypt | [100] |
miR-378e | Upregulated | Serum | SN = 89%; SP = 80% | 0.93 | 200 (110 HC, 90 HC) | China | [101] |
miR-126, miR-1290, miR-23a, miR-940 | Upregulated | Serum | SN = 86.6%; SP = 77.1% (miR-126) SN = 83.3%; SP = 85.7% (miR-1290) SN = 89.9%; SP = 74.3% (miR-23a) SN = 90%; SP = 71.4% (miR-940) | 0.94 (miR-126) 0.92 (miR-1290) 0.89 (miR-23a) 0.88 (miR-940) | 135 (100 CRC, 35 HC) | China | [102] |
miR-627-5p, miR-199a-5p | Upregulated | Serum | SN = 87%; SP = 100% (miR-627-5p) SN = 93%; SP = 70% (miR-199a-5p) | 0.97 (miR-627-5p) 0.90 (miR-199a-5p) | 150 (60 CRC, 60 AA, 30 HC) | Japan | [103] |
miR-223, miR-182 | Upregulated | Serum | SN = 97.1%; SP = 96.7% (miR-223) SN = 98%; SP = 96% (miR-182) | 0.96 (miR-223) 0.95 (miR-182) | 65 (35 CRC, 30 HC) | Egypt | [104] |
miR-149-3p, miR-607-5p, miR-1246, miR-4488, miR-677-5p | Upregulated: miR-4488, miR-149-3p, miR-1246 Downregulated: miR-607-5p, miR-6777-5p | Stool | SN = 90%; SP = 88% (CRC vs. HC) SN = 82%; SP = 91% (CRC (I–II) vs. HC) (validation cohort) | 0.96 (CRC vs. HC) 0.95 (CRC (I–II) vs. HC) (validation cohort) | 221 (141 CRC, 80 HC) | Czech Republic | [105] |
miR-1290, miR-320d | Upregulated: miR-1290 Downregulated: miR-320d | Plasma | SN = 76.7%; SP = 90.2% (miR-1290) SN = 88.8%; SP = 71.7% (miR-320d) | 0.88 (miR-1290) 0.81 (miR-320d) | 160 (80 CRC, 30 HC, 50 A) | China | [106] |
miR-203a-3p, miR-145-5p. miR-375-3p, miR-200c-3p | Upregulated: miR-203a-3p, miR-145-3p Downregulated: miR-200c-3p, miR-375-3p | Serum | SN = 81.3%; SP = 73.3% | 0.89 | 160 (80 HC, 80 CRC) (validation set) | China | [107] |
miR-30e-3p, miR-146a-5p, miR-148a-3p | Upregulated: miR-30e-3p, miR-146a-5p Downregulated: miR-148a-3p | Serum | SN = 80%; SP = 78.7% | 0.88 | 282 (137 CRC, 145 HC) | China | [108] |
miR-592 | Upregulated | Serum | SN = 82.8%; SP = 78% (CRC vs. HC) SN = 78.6%; SP = 80% (CRC (I–II) vs. HC) | 0.84 (CRC vs. HC) 0.80 (CRC (I–II) vs. HC) | 184 (50 HC, 134 CRC) (validation set) | China | [109] |
miR-135b-5p | Upregulated | Stool | SN = 96.5%; SP = 74.1% | 0.87 | 106 (77 CRC, 29 HC) | China | [110] |
miR-193-5p, miR-210, miR-513a-5p, miR-628-3p | Upregulated | Plasma | SN = 90%; SP = 80% (Japan-training cohort) SN = 82%; SP = 86% (Spain-validation cohort) | 0.88 (Japan-training cohort) 0.88 (Spain-validation cohort) | 117 training cohort (72 EOCRC, 45 HC) 142 validation cohort (77 EOCR, 65 HC) | Japan, Spain | [111] |
miR-92a, miR-211, miR-25 | Upregulated | Plasma | SN = 71%; SP = 67% (miR-92a) SN = 71%; SP = 92% (miR-211) SN = 75%; SP = 85% (miR-25) | 0.77 (miR-92a) 0.79 (miR-211) 0.81 (miR-25) | 84 (44 CRC, 40 HC) | Egypt | [112] |
hsa-miR-3940-5p | Downregulated | Serum | SN = 93.5%; SP = 82.4% | N/a | 130 (20 HC, 70 CRC, 40 BCRC) | Egypt | [113] |
