Novel Molecular Methods in Soft Tissue Sarcomas: From Diagnostics to Theragnostics
Simple Summary
Abstract
1. Introduction to Genomic Classification of Soft Tissue Sarcomas (STSs)
2. Current Molecular Techniques in Sarcoma Diagnosis and Theragnosis
2.1. DNA-Based Techniques
2.1.1. Circulating Tumor DNA (ctDNA) and Cell-Free DNA (cfDNA) Diagnostics
2.1.2. Whole-Genome Sequencing (WGS)
2.1.3. Whole-Exome Sequencing (WES)
2.1.4. Targeted Exome Sequencing
2.2. RNA-Based Techniques
2.2.1. RNA Sequencing (RNA-Seq)
2.2.2. Spatial Transcriptomics in STS
2.3. Methylation Analysis
3. Molecularly Driven Targeted Therapies in STS
4. DNA-Based Biomarkers in STS
4.1. Tumor Mutational Burden (TMB)
4.2. Microsatellite Instability (MSI)
5. RNA-Based Biomarkers in STS
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
STS | Soft tissue sarcoma |
DNA | Deoxyribonucleic acid |
RNA | Ribonucleic acid |
WGS | Whole-genome sequencing |
WES | Whole-exome sequencing |
WTS | Whole-transcriptome sequencing |
WGTS | Whole-genome-transcriptome sequencing |
NGS | Next-generation sequencing |
SBS | Sequencing-by-synthesis |
cfDNA | Cell-free DNA |
ctDNA | Circulating tumor DNA |
ESMO | European Society for Medical Oncology |
NCCN | National Comprehensive Cancer Network |
FFPE | Formalin-fixed, paraffin-embedded |
TCGT | Tenosynovial giant cell tumor |
TKI | Tyrosine kinase inhibitor |
UPS | Undifferentiated pleomorphic sarcoma |
TMB | Tumor mutational burden |
MSI | Microsatellite instability |
MMR | Mismatch repair |
References
- Italiano, A.; Di Mauro, I.; Rapp, J.; Pierron, G.; Auger, N.; Alberti, L.; Chibon, F.; Escande, F.; Voegeli, A.-C.; Ghnassia, J.-P.; et al. Clinical effect of molecular methods in sarcoma diagnosis (GENSARC): A prospective, multicentre, observational study. Lancet Oncol. 2016, 17, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Cuppen, E.; Elemento, O.; Rosenquist, R.; Nikic, S.; Ijzerman, M.; Zaleski, I.D.; Frederix, G.; Levin, L.; Mullighan, C.G.; Buettner, R.; et al. Implementation of Whole-Genome and Transcriptome Sequencing Into Clinical Cancer Care. JCO Precis. Oncol. 2022, 6, e2200245. [Google Scholar] [CrossRef] [PubMed]
- Gounder, M.M.; Agaram, N.P.; Trabucco, S.E.; Robinson, V.; Ferraro, R.A.; Millis, S.Z.; Krishnan, A.; Lee, J.; Attia, S.; Abida, W.; et al. Clinical genomic profiling in the management of patients with soft tissue and bone sarcoma. Nat. Commun. 2022, 13, 3406. [Google Scholar] [CrossRef]
- Schipper, L.J.; Monkhorst, K.; Samsom, K.G.; Bosch, L.J.; Snaebjornsson, P.; van Boven, H.; Roepman, P.; van der Kolk, L.E.; van Houdt, W.J.; van der Graaf, W.T.; et al. Clinical Impact of Prospective Whole Genome Sequencing in Sarcoma Patients. Cancers 2022, 14, 436. [Google Scholar] [CrossRef] [PubMed]
- Watkins, J.A.; Trotman, J.; Tadross, J.A.; Harrington, J.; Hatcher, H.; Horan, G.; Prewett, S.; Wong, H.H.; McDonald, S.; Tarpey, P.; et al. Introduction and impact of routine whole genome sequencing in the diagnosis and management of sarcoma. Br. J. Cancer 2024, 131, 860–869. [Google Scholar] [CrossRef]
- Chen, L.; Li, J.; Wu, X.; Zheng, Z. Identification of Somatic Genetic Alterations Using Whole-Exome Sequencing of Uterine Leiomyosarcoma Tumors. Front. Oncol. 2021, 11, 687899. [Google Scholar] [CrossRef]
