Stem Cell Origin of Cancer: Biological Principles and Clinical Strategies for Chemoprevention and Maintenance Therapy in Cancer Care
Simple Summary
Abstract
1. Introduction
An Ounce of Prevention Is Worth a Pound of Cure.-Benjamin Franklin
2. Brief History
3. Stem-Cell Theory
4. Stem-Cell Therapy
5. Vitamin D and Stem Cells
6. Niche Matters
7. Riddle of TGF-β
8. Dualism of IGF-1
9. Dilemma with Testosterone
10. Ideal Chemoprevention Agents?
11. All Roads Lead to Stem-Ness
12. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tu, S.M. Origin of Cancers: Clinical Perspectives and Implications of a Stem-Cell Theory of Cancer; Rosen, S.T., Ed.; Cancer Treatment and Research; Springer: New York, NY, USA, 2010; Volume 154. [Google Scholar]
- Tu, S.M. Story of Hydra: Portrait of Cancer as a Stem-Cell Disease; Nova: New York, NY, USA, 2019. [Google Scholar]
- Lippman, S.M.; Hawk, E.T. Cancer prevention: From 1727 to milestones of the past 100 years. Cancer Res. 2009, 69, 5269–5284. [Google Scholar] [CrossRef]
- Le Clerc, C.G. The Compleat Surgeon; Walthos, Wilkin, Bonwicke and Ward: London, UK, 1727. [Google Scholar]
- Pott, P. Cancer Scroti. In Chirurgical Observations Relative to the Cataract, the Polypus of the Nose, Cancer of the Scrotum, different Kinds of Ruptures, and the Mortification of the Toes and Feet; Hawes, Clarke, Collins: London, UK, 1775; pp. 63–68. [Google Scholar]
- Sporn, M.B.; Dunlop, N.M.; Newton, D.L.; Smith, J.M. Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids). Fed. Proc. 1976, 35, 1332–1338. [Google Scholar]
- Kristal, A.R.; Lippman, S.M. Nutritional prevention of cancer: New directions for an increasingly complex challenge. J. Natl. Cancer Inst. 2009, 101, 363–365. [Google Scholar] [CrossRef]
- Lucia, M.S.; Darke, A.K.; Goodman, P.J.; Tangen, C.M.; La Rosa, F.G.; Parnes, H.L.; Ford, L.G.; Coltman, C.A.; Thompson, I.M. Pathologic characteristics of cancers detected in the Prostate Cancer Prevention Trial: Implications for prostate cancer detection and chemoprevention. Cancer Prev. Res. 2008, 1, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Giardiello, F.M.; Hamilton, S.R.; Krush, A.J.; Piantadosi, S.; Hylind, L.M.; Celano, P.; Booker, S.V.; Robinson, C.R.; Offerhaus, G.J. Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N. Engl. J. Med. 1993, 328, 1313–1316. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.T.; Ogino, S.; Fuchs, C.S. Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. N. Engl. J. Med. 2007, 356, 2131–2142. [Google Scholar] [CrossRef]
- Chang, M.H.; Chen, C.J.; Lai, M.S.; Hsu, H.M.; Wu, T.C.; Kong, M.S.; Liang, D.C.; Shau, W.Y.; Chen, D.S. Universal hepatitis B vaccination in Taiwan and the incidence of hepatocellular carcinoma in children. Taiwan Childhood Hepatoma Study Group. N. Engl. J. Med. 1997, 336, 1855–1859. [Google Scholar] [CrossRef] [PubMed]
- Paavonen, J.; Jenkins, D.; Bosch, F.X.; Naud, P.; Salmeron, J.; Wheeler, C.M.; Chow, S.N.; Apter, D.L.; Kitchener, H.C.; Castellsague, X.; et al. Efficacy of a prophylactic adjuvanted bivalent L1 virus-like-particle vaccine against infection with human papillomavirus types 16 and 18 in young women: An interim analysis of a phase III double-blind, randomised controlled trial. Lancet 2007, 369, 2161–2170. [Google Scholar] [CrossRef]
- Tu, S.M.; Singh, S.; Arnaoutakis, K.; Malapati, S.; Bhatti, S.A.; Joon, A.Y.; Atiq, O.T.; Pisters, L.L. Stem cell theory of cancer: Implications for translational research from bedside to bench. Cancers 2022, 14, 3345. [Google Scholar] [CrossRef]