miR-15b, miR-21, miR-31 | Upregulated | Serum | SN = 95.1%; SP = 94.4% (CRC vs. HC) SN = 85.2%, SP = 82.1% (CA vs. CRC) | N/a | 238 (81 CRC, 67 CA, 90 HC) (validation set) | China | [114] |
LncRNA | |||||||
SNHG14 | Upregulated | Serum | SN = 98.5%; SP = 90.8% | 0.95 | 130 (70 CRC, 40 BCRC, 20 HC) | Egypt | [113] |
Exosomal LINC02418 | Upregulated | Plasma | SN = 95.2%; SP = 66.4% | 0.90 | 250 (125 CRC, 125 HC) | China | [116] |
MALAT1, PVT1 | Upregulated | Serum | SN = 82%, SP = 88% (MALAT1) SN = 90%; SP = 70% (PVT1) | 0.91 (MALAT1) 0.85 (PVT1) | 280 (140 CRC, 40 AP, 100 HC) | Egypt | [117] |
ASB16-ASI, AFAPI-ASI | Upregulated | Plasma | SN = 91.5%; SP = 88% (CRC vs. HC), SN = 88.2%; SP = 62% (early CRC vs. HC) (LncRNA.ASB16-ASI), SN = 87.2%; SP = 84% (CRC vs. HC), SN = 70.6%; SP = 84% (early CRC vs. HC) (LncRNA.AFAPI-ASI) | 0.93 (CRC vs. HC), 0.95 (early CRC vs. HC) (LncRNA.ASB16-ASI), 0.92 (CRC vs. HC), 0.93 (early CRC vs. HC) (LncRNA.AFAPI-ASI) | 146 (47 CRC-including 17 patients with early-stage CRC, 49 BL, 50 HC) | Egypt | [118] |
LINC01485 | Upregulated | Whole blood | SN = 98.3; SP = 84% | 0.96 | 85 (60 CRC, 25 HC) | China | [119] |
ZFAS, miRNA-200b | Upregulated: ZFAS Downregulated: miRNA-200b | Serum | SN = 98.3%, SP = 96.4% (miR-200b) SN = 98.3%; SP = 92.9% (ZFAS) | 0.95 (miR-200b) 0.95 (ZFAS) | 88 (28 HC, 60 CRC) | Egypt | [120] |
91H, PVT-1, MEG3 | Upregulated | Plasma | SN = 82.8; SP = 78.6% | 0.88 | 114 (56 HC, 58 CRC) | China | [121] |
ADAMTS9-AS1 | Downregulated | Serum | SN = 71.7%; SP = 91.7% (validation set) | 0.83 (validation set) | 260 (130 HC, 130 CRC) | China | [122] |
NKILA | Downregulated | Serum | SN = 82.9%; SP = 72.9% | 0.84 | 90 (70 CRC, 20 HC) | China | [123] |
CCAT1, CCAT2, H19, HOTAIR, HULC, MALAT1, PCAT1, MEG3, PTENP1, TUSC7 | Upregulated: CCAT1, CCAT2, H19, HOTAIR, HULC, MALAT1, PCAT1 Downregulated: MEG3, PTENP1, TUSC7 | Stool | validation set: SN = 74.9%, SP = 94.1% (CRC vs. HC) SN = 68.2%; SP = 83.7% (CRC(I–II) vs. HC) training set: SN = 78.2%, SP = 94.8% (CRC vs. HC) SN = 67.9%; SP = 83.1% (CRC (I–II) vs. HC) | validation set: 0.85 (CRC vs. HC) 0.82 (CRC (I–II) vs. HC) training set: 0.86 (CRC vs. HC) 0.79 (CRC (I–II) vs. HC) | 150 (60 CRC, 60 HC, 30 CP) | Iran | [124] |
LINC01836 | Upregulated | Serum | SN = 65%; SP = 87% | 0.81 | 222 (171 CRC, 51 BA, 138 HC) | China | [125] |
lnc-PDZD8-1:5; NEAT1:11; LINC00910:16 | Upregulated | whole blood | SN = 74.5%, SP = 80.5% | 0.85 | 186 (85 HC, 101 CRC) | China | [126] |
CCAT1, BBOX1-AS1, LINC00698, FEZF1-AS1, UICLM | Upregulated: FEZF1-AS1, UICLM Downregulated: CCAT1, BBOX1-AS1, LINC00698 | Plasma | SN = 85% SP = 93% (UICLM), SN = 68% SP = 67% (BBOX1-AS1) SN = 69% SP = 63% (FEZF1-AS1), SN = 67% SP = 62% (CCAT1) SN = 67% SP = 60% (LINC00698) | 0.88 (UICLM), 0.72 (BBOX1-AS1) 0.67 (FEZF1-AS1), 0.73 (CCAT1) 0.70 (LINC00698) | 60 (30 CRC, 30 HC) | Iran | [92] |