- Byun, M.; Abhyankar, A.; Lelarge, V.; Plancoulaine, S.; Palanduz, A.; Telhan, L.; Boisson, B.; Picard, C.; Dewell, S.; Zhao, C.; et al. Whole-exome sequencing-based discovery of STIM1 deficiency in a child with fatal classic Kaposi sarcoma. J. Exp. Med. 2010, 207, 2307–2312. [Google Scholar] [CrossRef]
- Lorenzi, L.; Döring, C.; Rausch, T.; Benes, V.; Lonardi, S.; Bugatti, M.; Campo, E.; Cabeçadas, J.; Simonitsch-Klupp, I.; Borges, A.; et al. Identification of novel follicular dendritic cell sarcoma markers, FDCSP and SRGN, by whole transcriptome sequencing. Oncotarget 2017, 8, 16463–16472. [Google Scholar] [CrossRef]
- Astolfi, A.; Melchionda, F.; Perotti, D.; Fois, M.; Indio, V.; Urbini, M.; Genovese, C.G.; Collini, P.; Salfi, N.; Nantron, M.; et al. Whole transcriptome sequencing identifies BCOR internal tandem duplication as a common feature of clear cell sarcoma of the kidney. Oncotarget 2015, 6, 40934–40939. [Google Scholar] [CrossRef]
- Panagopoulos, I.; Bjerkehagen, B.; Gorunova, L.; Berner, J.-M.; Boye, K.; Heim, S. Several fusion genes identified by whole transcriptome sequencing in a spindle cell sarcoma with rearrangements of chromosome arm 12q and MDM2 amplification. Int. J. Oncol. 2014, 45, 1829–1836. [Google Scholar] [CrossRef]
- Nord, K.H.; Macchia, G.; Tayebwa, J.; Nilsson, J.; von Steyern, F.V.; Brosjö, O.; Mandahl, N.; Mertens, F. Integrative genome and transcriptome analyses reveal two distinct types of ring chromosome in soft tissue sarcomas. Hum. Mol. Genet. 2014, 23, 878–888. [Google Scholar] [PubMed]
- Chibon, F.; Lagarde, P.; Salas, S.; Pérot, G.; Brouste, V.; Tirode, F.; Lucchesi, C.; de Reynies, A.; Kauffmann, A.; Bui, B.; et al. Validated prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a gene expression signature related to genome complexity. Nat. Med. 2010, 16, 781–787. [Google Scholar] [CrossRef]
- Pessoa, L.S.; Heringer, M.; Ferrer, V.P. ctDNA as a cancer biomarker: A broad overview. Crit. Rev. Oncol. Hematol. 2020, 155, 103109. [Google Scholar]
- Tsoi, K.M.; Gokgoz, N.; Darville-O′Quinn, P.; Prochazka, P.; Malekoltojari, A.; Griffin, A.M.; Ferguson, P.C.; Wunder, J.S.; Andrulis, I.L. Detection and utility of cell-free and circulating tumour DNA in bone and soft-tissue sarcomas. Bone Jt. Res. 2021, 10, 602–610. [Google Scholar]
- Kelly, C.M.; Gutierrez Sainz, L.; Chi, P. The management of metastatic GIST: Current standard and investigational therapeutics. J. Hematol. Oncol. 2021, 14, 2. [Google Scholar]
- Krumbholz, M.; Eiblwieser, J.; Ranft, A.; Zierk, J.; Schmidkonz, C.; Stütz, A.M.; Peneder, P.; Tomazou, E.M.; Agaimy, A.; Bäuerle, T.; et al. Quantification of Translocation-Specific ctDNA Provides an Integrating Parameter for Early Assessment of Treatment Response and Risk Stratification in Ewing Sarcoma. Clin. Cancer Res. 2021, 27, 5922–5930. [Google Scholar]
- Hemming, M.L.; Klega, K.; Rhoades, J.; Ha, G.; Acker, K.E.; Andersen, J.L.; Thai, E.; Nag, A.; Thorner, A.R.; Raut, C.P.; et al. Detection of Circulating Tumor DNA in Patients with Leiomyosarcoma with Progressive Disease. JCO Precis. Oncol. 2019, 3, 1–11. [Google Scholar]
- Blanchi, J.; Taleb, S.; Bayle, A.; Verret, B.; Toulmonde, M.; Spalato-Ceruso, M.; Dubos, P.; Laizet, Y.; Alame, M.; Khalifa, E.; et al. Clinical utility of circulating tumor DNA sequencing with a large panel in patients with advanced soft-tissue sarcomas. Cancer Commun. 2023, 43, 1051–1054. [Google Scholar]