- Virchow, R. From Demons and Evil Spirits to Cancer Genes. In Die Krankhaften Geschwülste: 30 Volesungen Gehalted Während des Wintersemesters 1863–1865; A. Hirschwald: Berlin, Germany; American Registry of Pathology: Washington, DC, USA, 2000; Volume 3. (In German) [Google Scholar]
- Vogelstein, B.; Fearon, E.R.; Hamilton, S.R.; Kern, S.E.; Preisinger, A.C.; Leppert, M.; Nakamura, Y.; White, R.; Smits, A.M.; Bos, J.L. Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 1988, 319, 525–532. [Google Scholar] [CrossRef]
- Loeb, S.; Folkvaljon, Y.; Damber, J.E.; Alukal, J.; Lambe, M.; Stattin, P. Testosterone replacement therapy and risk of favorable and aggressive prostate cancer. J. Clin. Oncol. 2017, 35, 1430–1436. [Google Scholar] [CrossRef]
- Thompson, I.M.; Goodman, P.J.; Tangen, C.M.; Parnes, H.L.; Minasian, L.M.; Godley, P.A.; Lucia, M.S.; Ford, L.G. Long-term survival of participants in the Prostate Cancer Prevention Trial. N. Engl. J. Med. 2013, 369, 603–610. [Google Scholar] [CrossRef]
- Andriole, G.L.; Bostwick, D.G.; Brawley, O.W.; Gomella, L.G.; Marberger, M.; Montorsi, F.; Pettaway, C.A.; Tammela, T.L.; Teloken, C.; Tindall, D.J.; et al. Effect of dutasteride on the risk of prostate cancer. N. Engl. J. Med. 2010, 362, 1192–1202. [Google Scholar] [CrossRef]
- Bell, K.J.L.; Del Mar, C.; Wright, G.; Dickinson, J.; Glasziou, P. Prevalence of incidental prostate cancer: A systematic review of autopsy studies. Int. J. Cancer 2015, 137, 1749–1757. [Google Scholar] [CrossRef]
- Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 2009, 119, 1420–1428. [Google Scholar] [CrossRef] [PubMed]
- Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 2014, 15, 178–196. [Google Scholar] [CrossRef]
- Debnath, P.; Huirem, R.S.; Dutta, P.; Palchaudhuri, S. Epithelial-mesenchymal transition and its transcription factors. Biosci. Rep. 2022, 42, BSR20211754. [Google Scholar] [CrossRef] [PubMed]
- Tu, S.M.; Aydin, A.M.; Maraboyina, S.; Chen, Z.; Singh, S.; Gokden, N.; Langford, T. Stem cell origin of cancer: Implications of oncogenesis recapitulating embryogenesis in cancer care. Cancers 2023, 15, 2516. [Google Scholar] [CrossRef]
- Gurdon, J.B. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J. Embryol. Exp. Morphol. 1962, 10, 622–640. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef]
- Abad, M.; Mosteiro, L.; Pantoja, C.; Canamero, M.; Rayon, T.; Ors, I.; Grana, O.; Megias, D.; Dominguez, O.; Martinez, D.; et al. Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature 2013, 502, 340–345. [Google Scholar] [CrossRef]
- Ohnishi, K.; Semi, K.; Yamamoto, T.; Shimizu, M.; Tanaka, A.; Mitsunaga, K.; Okita, K.; Osafune, K.; Arioka, Y.; Maeda, T.; et al. Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell 2014, 156, 663–677. [Google Scholar] [CrossRef]
- Nori, S.; Okada, Y.; Nishimura, S.; Sasaki, T.; Itakura, G.; Kobayashi, Y.; Renault-Mihara, F.; Shimizu, A.; Koya, I.; Yoshida, R.; et al. Long-term safety issues of IPSC-based cell therapy in a spinal cord injury model: Oncogenic transformation with epithelial-mesenchymal transition. Stem Cell Rep. 2015, 4, 360–373. [Google Scholar] [CrossRef]
- Mellanby, E. The part played by accessory food factors in the etiology of rickets. J. Physiol. 1919, 52, 1iii. [Google Scholar] [CrossRef]