DANCR | Upregulated | Serum | SN = 67.5%, SP = 82.5% (DANCR) | 0.75 | 130 (50 CRC, 40 HC, 40 CP) | China | [127] |
MEG3 | Downregulated | Serum | SN = 66.7%; SP = 87.5% | 0.79 | 174 (126 CRC, 48 HC) | China | [128] |
lncRNA-ATB | Upregulated | Plasma | SN = 82%; SP = 75% | 0.78 | 148 (74 KC, 74 CRC) | Iran | [129] |
circRNA | |||||||
circ-PNN | Upregulated | Serum | SN = 89.7%; SP = 69% (validation set) | 0.83 (validation set) | 116 (58 CRC, 58HC) (validation set) | China | [130] |
circ-CCDC66, circ-ABCC1,circ-STIL | Downregulated | Plasma | SN = 64.4%; SP = 85.2% | 0.78 | 106 (45CRC, 61HC) | China | [131] |
circPAR1, CEA, CA19-9 | Downregulated | Plasma | SN = 87.3%; SP = 76.3% | 0.88 | 200 (112CRC, 28 CP, 60 HC) | China | [132] |
Studied Biomarker(s) | Biomarker Change | Study Material | Diagnostic Performance | Study Group (n) | Race/Nationality | Reference |
---|---|---|---|---|---|---|
TNNI2, PAX 8, AC011298, CEP112, GUF1, KLF4, EVI2B | hypomethylation: TNNI2, PAX 8, AC011298, CEP112 hypermethylation: GUF1, KLF4, EVI2B | tissue | liver metastasis prediction | CRC (n = 59) | China | [146] |
LMX1A, SOX1, ZNF177 and NKX6.1 | hypermethylation | tissue | 5-years OS (↓), DFS (↓) | CRC (n = 151) | Taiwan | [150] |
APC | hypermethylation | tissue | OS (↑) | CRC (n = 142) | India | [151] |
IGFBP3 | hypermethylation | tissue | OS (↓) | CRC (n = 58) | India | [152] |
RASSF1 | hypermethylation | tissue | DFS (↓) | colon adenocarcinoma (n = 240), controls (n = 38) | TCGA data base | [153] |
MGMT, ERCC1 | hypermethylation | tissue | OS (↓) | CRC (n = 111) | Tunisia | [135] |
SFRP1 | hypermethylation | tissue | OS (↓) | CRC (n = 54) | India | [154] |
SFRP2 | hypermethylation | tissue | OS (↑) | CRC (n = 307) | China | [155] |
Studied Biomarker(s) | Biomarker Change | Study Material | Assessed Study Endpoints (Associated Change) | Study Group | Race/Nationality | Reference |
---|---|---|---|---|---|---|
miRNA | ||||||
miR-21 | high expression | tissue | DFS (↑) | CRC III stage (n = 150) | Spain | [157] |
exosomal miR-150 | low expression | plasma | OS (↓) | CRC (n = 64) | China | [158] |
miR-183-5p | high expression | plasma | LNM prediction | CRC (n = 33) controls (n = 13) | Iran | [159] |
miR-1253 | low expression | tissue | OS (↓) | CRC (n = 121) | China | [160] |
miR-654-3p | high expression | tissue | OS (↑) | CRC (n = 103) controls (n = 103) | China | [161] |
miR-92a | high expression | tissue | MST (↓) | CRC (n = 82) | Romania | [162] |
miR-143, miR-145 | low expression | tissue | 5-year survival (↓) | CRC (n = 82) | Romania | [162] |
miR-767-5p | low expression | tissue | 5-year survival (↓) | CRC (n = 133) | China | [163] |
miR-675-5p | high expression | tissue | DFS (↓) | CRC (n = 176) | Greece | [164] |