- Eisenhardt, A.E.; Brugger, Z.; Lausch, U.; Kiefer, J.; Zeller, J.; Runkel, A.; Schmid, A.; Bronsert, P.; Wehrle, J.; Leithner, A.; et al. Genotyping of Circulating Free DNA Enables Monitoring of Tumor Dynamics in Synovial Sarcomas. Cancers 2022, 14, 2078. [Google Scholar] [CrossRef]
- Darville-O’Quinn, P.; Gokgoz, N.; Tsoi, K.M.; Andrulis, I.L.; Wunder, J.S. Investigating the Use of Circulating Tumor DNA for Sarcoma Management. J. Clin. Med. 2024, 13, 6539. [Google Scholar] [CrossRef] [PubMed]
- Ofverholm, I.; Wallander, K.; Haglund, C.; Chellappa, V.; Wejde, J.; Gellerbring, A.; Wirta, V.; Renevey, A.; Caceres, E.; Tsagkozis, P.; et al. Comprehensive Genomic Profiling Alters Clinical Diagnoses in a Significant Fraction of Tumors Suspicious of Sarcoma. Clin. Cancer Res. 2024, 30, 2647–2658. [Google Scholar] [PubMed]
- Wood, G.E.; Abdulla, S.; Ahmed, M.; Windsor, R. Clinical utility of whole genome sequencing (WGS) for the identification of actionable genetic alterations in sarcoma patients. ESMO Open 2024, 9, 102521. [Google Scholar]
- Park, J.H.; Connolly-Strong, E.; Kim, Y.T.; Ju, Y.S. A systematic comparison of whole genome sequencing and targeted panel sequencing for precision oncology. J. Clin. Onc. 2023, 41, 8546. [Google Scholar]
- Momeni-Boroujeni, A.; Mohammad, N.; Wolber, R.; Yip, S.; Köbel, M.; Dickson, B.C.; Hensley, M.L.; Leitao, M.M.; Antonescu, C.R.; Benayed, R.; et al. Targeted RNA expression profiling identifies high-grade endometrial stromal sarcoma as a clinically relevant molecular subtype of uterine sarcoma. Mod. Pathol. 2021, 34, 1008–1016. [Google Scholar]
- Sun, L.; McNulty, S.N.; Evenson, M.J.; Zhu, X.; Robinson, J.A.; Mann, P.R.; Duncavage, E.J.; Pfeifer, J.D. Clinical Implications of a Targeted RNA-Sequencing Panel in the Detection of Gene Fusions in Solid Tumors. J. Mol. Diagn. 2021, 23, 1749–1760. [Google Scholar]
- Huang, X.; Li, G.; Li, L.; Wang, J.; Shen, J.; Chen, Y.; Yu, W.; Chen, A.; Wu, T.; Ma, J.; et al. Establishing an RNA fusions panel in soft tissue sarcoma with clinical validation. Sci. Rep. 2023, 13, 4403. [Google Scholar]
- Schlieben, L.D.; Carta, M.G.; Moskalev, E.A.; Stöhr, R.; Metzler, M.; Besendörfer, M.; Meidenbauer, N.; Semrau, S.; Janka, R.; Grützmann, R.; et al. Machine Learning-Supported Diagnosis of Small Blue Round Cell Sarcomas Using Targeted RNA Sequencing. J. Mol. Diagn. 2024, 26, 387–398. [Google Scholar] [PubMed]
- Jin, Y.; Zuo, Y.; Li, G.; Liu, W.; Pan, Y.; Fan, T.; Fu, X.; Yao, X.; Peng, Y. Advances in spatial transcriptomics and its applications in cancer research. Mol. Cancer 2024, 23, 129. [Google Scholar]
- Li, B.; Zhang, W.; Guo, C.; Xu, H.; Li, L.; Fang, M.; Hu, Y.; Zhang, X.; Yao, X.; Tang, M.; et al. Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution. Nat. Methods 2022, 19, 662–670. [Google Scholar] [CrossRef]
- Shapiro, E.; Biezuner, T.; Linnarsson, S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat. Rev. Genet. 2013, 14, 618–630. [Google Scholar]
- Nichterwitz, S.; Chen, G.; Benitez, J.A.; Yilmaz, M.; Storvall, H.; Cao, M.; Sandberg, R.; Deng, Q.; Hedlund, E. Laser capture microscopy coupled with Smart-seq2 for precise spatial transcriptomic profiling. Nat. Commun. 2016, 7, 12139. [Google Scholar] [CrossRef]