- Sizar, O.; Khare, S.; Goyal, A.; Givler, A. Vitamin D Deficiency; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Borojevic, A.; Jaukovic, A.; Kukolj, T.; Mojsilovic, S.; Obradovic, H.; Tivanovic, D.; Zivanovic, M.; Zecevic, Z.; Simic, M.; Gobelijic, B.; et al. Vitamin D3 stimulates proliferation capacity, expression of pluripotency markers, and osteogenesis of human bone marrow mesenchymal stromal/stem cells, partly through SIRT1 signaling. Biomolecules 2022, 12, 323. [Google Scholar] [CrossRef]
- Perez, L.M.; de Lucas, B.; Galvez, B.G. Unhealthy stem cells: When health conditions upset stem cell properties. Cell Physiol. Biochem. 2018, 46, 1999–2016. [Google Scholar] [CrossRef]
- Chandler, P.D.; Chen, W.Y.; Ajala, O.N.; Hazra, A.; Cook, N.; Bubes, V.; Lee, I.M.; Giovannucci, E.L.; Willett, W.; Buring, J.E.; et al. Effect of vitamin D3 supplements on development of advanced cancer: A secondary analysis of the VITAL randomized clinical trial. JAMA Netw. Open. 2020, 3, e2025850. [Google Scholar] [CrossRef]
- Mascharak, S.; Guo, J.L.; Foster, D.S.; Khan, A.; Davitt, M.F.; Nguyen, A.T.; Burcham, A.R.; Chinta, M.S.; Guardino, N.J.; Griffin, M.; et al. Desmoplastic stromal signatures predict patient outcomes in pancreatic ductal adenocarcinoma. Cell Rep. Med. 2023, 4, 101248. [Google Scholar] [CrossRef] [PubMed]
- Guevara-Aguirre, J.; Mishra, A.; Canepa, M.; Guevara, C.; Villacres, A.; Guevara, A.; Pena, G.; Lescano, D.; Kopchick, J.J.; Balasubramanian, P.; et al. Normal or improved cardiovascular risk factors in IGF1-deficient adults with growth hormone receptor deficiency. Med. 2024, 5, 816–825.e4. [Google Scholar] [CrossRef] [PubMed]
- Teng, C.F.; Jeng, L.B.; Shyu, W.C. Role of insulin-like growth factor 1 receptor signaling in stem cell stemness and therapeutic efficacy. Cell Tranplant. 2018, 27, 1313–1319. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.C.; Kuo, Y.C.; Chuong, C.M.; Huang, Y.H. Niche modulation of IGF-1R signaling: Its role in stem cell pluripotency, cancer reprogramming, and therapeutic applications. Front. Cell Dev. Biol. 2021, 8, 625943. [Google Scholar] [CrossRef]
- Erlandsson, M.C.; Erdogan, S.; Wasen, C.; Andersson, K.M.; Silfversward, S.T.; Pullerits, R.; Bemark, M.; Bokarewa, M.I. IGF1R signaling is a guardian of self-tolerance restricting autoantibody production. Front. Immunol. 2022, 13, 958206. [Google Scholar] [CrossRef]
- Pellegrino, M.; Secli, V.; D’Amico, S.; Petrilli, L.L.; Cafario, M.; Folgiero, V.; Tumino, N.; Vacca, P.; Vinci, M.; Fruci, D.; et al. Manipulating the tumor immune microenvironment to improve cancer immunotherapy: IGF1R, a promising target. Front. Immunol. 2024, 15, 1356321. [Google Scholar] [CrossRef]
- Yu, E.Y.; Li, H.; Higano, C.S.; Agarwal, N.; Pal, S.K.; Alva, A.; Heath, E.I.; Lam, E.T.; Gupta, S.; Lilly, M.B.; et al. SWOG S0925: A randomized phase II study of androgen deprivation combined with cixutumumab versus androgen deprivation alone in patients with new metastatic hormone-sensitive prostate cancer. J. Clin. Oncol. 2015, 33, 1601–1608. [Google Scholar] [CrossRef] [PubMed]
- Umekita, Y.; Hiipakka, R.A.; Kokontis, J.M.; Liao, S. Human prostate tumor growth in athymic mice: Inhibition by androgens and stimulation by finasteride. Proc. Natl. Acad. Sci. USA 1996, 93, 11802–11807. [Google Scholar] [CrossRef]
- Di Zazzo, E.; Galasso, G.; Giovannelli, P.; Di Donato, M.; Di Santi, A.; Cernera, G.; Rossi, V.; Abbondanza, C.; Moncharmont, B.; Sinisi, A.A.; et al. Prostate cancer stem cells: The role of androgen and estrogen receptors. Oncotarget 2015, 7, 193–208. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Augello, M.A.; Liu, S.; Lin, K.; Hakansson, A.; Sjostrom, M.; Khani, F.; Deonarine, L.D.; Liu, Y.; Travascio-Green, J.; et al. Canonical androgen response element motifs are tumor suppressive regulatory elements in the prostate. Nat. Comm. 2024, 15, 10675. [Google Scholar] [CrossRef]
