Integration of an OS-Based Machine Learning Score (AS Score) and Immunoscore as Ancillary Tools for Predicting Immunotherapy Response in Sarcomas
Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Data Acquisition and Cohort Description
2.1.1. Training Cohort/Series
2.1.2. Validation Cohort/Series
2.2. Immuno-Related Gene Expression Data (HTG EdgeSeq Precision Immuno-Oncology Assay)
2.3. Development and Validation of Prognostic AS Score
2.4. Statistical Analysis
3. Results
3.1. Development of the AS Score in the AS Series
3.2. Validation of the AS Score in TCGA Sarcoma Cohort
3.3. Prognostic Relevance of the Immunoscore
3.4. Combined Stratification by AS Score and Immunoscore
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fletcher, C.D.M.; Bridge, J.A.; Hogendoorn, P.C.W. (Eds.) World Health Organization Classification of Tumours of Soft Tissue and Bone, 4th ed.; IARC Press: Lyon, France, 2013. [Google Scholar]
- WHO Classification of Tumours Editorial Board (Ed.) World Health Organization Classification of Soft Tissue and Bone Tumours, 5th ed.; IARC Press: Lyon, France, 2020. [Google Scholar]
- Fury, M.G.; Antonescu, C.R.; Van Zee, K.J.; Brennan, M.F.; Maki, R.G. A 14-year retrospective review of angiosarcoma: Clinical characteristics, prognostic factors, and treatment outcomes with surgery and chemotherapy. Cancer J. 2005, 11, 241–247. [Google Scholar] [CrossRef]
- Fayette, J.; Martin, E.; Piperno-Neumann, S.; Le Cesne, A.; Robert, C.; Bonvalot, S.; Ranchère, D.; Pouillart, P.; Coindre, J.M.; Blay, J.Y. Angiosarcomas, a heterogeneous group of sarcomas with specific behavior depending on primary site: A retrospective study of 161 cases. Ann. Oncol. 2007, 18, 2030–2036. [Google Scholar] [CrossRef] [PubMed]
- Antonescu, C. Malignant vascular tumors—An update. Mod. Pathol. 2014, 27, S30–S38. [Google Scholar] [CrossRef]
- van IJzendoorn, D.G.P.; Bovée, J.V.M.G. Vascular Tumors of Bone: The Evolvement of a Classification Based on Molecular Developments. Surg. Pathol. Clin. 2017, 10, 621–635. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, N.; Mokhtari, R.; Charville, G.W.; Bui, N.; Ganjoo, K. Cutaneous Angiosarcoma of the Head and Neck-A Retrospective Analysis of 47 Patients. Cancers 2022, 14, 3841. [Google Scholar] [CrossRef] [PubMed]
- Requena, C.; Sendra, E.; Llombart, B.; Sanmartín, O.; Guillén, C.; Lavernia, J.; Traves, V.; Cruz, J. Cutaneous Angiosarcoma: Clinical and Pathology Study of 16 Cases. Actas Dermosifiliogr. 2017, 108, 457–465. [Google Scholar] [CrossRef]
- Shustef, E.; Kazlouskaya, V.; Prieto, V.G.; Ivan, D.; Aung, P.P. Cutaneous angiosarcoma: A current update. J. Clin. Pathol. 2017, 70, 917–925. [Google Scholar] [CrossRef]
- Abebe, K.; Wulff, I.; Thorsen, K.V.; Wagenblast, A.L.; Schmidt, G.; Jensen, D.H.; Holm, C.E.; Petersen, M.M.; Loya, A.C.; Mentzel, T.; et al. Clinicopathological characteristics, long-term prognosis and follow-up recommendations of primary and secondary cutaneous angiosarcoma: A Danish nationwide population-based cohort study. Eur. J. Surg. Oncol. 2025, 51, 109680. [Google Scholar] [CrossRef]
- Kuba, M.G.; Dermawan, J.K.; Xu, B.; Singer, S.; Plitas, G.; Tap, W.D.; D’Angelo, S.P.; Rosenbaum, E.; Brogi, E.; Antonescu, E.; et al. Histopathologic Grading Is of Prognostic Significance in Primary Angiosarcoma of Breast: Proposal of a Simplified 2-tier Grading System. Am. J. Surg. Pathol. 2023, 47, 307–317. [Google Scholar] [CrossRef]