- Chen, J.; Suo, S.; Tam, P.P.; Han, J.-D.J.; Peng, G.; Jing, N. Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq. Nat. Protoc. 2017, 12, 566–580. [Google Scholar] [CrossRef] [PubMed]
- Buongiorno-Nardelli, M.; Amaldi, F. Autoradiographic detection of molecular hybrids between RNA and DNA in tissue sections. Nature 1970, 225, 946–948. [Google Scholar] [CrossRef]
- Ke, R.; Mignardi, M.; Pacureanu, A.; Svedlund, J.; Botling, J.; Wählby, C.; Nilsson, M. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 2013, 10, 857–860. [Google Scholar] [CrossRef] [PubMed]
- Codeluppi, S.; Borm, L.E.; Zeisel, A.; La Manno, G.; van Lunteren, J.A.; Svensson, C.I.; Linnarsson, S. Spatial organization of the somatosensory cortex revealed by osmFISH. Nat. Methods 2018, 15, 932–935. [Google Scholar] [CrossRef] [PubMed]
- Lubeck, E.; Coskun, A.F.; Zhiyentayev, T.; Ahmad, M.; Cai, L. Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods 2014, 11, 360–361. [Google Scholar] [CrossRef]
- Eng, C.L.; Lawson, M.; Zhu, Q.; Dries, R.; Koulena, N.; Takei, Y.; Yun, J.; Cronin, C.; Karp, C.; Yuan, G.-C.; et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 2019, 568, 235–239. [Google Scholar] [CrossRef]
- Chen, K.H.; Boettiger, A.N.; Moffitt, J.R.; Wang, S.; Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 2015, 348, aaa6090. [Google Scholar] [CrossRef]
- Lee, J.H.; Daugharthy, E.R.; Scheiman, J.; Kalhor, R.; Ferrante, T.C.; Terry, R.; Turczyk, B.M.; Yang, J.L.; Lee, H.S.; Aach, J.; et al. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat. Protoc. 2015, 10, 442–458. [Google Scholar] [CrossRef]
- Gyllborg, D.; Langseth, C.M.; Qian, X.; Choi, E.; Salas, S.M.; Hilscher, M.M.; Lein, E.S.; Nilsson, M. Correction to ‘Hybridization-based in situ sequencing (HybISS) for spatially resolved transcriptomics in human and mouse brain tissue’. Nucleic Acids Res. 2021, 49, 9002. [Google Scholar] [CrossRef]
- Alon, S.; Goodwin, D.R.; Sinha, A.; Wassie, A.T.; Chen, F.; Daugharthy, E.R.; Bando, Y.; Kajita, A.; Xue, A.G.; Marrett, K.; et al. Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems. Science 2021, 371, 481. [Google Scholar]
- Stahl, P.L.; Salmén, F.; Vickovic, S.; Lundmark, A.; Navarro, J.F.; Magnusson, J.; Giacomello, S.; Asp, M.; Westholm, J.O.; Huss, M.; et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 2016, 353, 78–82. [Google Scholar]
- Wang, Y.; Ma, S.; Ruzzo, W.L. Spatial modeling of prostate cancer metabolic gene expression reveals extensive heterogeneity and selective vulnerabilities. Sci. Rep. 2020, 10, 3490. [Google Scholar]
- Cho, C.S.; Xi, J.; Si, Y.; Park, S.-R.; Hsu, J.-E.; Kim, M.; Jun, G.; Kang, H.M.; Lee, J.H. Microscopic examination of spatial transcriptome using Seq-Scope. Cell 2021, 184, 3559–3572 e22. [Google Scholar]
- Srivatsan, S.R.; Regier, M.C.; Barkan, E.; Franks, J.M.; Packer, J.S.; Grosjean, P.; Duran, M.; Saxton, S.; Ladd, J.J.; Trapnell, C. Embryo-scale, single-cell spatial transcriptomics. Science 2021, 373, 111–117. [Google Scholar] [PubMed]
- Menyailo, M.E.; Kopantseva, E.E.; Khozyainova, A.A.; Korobeynikova, A.A.; Denisov, E.V. Soft tissue sarcomas at the single-cell and spatial resolution: New markers and targets. Cancer Gene Ther. 2024, 32, 11–21. [Google Scholar]