- Safi, R.; Wardell, S.E.; Watkinson, P.; Qin, X.; Lee, M.; Park, S.; Krebs, T.; Dolan, E.L.; Blattler, A.; Tsuji, T.; et al. Androgen receptor monomers and dimers regulate opposing biological processes in prostate cancer cells. Nat. Comm. 2024, 15, 7675. [Google Scholar] [CrossRef]
- Zheng, D.; Zhang, Y.; Yang, S.; Su, N.; Bakhoum, M.; Zhang, G.; Naderinezhad, S.; Mao, Z.; Wang, Z.; Zhou, T. Androgen deprivation induces neuroendocrine phenotypes in prostate cancer cells through CREB1/EZH2-mediated downregulation of REST. Cell Death Discov. 2024, 10, 246. [Google Scholar] [CrossRef] [PubMed]
- Kaarijarvi, R.; Kaljunen, H.; Nappi, L.; Fazli, L.; Kung, S.H.Y.; Hartikainen, J.M.; Paakinaho, V.; Capra, J.; Rilla, K.; Malinen, M.; et al. DPYSL5 is highly expressed in treatment-induced neuroendocrine prostate cancer and promotes lineage plasticity via EZH2/PRC2. Comm. Biol. 2024, 7, 108. [Google Scholar] [CrossRef]
- Szmulewitz, R.; Mohile, S.; Posadas, E.; Kunnavakkam, R.; Karrison, T.; Manchen, E.; Stadler, W.M. A Randomized Phase I Study of Testosterone Replacement for Patients with Low-Risk Castrate Resistant Prostate Cancer. Eur. Urol. 2010, 56, 97–103. [Google Scholar] [CrossRef]
- Denmeade, S.R.; Wang, H.; Agarwal, N.; Smith, D.C.; Schweizer, M.T.; Stein, M.N.; Assikis, V.; Twardowski, P.W.; Flaig, T.W.; Szmulewitz, R.Z.; et al. TRANSFORMER: A Randomized Phase II Study Comparing Bipolar Androgen Therapy Versus Enzalutamide in Asymptomatic Men With Castration-Resistant Metastatic Prostate Cancer. J. Clin. Oncol. 2021, 39, 1371–1382. [Google Scholar] [CrossRef]
- Sena, L.A.; Wang, H.; Lim, S.J.; Rifkind, I.; Ngomba, N.; Isaacs, J.T.; Luo, J.; Pratz, C.; Sinibaldi, V.; Carducci, M.A.; et al. Bipolar androgen therapy sensitizes castration-resistant prostate cancer to subsequent androgen receptor ablative therapy. Eur. J. Cancer 2021, 144, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Crook, J.M.; O’Callaghan, C.J.; Duncan, G.; Dearnaley, D.P.; Higano, C.S.; Horwitz, E.M.; Frymire, E.; Malone, S.; Chin, J.; Nabid, A.; et al. Intermittent androgen suppression for rising PSA level after radiotherapy. N. Engl. J. Med. 2012, 367, 895–903. [Google Scholar] [CrossRef] [PubMed]
- Tu, S.M.; Zhang, M.; Wood, C.G.; Pisters, L.L. Stem cell theory of cancer: Origin of tumor heterogeneity and plasticity. Cancers 2021, 13, 4006. [Google Scholar] [CrossRef]
- O’Connor, L.; Bailey-Whyte, M.; Bhattacharya, M.; Butera, G.; Hardell, K.N.L.; Seidenberg, A.B.; Castle, P.E.; Loomans-Kropp, H.A. Association of metformin use and cancer incidence: A systematic review and meta-analysis. J. Natl. Cancer Inst. 2024, 116, 518–529. [Google Scholar] [CrossRef]
- Cheng, F.F.; Liu, Y.L.; Du, J.; Lin, J.T. Metformin’s mechanisms in attenuating hallmarks of aging and age-related disease. Aging Dis. 2022, 13, 970–986. [Google Scholar] [CrossRef] [PubMed]
- Foretz, M.; Guigas, B.; Viollet, B. Metformin: Update on mechanisms of action and repurposing potential. Nat. Rev. Endocrinol. 2023, 19, 460–476. [Google Scholar] [CrossRef]
- Tu, S.M.; Chen, J.Z.; Singh, S.R.; Maraboyina, S.; Gokden, N.; Hsu, P.C.; Langford, T. Stem Cell Theory of Cancer: Clinical Implications for Cellular Metabolism and Anti-Cancer Metabolomics. Cancers 2024, 16, 624. [Google Scholar] [CrossRef]