miR-675-5p | high expression | tissue | OS (↓) | CRC (n = 203) | Greece | [164] |
miR-9 | low expression | tissue | OS (↓) | CRC (n = 357) | South Korea | [165] |
miR-9 | low expression | plasma | OS (↓) | CRC (n = 113) | South Korea | [165] |
miR-449a | low expression | plasma | 5-year OS (↓) | CRC (n = 343) controls (n = 162) | China | [166] |
miR-31 | high expression | tissue | MST | CRC IV stage (n = 67) | Japan | [167] |
miR-96 | high expression | plasma | OS (↓) | CRC (n = 90) controls (n = 20) | China | [168] |
miR-99b | low expression | plasma | OS (↓) | CRC (n = 90) controls (n = 20) | China | [168] |
miR-215 | low expression | tissue | 5-year survival (↓) | CRC (n = 214) | China | [169] |
lncRNA | ||||||
ARST | high expression | plasma | 5-year survival (↓) | CRC (n = 60) controls (n = 60) | China | [170] |
FAM30A | low expression | tissue | 5-year survival (↓) | CRC (n = 107) | China | [172] |
NEAT1 | high expression | plasma | OS (↓) | CRC (n = 135) | China | [171] |
HANR | high expression | tissue | OS (↓), DFS (↓) | CRC (n = 165) | China | [173] |
THOR | high expression | tissue | OS (↓), DFS (↓) | CRC (n = 103) | China | [174] |
MHENCR | high expression | tissue | OS (↓) | CRC (n = 143) | China | [175] |
Linc-A | high expression | tissue | 5-year and 10-year survival (↓) | colon adenocarcinoma (n = 80) | China | [176] |
LINC01094 | high expression | tissue | OS (↓), PFS (↓) | CRC (n = 122) | China | [177] |
ASB16-AS1 | high expression | plasma and tissue | OS (↓), PFS (↓) | CRC (n = 47) controls (n = 50) | Egypt | [118] |
AFAP1-AS1 | high expression | tissue | OS (↓), PFS (↓) | CRC (n = 47) controls (n = 50) | Egypt | [118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chilimoniuk, Z.; Gładysz, K.; Moniczewska, N.; Chawrylak, K.; Pelc, Z.; Mlak, R. The Role of Epigenetic Biomarkers as Diagnostic, Predictive and Prognostic Factors in Colorectal Cancer. Cancers 2025, 17, 2632. https://doi.org/10.3390/cancers17162632
Chilimoniuk Z, Gładysz K, Moniczewska N, Chawrylak K, Pelc Z, Mlak R. The Role of Epigenetic Biomarkers as Diagnostic, Predictive and Prognostic Factors in Colorectal Cancer. Cancers. 2025; 17(16):2632. https://doi.org/10.3390/cancers17162632
Chicago/Turabian StyleChilimoniuk, Zuzanna, Konrad Gładysz, Natalia Moniczewska, Katarzyna Chawrylak, Zuzanna Pelc, and Radosław Mlak. 2025. "The Role of Epigenetic Biomarkers as Diagnostic, Predictive and Prognostic Factors in Colorectal Cancer" Cancers 17, no. 16: 2632. https://doi.org/10.3390/cancers17162632
APA StyleChilimoniuk, Z., Gładysz, K., Moniczewska, N., Chawrylak, K., Pelc, Z., & Mlak, R. (2025). The Role of Epigenetic Biomarkers as Diagnostic, Predictive and Prognostic Factors in Colorectal Cancer. Cancers, 17(16), 2632. https://doi.org/10.3390/cancers17162632