- Yuan, L.L.; Chen, Z.; Qin, J.; Qin, C.-J.; Bian, J.; Dong, R.-F.; Yuan, T.-B.; Xu, Y.-T.; Kong, L.-Y.; Xia, Y.-Z. Single-cell sequencing reveals the landscape of the tumor microenvironment in a skeletal undifferentiated pleomorphic sarcoma patient. Front. Immunol. 2022, 13, 1019870. [Google Scholar]
- Wu, L.M.N.; Zhang, F.; Rao, R.; Adam, M.; Pollard, K.; Szabo, S.; Liu, X.; Belcher, K.A.; Luo, Z.; Ogurek, S.; et al. Single-cell multiomics identifies clinically relevant mesenchymal stem-like cells and key regulators for MPNST malignancy. Sci. Adv. 2022, 8, eabo5442. [Google Scholar]
- Liu, X.; Yu, J.; Li, Y.; Shi, H.; Jiao, X.; Liu, X.; Guo, D.; Li, Z.; Tian, Y.; Dai, F.; et al. Deciphering the tumor immune microenvironment of imatinib-resistance in advanced gastrointestinal stromal tumors at single-cell resolution. Cell Death Dis. 2024, 15, 190. [Google Scholar]
- Mao, X.; Yang, X.; Chen, X.; Yu, S.; Yu, S.; Zhang, B.; Ji, Y.; Chen, Y.; Ouyang, Y.; Luo, W. Single-cell transcriptome analysis revealed the heterogeneity and microenvironment of gastrointestinal stromal tumors. Cancer Sci. 2021, 112, 1262–1274. [Google Scholar]
- Koelsche, C.; Schrimpf, D.; Stichel, D.; Sill, M.; Sahm, F.; Reuss, D.E.; Blattner, M.; Worst, B.; Heilig, C.E.; Beck, K.; et al. Sarcoma classification by DNA methylation profiling. Nat. Commun. 2021, 12, 498. [Google Scholar] [PubMed]
- Dajsakdipon, T.; Siripoon, T.; Ngamphaiboon, N.; Ativitavas, T.; Dejthevaporn, T. Immunotherapy and Biomarkers in Sarcoma. Curr. Treat. Options Oncol. 2022, 23, 415–438. [Google Scholar] [PubMed]
- Ayodele, O.; Razak, A.R.A. Immunotherapy in soft-tissue sarcoma. Curr. Oncol. 2020, 27 (Suppl. S1), 17–23. [Google Scholar] [CrossRef]
- Raj, S.K.S.; Routh, E.D.; Chou, J.W.; Votanopoulos, K.I.; Triozzi, P.L.; Miller, L.D. Prognostic attributes of immune signatures in soft tissue sarcomas show differential dependencies on tumor mutational burden. Cancer 2022, 128, 3254–3264. [Google Scholar]
- Furtado, L.V.; Bifulco, C.; Dolderer, D.; Hsiao, S.J.; Kipp, B.R.; Lindeman, N.I.; Ritterhouse, L.L.; Temple-Smolkin, R.L.; Zehir, A.; Nowak, J.A. Recommendations for Tumor Mutational Burden Assay Validation and Reporting: A Joint Consensus Recommendation of the Association for Molecular Pathology, College of American Pathologists, and Society for Immunotherapy of Cancer. J. Mol. Diagn. 2024, 26, 653–668. [Google Scholar]
- Fernandes, I.; Rezende, A.; Filippi, R.Z.; Filho, R.J.G.; Campregher, P.V.; Segatelli, V.; Pestana, R.C. Microsatellite instability in sarcomas: Which tests are ideal for diagnosis, and a systematic review. J. Clin. Onc 2023, 41, e23519. [Google Scholar]
- Zhao, Z.; Li, W.; Zhang, X.; Ge, M.; Song, C. Correlation between TMB and MSI in patients with solid tumors. J. Clin. Onc 2020, 38, e15169. [Google Scholar]
- Salem, M.E.; Puccini, A.; Grothey, A.; Xiu, J.; Goldberg, R.; Kim, E.; Korn, W.; Lenz, H.-J.; Raghavan, D.; Marshall, J.; et al. Comparative molecular analysis between microsatellite instability-high (MSI-H) tumors with high tumor mutational burden (TMB-H) versus MSI-H tumors with TMB-intermediate/low. Ann. Oncol. 2018, 29, VIII650–VIII651. [Google Scholar]