- Wang, L.; Xu, R.; Kaelber, D.C.; Berger, N.A. Glucagon-like peptide 1 receptor agonists and 13 obesity-associated cancers in patients with type 2 diabetes. JAMA Netw. Open. 2024, 7, e2421305. [Google Scholar] [CrossRef]
- Lin, C.H.; Liu, B.; Hill, H.; Wang, J.; Han, X.; Remick, S.C.; Tse, W.; Song, G. Comparative risk of obesity-related cancer with glucagon-like protein-1 receptor agonist vs bariatric surgery in patients with BMI ≥ 35. J Clin Oncol. 2024, 42, 10508. [Google Scholar] [CrossRef]
- Wang, L.; Wang, W.; Kaelber, D.C.; Xu, R.; Berger, N.A. GLP-1 receptor agonists and colorectal cancer risk in drug-naïve patients with type 2 diabetes, with and without overweight/obesity. JAMA Oncol. 2024, 10, 256–258. [Google Scholar] [CrossRef]
- Fischbach, N.A.; Zhou, B.; Deng, Y.; Parsons, K.; Shelton, A.; Lustberg, M.B. Impact of semaglutide and tirzepatide administration on weight in women with stage I-III breast cancer. J. Clin. Oncol. 2024, 42, e24140. [Google Scholar] [CrossRef]
- Bahne, E.; Sun, E.W.L.; Young, R.L.; Hansen, M.; Sonne, D.P.; Hansen, J.S.; Rohde, U.; Liou, A.P.; Jackson, M.L.; de Fontgalland, D.; et al. Metformin-induced glucagon-like peptide-1 secretion contributes to the actions of metformin in type-2 diabetes. JCI Insights 2018, 3, e93936. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Tian, X.; Zhang, B.; Li, M.; Wang, Y.; Yang, C.; Wu, J.; Wei, X.; Qu, Q.; Yu, Y.; et al. Low-dose metformin targets the lysosomal AMPK pathway through PEN2. Nature 2022, 603, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Zeng, F.; Luo, X.; Lei, Y.; Li, J.; Lu, S.; Huang, X.; Lan, Y.; Liu, R. GLP-1 receptor: A new target for sepsis. Front. Pharmmacol. 2021, 12, 706908. [Google Scholar] [CrossRef]
- Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 2016, 375, 311–322. [Google Scholar] [CrossRef]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jodar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef]
- Gerstein, H.C.; Colhoun, H.M.; Dagenais, G.R.; Diaz, R.; Lakshmanan, M.; Pais, P.; Probstfield, J.; Riesmeyer, J.S.; Riddle, M.C.; Ryden, L.; et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): A double-blind, randomised placebo-controlled trial. Lancet 2019, 394, 121–130. [Google Scholar] [CrossRef]
- Kershner, A.M.; Shin, H.; Hansen, T.J.; Kimble, J. Discovery of two GLP-1/Notch target genes that account for the role of GLP-1/Notch signaling in stem cell maintenance. Proc. Natl. Acad. Sci. USA 2014, 111, 3739–3744. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Mohammad, A.; Pazdernik, N.; Huang, H.; Bowman, B.; Tycksen, E.; Schedl, T. GLP-1 Notch-LAG-1 CSL control of the germline stem cell fate is mediated by transcriptional targets lst-1 and sygl-1. PLoS Genet. 2020, 16, 1008650. [Google Scholar] [CrossRef]
- Sforza, A.; Vigorelli, V.; Rurali, E.; Perrucci, G.L.; Gambini, E.; Arici, M.; Metallo, A.; Rinaldi, R.; Fiorina, P.; Barbuti, A.; et al. Liraglutide preserves CD34+ stem cells from dysfunction induced by high glucose exposure. Cardiovasc. Diabetol. 2022, 21, 51. [Google Scholar] [CrossRef]