- Machado, I.; Requena, C.; López-Reig, R.; Fernández-Serra, A.; Giner, F.; Cruz, J.; Traves, V.; Lavernia, J.; Claramunt, R.; Llombart, B.; et al. Tumor Microenvironment and Its Clinicopathologic and Prognostic Association in Cutaneous and Noncutaneous Angiosarcomas. Am. J. Clin. Pathol. 2023, 160, 18–34. [Google Scholar] [CrossRef]
- Guo, T.; Zhang, L.; Chang, N.E.; Singer, S.; Maki, R.G.; Antonescu, C.R. Consistent MYC and FLT4 gene amplification in radiation-induced angiosarcoma but not in other radiation-associated atypical vascular lesions. Genes Chromosomes Cancer 2011, 50, 25–33. [Google Scholar] [CrossRef]
- Behjati, S.; Tarpey, P.S.; Sheldon, H.; Martincorena, I.; Van Loo, P.; Gundem, G.; Wedge, D.C.; Ramakrishna, M.; Cooke, S.; Pillay, N.; et al. Recurrent PTPRB and PLCG1 mutations in angiosarcoma. Nat. Genet. 2014, 46, 376–379. [Google Scholar] [CrossRef]
- Huang, S.C.; Zhang, L.; Sung, Y.S.; Chen, C.L.; Kao, Y.C.; Agaram, N.P.; Singer, S.; Tap, W.D.; D’Angelo, S.; Antonescu, C.R. Recurrent CIC Gene Abnormalities in Angiosarcomas: A Molecular Study of 120 Cases With Concurrent Investigation of PLCG1, KDR, MYC, and FLT4 Gene Alterations. Am. J. Surg. Pathol. 2016, 40, 645–655. [Google Scholar] [CrossRef]
- Manner, J.; Radlwimmer, B.; Hohenberger, P.; Mössinger, K.; Küffer, S.; Sauer, C.; Belharazem, D.; Zettl, A.; Coindre, J.M.; Hallermann, C.; et al. MYC high level gene amplification is a distinctive feature of angiosarcomas after irradiation or chronic lymphedema. Am. J. Pathol. 2010, 176, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Ko, T.K.; Guo, Z.; Kannan, B.; Lim, B.Y.; Lee, J.Y.; Li, Z.; Lee, E.C.Y.; Teh, B.T.; Chan, J.Y. Multiomics characterization of breast angiosarcoma from an Asian cohort reveals enrichment for angiogenesis signaling pathway and tumor-infiltrating macrophages. Front. Immunol. 2025, 15, 1515935. [Google Scholar] [CrossRef]
- Painter, C.A.; Jain, E.; Tomson, B.N.; Dunphy, M.; Stoddard, R.E.; Thomas, B.S.; Damon, A.L.; Shah, S.; Kim, D.; Gómez Tejeda Zañudo, J.; et al. The Angiosarcoma Project: Enabling genomic and clinical discoveries in a rare cancer through patient-partnered research. Nat. Med. 2020, 26, 181–187. [Google Scholar] [CrossRef]
- Espejo-Freire, A.P.; Elliott, A.; Rosenberg, A.; Costa, P.A.; Barreto-Coelho, P.; Jonczak, E.; D’Amato, G.; Subhawong, T.; Arshad, J.; Diaz-Perez, J.A.; et al. Genomic Landscape of Angiosarcoma: A Targeted and Immunotherapy Biomarker Analysis. Cancers 2021, 13, 4816. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.Y.; Lim, J.Q.; Yeong, J.; Ravi, V.; Guan, P.; Boot, A.; Tay, T.K.Y.; Selvarajan, S.; Md Nasir, N.D.; Loh, J.H.; et al. Multiomic analysis and immunoprofiling reveal distinct subtypes of human angiosarcoma. J. Clin. Invest. 2020, 130, 5833–5846. [Google Scholar] [CrossRef] [PubMed]
- Young, R.J.; Natukunda, A.; Litière, S.; Woll, P.J.; Wardelmann, E.; van der Graaf, W.T. First-line anthracycline-based chemotherapy for angiosarcoma and other soft tissue sarcoma subtypes: Pooled analysis of eleven European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group trials. Eur. J. Cancer 2014, 50, 3178–3186. [Google Scholar] [CrossRef]