- Goodman, A.M.; Sokol, E.S.; Frampton, G.M.; Lippman, S.M.; Kurzrock, R. Microsatellite-Stable Tumors with High Mutational Burden Benefit from Immunotherapy. Cancer Immunol. Res. 2019, 7, 1570–1573. [Google Scholar]
- Palmeri, M.; Mehnert, J.; Silk, A.; Jabbour, S.; Ganesan, S.; Popli, P.; Riedlinger, G.; Stephenson, R.; de Meritens, A.; Leiser, A.; et al. Real-world application of tumor mutational burden-high (TMB-high) and microsatellite instability (MSI) confirms their utility as immunotherapy biomarkers. ESMO Open 2022, 7, 100336. [Google Scholar]
- Hirose, T.; Ikegami, M.; Kojima, S.; Yoshida, A.; Endo, M.; Shimada, E.; Kanahori, M.; Oyama, R.; Matsumoto, Y.; Nakashima, Y.; et al. Extensive analysis of 59 sarcoma-related fusion genes identified pazopanib as a potential inhibitor to COL1A1-PDGFB fusion gene. Cancer Sci. 2023, 114, 4089–4100. [Google Scholar] [PubMed]
- Hasegawa, N.; Hayashi, T.; Niizuma, H.; Kikuta, K.; Imanishi, J.; Endo, M.; Ikeuchi, H.; Sasa, K.; Sano, K.; Hirabayashi, K.; et al. Detection of Novel Tyrosine Kinase Fusion Genes as Potential Therapeutic Targets in Bone and Soft Tissue Sarcomas Using DNA/RNA-based Clinical Sequencing. Clin. Orthop. Relat. Res. 2024, 482, 549–563. [Google Scholar] [PubMed]
- Vanni, S.; Fausti, V.; Fonzi, E.; Liverani, C.; Miserocchi, G.; Spadazzi, C.; Cocchi, C.; Calabrese, C.; Gurrieri, L.; Riva, N.; et al. Unveiling the Genomic Basis of Chemosensitivity in Sarcomas of the Extremities: An Integrated Approach for an Unmet Clinical Need. Int. J. Mol. Sci. 2023, 24, 6926. [Google Scholar] [CrossRef] [PubMed]
Technique | Genetic Material | Strengths | Pitfalls | Pivotal Studies | Study Type | Clinical Use |
---|---|---|---|---|---|---|
WGS | DNA | Widest genetic coverage | Expensive, bioinformatically intensive, covers noncoding genetic regions | Schipper et al. [4] | Prospective | Sarcoma diagnosis, theragnosis |
Watkins et al. [5] | Prospective | Sarcoma diagnosis, theragnosis | ||||
WES | DNA | Wide genetic coverage, focused on exonic genetic regions | Expensive, bioinformatically intensive, misses noncoding but not necessarily nonfunctioning (e.g., promoter/suppressor) genetic regions | Chen et al. [6] | Retrospective | Uterine leiomyosarcoma theragnosis |
Byun et al. [7] | Retrospective | Kaposi sarcoma pathogenesis | ||||
WTS | RNA | Wide transcriptomic coverage, focused on actively transcribed genetic products | Expensive, bioinformatically intensive, misses noncoding but not necessarily nonfunctioning (e.g., promoter/suppressor) genetic regions | Lorenzi et al. [8] | Retrospective | Follicular dendritic cell sarcoma diagnosis |
Astolfi et al. [9] | Retrospective | Kidney clear cell sarcoma diagnosis | ||||
Panagopoulos et al. [10] | Retrospective | Spindle cell sarcoma pathogenesis | ||||
WGTS | DNA and RNA | Widest genetic coverage | Expensive, bioinformatically intensive, covers noncoding genetic regions | Nord et al. [11] | Retrospective | Sarcoma pathogenesis |
Targeted | DNA or RNA | Targeted genetic coverage, inexpensive, bioinformatically simple | Limited only to known/targeted genes covered in particular panels | Chibon et al. [12] | Retrospective | Sarcoma prognosis |
Gounder et al. [3] | Retrospective | Sarcoma diagnosis, theragnosis |
Product | Approval Status | Indications | Primary Tumor Agnostic | Panel Size | Clinical Uses |
---|---|---|---|---|---|