- Sanz, C.; Vazquez, P.; Blazquez, C.; Barrio, P.A.; Alvarez, M.D.M.; Blazquez, E. Signaling and biological effects of glucagon-like peptide 1 on the differentiation of mesenchymal stem cells from human bone marrow. Am. J. Physiol. Endocrinol. Metab. 2010, 298, E634–E643. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.M.; Joo, B.S.; Lee, C.H.; Kim, H.Y.; Ock, J.H.; Lee, Y.S. Effect of Glucagon-like Peptide-1 on the Differentiation of Adipose-derived Stem Cells into Osteoblasts and Adipocytes. J. Menopausal Med. 2015, 21, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.D.; Ross, S.A. Evidence for dietary regulation of microRNA expression in cancer cells. Nutr. Rev. 2008, 66, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Misso, G.; Di Martino, M.T.; De Rosa, G.; Farooqi, A.A.; Lombardi, A.; Campani, V.; Zarone, M.R.; Gullà, A.; Tagliaferri, P.; Tassone, P.; et al. MiR-34: A new weapon against cancer? Mol. Ther. Nucleic Acids. 2014, 3, e194. [Google Scholar] [CrossRef]
- Shah, M.S.; Schwartz, S.L.; Zhao, C.; Davidson, L.A.; Zhou, B.; Lupton, J.R.; Ivanov, I.; Chapkin, R.S. Integrated microRNA and mRNA expression profiling in a rat colon carcinogenesis model: Effect of a chemo-protective diet. Physiol. Genom. 2011, 43, 640–654. [Google Scholar] [CrossRef]
- Rajendran, P.; Ho, E.; Williams, D.E.; Dashwood, R.H. Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells. Clin. Epigenetics 2011, 3, 4. [Google Scholar] [CrossRef]
- O’Neill, A. Life Expectancy in the United States, 1860–2020. Statista 2024. Available online: https://www.statista.com/statistics/1040079/life-expectancy-united-states-all-time/ (accessed on 27 December 2024).
Anti-Cancer Agent | Cancer Initiation/Promotion | Cancer Prevention (Stem-Ness or -Like Targets and Mechanisms) | Targeted Therapies, Pertinent Clinical Trials |
---|---|---|---|
AR inhibitor | Non-stemness (or -like) cells | Finasteride, PCPT trial [8] | |
Vitamin D | Stemness (or -like) cells Reduces senescence [23] | Vitamin D and Omega-3 trial (VITAL) [25] | |
TGF-beta | Cancer promotion Induces motility, invasion, EMT | Tumor suppression Anti-proliferation; mediates apoptosis | Bintrafusp alfa [13] |
IGF-1/R | Cancer stem cells Proinflammatory, immune-stimulatory Onco-niche | Stemness (or -like) cells Anti-inflammatory, immune-inhibitory [29] “Embryonic” niche [30] | Cixutumumab [33] |
Metformin | Decreases IGF-1, mitigates inflammation, enhances autophagy, inhibits cellular senescence, inactivates ROS [46,47], induces GLP-1 [53,54], maintains stem cell integrity [48] | Cancer prevention and maintenance therapy [48] | |
GLP-1R | Stemness (or -like) cells [59,60,61,62,63] Anti-inflammatory, immune-inhibitory [55] | Semaglutide, tirzepatide [49,50,51,52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medik, Y.; Sardar, S.; Sethi, J.S.; Bigarella, M.P.; Singh, S.R.K.; Tu, S.-M. Stem Cell Origin of Cancer: Biological Principles and Clinical Strategies for Chemoprevention and Maintenance Therapy in Cancer Care. Cancers 2025, 17, 2621. https://doi.org/10.3390/cancers17162621
Medik Y, Sardar S, Sethi JS, Bigarella MP, Singh SRK, Tu S-M. Stem Cell Origin of Cancer: Biological Principles and Clinical Strategies for Chemoprevention and Maintenance Therapy in Cancer Care. Cancers. 2025; 17(16):2621. https://doi.org/10.3390/cancers17162621
Chicago/Turabian StyleMedik, Yusra, Sehrish Sardar, Jaskirat S. Sethi, Marcelo P. Bigarella, Sunny R. K. Singh, and Shi-Ming Tu. 2025. "Stem Cell Origin of Cancer: Biological Principles and Clinical Strategies for Chemoprevention and Maintenance Therapy in Cancer Care" Cancers 17, no. 16: 2621. https://doi.org/10.3390/cancers17162621
APA StyleMedik, Y., Sardar, S., Sethi, J. S., Bigarella, M. P., Singh, S. R. K., & Tu, S.-M. (2025). Stem Cell Origin of Cancer: Biological Principles and Clinical Strategies for Chemoprevention and Maintenance Therapy in Cancer Care. Cancers, 17(16), 2621. https://doi.org/10.3390/cancers17162621