- Pasquier, E.; André, N.; Street, J.; Chougule, A.; Rekhi, B.; Ghosh, J.; Philip, D.S.J.; Meurer, M.; MacKenzie, K.L.; Kavallaris, M.; et al. Effective Management of Advanced Angiosarcoma by the Synergistic Combination of Propranolol and Vinblastine-based Metronomic Chemotherapy: A Bench to Bedside Study. EBioMedicine. 2016, 6, 87–95. [Google Scholar] [CrossRef]
- Bi, S.; Zhong, A.; Yin, X.; Li, J.; Cen, Y.; Chen, J. Management of Cutaneous Angiosarcoma: An Update Review. Curr. Treat. Options Oncol. 2022, 23, 137–154. [Google Scholar] [CrossRef]
- Cristescu, A.N.; Dumitrescu, I.; Tudose, I.; Beiu, C.; Dumitrescu, A.M.; Popa, L.G. Personalized Treatment for Scalp Angiosarcoma. J. Clin. Med. 2025, 14, 1278. [Google Scholar] [CrossRef] [PubMed]
- Assi, T.; Ibrahim, R.; Ibrahim, T.; Khoury, R.; Cesne, A.L. Ipilimumab and nivolumab: The ‘new kid on the block’ in advanced angiosarcoma. Immunotherapy 2023, 15, 1089–1091. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.W. Angiosarcoma: Role of Immunotherapy. Curr. Treat. Options Oncol. 2025, 26, 242–250. [Google Scholar] [CrossRef]
- Guan, L.; Palmeri, M.; Groisberg, R. Cutaneous angiosarcoma: A review of current evidence for treatment with checkpoint inhibitors. Front. Med. 2023, 10, 1090168. [Google Scholar] [CrossRef]
- Rosenbaum, E.; Antonescu, C.R.; Smith, S.; Bradic, M.; Kashani, D.; Richards, A.L.; Donoghue, M.; Kelly, C.M.; Nacev, B.; Chan, J.E.; et al. Clinical, genomic, and transcriptomic correlates of response to immune checkpoint blockade-based therapy in a cohort of patients with angiosarcoma treated at a single center. J. Immunother. Cancer 2022, 10, e004149. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, A.; Munoz, J.; Kelemen, K.; Dabak, V.; Hanbali, A.; Kurzrock, R. Images in Immunotherapy and Precision Oncology: Angiosarcoma of the Spleen and Liver. J. Immunother. Precis. Oncol. 2022, 6, 56–58. [Google Scholar] [CrossRef]
- Tawbi, H.A.; Burgess, M.; Bolejack, V.; Van Tine, B.A.; Schuetze, S.M.; Hu, J.; D’Angelo, S.; Attia, S.; Riedel, R.F.; Priebat, D.A.; et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): A multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol. 2017, 18, 1493–1501. [Google Scholar] [CrossRef]
- Botti, G.; Scognamiglio, G.; Marra, L.; Pizzolorusso, A.; Di Bonito, M.; De Cecio, R.; Cantile, M.; De Chiara, A. Programmed Death Ligand 1 (PD-L1) Expression in Primary Angiosarcoma. J. Cancer 2017, 8, 3166–3172. [Google Scholar] [CrossRef]
- D’Angelo, S.P.; Shoushtari, A.N.; Agaram, N.P.; Kuk, D.; Qin, L.X.; Carvajal, R.D.; Dickson, M.A.; Gounder, M.; Keohan, M.L.; Schwartz, G.K.; et al. Prevalence of tumor-infiltrating lymphocytes and PD-L1 expression in the soft tissue sarcoma microenvironment. Hum. Pathol. 2015, 46, 357–365. [Google Scholar] [CrossRef]
- Fujii, H.; Arakawa, A.; Utsumi, D.; Sumiyoshi, S.; Yamamoto, Y.; Kitoh, A.; Ono, M.; Matsumura, Y.; Kato, M.; Konishi, K.; et al. CD8+ tumor-infiltrating lymphocytes at primary sites as a possible prognostic factor of cutaneous angiosarcoma. Int. J. Cancer 2014, 134, 2393–2402. [Google Scholar] [CrossRef]
- Florou, V.; Rosenberg, A.E.; Wieder, E.; Komanduri, K.V.; Kolonias, D.; Uduman, M.; Castle, J.C.; Buell, J.S.; Trent, J.C.; Wilky, B.A. Angiosarcoma patients treated with immune checkpoint inhibitors: A case series of seven patients from a single institution. J. Immunother. Cancer 2019, 7, 213. [Google Scholar] [CrossRef] [PubMed]