FoundationOne LiquidDx | Approved | Solid tumors | Yes | 300 genes | Diagnosis and Theragnosis |
Guardant 360 CDXC | Approved | Solid tumors | Yes | 74 genes | Diagnosis and Theragnosis |
Signatera | Pending | Bespoke/patient-specific | No | 16 genes | Treatment response and Disease Monitoring |
CancerSEEK | Approved | Ovary, Liver, Stomach, Pancreas, Esophagus, Colorectum, Lung, Breast | Yes | 16 genes | Screening |
Epi proColon | Approved | Colorectal carcinoma | Yes | 1 gene | Screening |
Trial | Disease | Use Case | Study Type | Phase | Brief Summary |
---|---|---|---|---|---|
NCT02547376 | Soft tissue sarcoma | Pathogenesis | Observational | Pre-I | cfDNA as an investigatory tool to detect telomere maintenance mechanism mutations |
NCT05366881 | Pan-cancer | Diagnosis, disease monitoring | Observational case–control | Pre-I | Methylation of cfDNA to detect cancer early and monitor disease progression |
NCT03390946 | Osteosarcoma | Prognosis, Treatment response | Interventional | II | cfDNA as a predictive/prognostic biomarker for compressed chemotherapy regimen |
NCT03336554 | Osteosarcoma | Disease monitoring, treatment response | Observational case–control | Pre-I | Epigenetic profiling of cfDNA to determine biomarkers of disease |
NCT06239272 | Non-rhabdomyosarcoma soft tissue sarcoma | Diagnosis, treatment response | Interventional | I/II | Correlating mutations detected in cfDNA and tumor samples; use of cfDNA to track treatment response |
NCT01772771 | Pan-cancer | Diagnostic inclusion criteria | Observational | Pre-I | Correlating mutations detected in cfDNA and tumor samples |
NCT03919539 | Osteosarcoma | Prognosis | Observational | Pre-I | Use of cfDNA to determine mechanisms of resistance to therapy |
NCT02567435 | Rhabdomyosarcoma | Diagnosis | Interventional | III | Correlating mutations detected in cfDNA and tumor samples |
Product | Approval Status | Indication | Panel Size | Clinical Use |
---|---|---|---|---|
FoundationOne RNA | Approved | Solid tumors | 318 genes | Diagnosis and Theragnosis |
Archer FusionPlex Sarcoma v2 | Research Use Only | Solid tumors | 63 genes | – |
Method | Resolution | Throughput | Advantages |
---|---|---|---|
Microdissection | Cellular–regional | Low | Manual identification of cells/regions of interest |
In situ hybridization/sequencing | Subcellular–cellular | Low–medium | Highly sensitive to low RNA quantity |
Spatial indexing | Subcellular–cellular | High | Capable of detecting total mRNA in tissue |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frazzette, N.; Jour, G. Novel Molecular Methods in Soft Tissue Sarcomas: From Diagnostics to Theragnostics. Cancers 2025, 17, 1215. https://doi.org/10.3390/cancers17071215
Frazzette N, Jour G. Novel Molecular Methods in Soft Tissue Sarcomas: From Diagnostics to Theragnostics. Cancers. 2025; 17(7):1215. https://doi.org/10.3390/cancers17071215
Chicago/Turabian StyleFrazzette, Nicholas, and George Jour. 2025. "Novel Molecular Methods in Soft Tissue Sarcomas: From Diagnostics to Theragnostics" Cancers 17, no. 7: 1215. https://doi.org/10.3390/cancers17071215
APA StyleFrazzette, N., & Jour, G. (2025). Novel Molecular Methods in Soft Tissue Sarcomas: From Diagnostics to Theragnostics. Cancers, 17(7), 1215. https://doi.org/10.3390/cancers17071215