- The Cancer Genome Atlas Research Network. Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell 2017, 2, 950–965.e28. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Yoshihara, K.; Kim, H.; Verhaak, R.G. Estimate: Estimate of stromal and immune cells in malignant tumor tissues from expression data. R. Package Version 2016, 1, r21. [Google Scholar]
- Salimi, M.; Houshi, S.; Gholamrezanezhad, A.; Vadipour, P.; Seifi, S. Radiomics-based machine learning in prediction of response to neoadjuvant chemotherapy in osteosarcoma: A systematic review and meta-analysis. Clin. Imaging. 2025, 123, 110494. [Google Scholar] [CrossRef]
- Sabeghi, P.; Kinkar, K.K.; Castaneda, G.D.R.; Eibschutz, L.S.; Fields, B.K.K.; Varghese, B.A.; Patel, D.B.; Gholamrezanezhad, A. Artificial intelligence and machine learning applications for the imaging of bone and soft tissue tumors. Front. Radiol. 2024, 5, 1332535. [Google Scholar] [CrossRef]
- Schmitz, F.; Sedaghat, S. Diagnostic Value of Magnetic Resonance Imaging Radiomics and Machine-learning in Grading Soft Tissue Sarcoma: A Mini-review on the Current State. Acad Radiol. 2025, 32, 311–315. [Google Scholar] [CrossRef] [PubMed]
Patient Characteristics | Tumor Characteristics | ||
---|---|---|---|
Age at diagnosis (years) | Tumor size (cm) | ||
Median | 71 | Median | 8 |
Range | 31–83 | Range | 2–50 |
Gender | Mitotic rate | ||
Male | 10 (40) | Median | 20 |
Female | 15 (60) | Range | 0.0–37.0 |
Primary Site | Margins | ||
Cutaneous | 17 (68) | Negative | 21 (84) |
non-cutaneous soft tissue | 2 (8) | Positive | 4 (16) |
non-cutaneous visceral | 6 (24) | Surgery | |
Follow-Up and Outcomes | Yes | 22 (88) | |
Overall survival | No | 3 (12) | |
N | 25 | Chemotherapy treatment | |
Events | 20 | Yes | 9 (36) |
Median (range) | 14 (1–114) months | No | 16 (64) |
Radiotherapy treatment | |||
Yes | 2 (8) | ||
No | 23 (92) | ||
MYC (FISH) | |||
Non-amplified | 10 (40) | ||
Amplified | 7 (28) | ||
NP | 8 (32) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, I.; López-Reig, R.; Giner, E.; Fernández-Serra, A.; Requena, C.; Llombart, B.; Giner, F.; Cruz, J.; Traves, V.; Lavernia, J.; et al. Integration of an OS-Based Machine Learning Score (AS Score) and Immunoscore as Ancillary Tools for Predicting Immunotherapy Response in Sarcomas. Cancers 2025, 17, 2551. https://doi.org/10.3390/cancers17152551
Machado I, López-Reig R, Giner E, Fernández-Serra A, Requena C, Llombart B, Giner F, Cruz J, Traves V, Lavernia J, et al. Integration of an OS-Based Machine Learning Score (AS Score) and Immunoscore as Ancillary Tools for Predicting Immunotherapy Response in Sarcomas. Cancers. 2025; 17(15):2551. https://doi.org/10.3390/cancers17152551
Chicago/Turabian StyleMachado, Isidro, Raquel López-Reig, Eduardo Giner, Antonio Fernández-Serra, Celia Requena, Beatriz Llombart, Francisco Giner, Julia Cruz, Victor Traves, Javier Lavernia, and et al. 2025. "Integration of an OS-Based Machine Learning Score (AS Score) and Immunoscore as Ancillary Tools for Predicting Immunotherapy Response in Sarcomas" Cancers 17, no. 15: 2551. https://doi.org/10.3390/cancers17152551
APA StyleMachado, I., López-Reig, R., Giner, E., Fernández-Serra, A., Requena, C., Llombart, B., Giner, F., Cruz, J., Traves, V., Lavernia, J., Llombart-Bosch, A., & López Guerrero, J. A. (2025). Integration of an OS-Based Machine Learning Score (AS Score) and Immunoscore as Ancillary Tools for Predicting Immunotherapy Response in Sarcomas. Cancers, 17(15), 2551. https://doi.org/10.3390/cancers17152551