Valine–Niclosamide for Treatment of Androgen Receptor Splice Variant-Positive Hepatocellular Carcinoma
Simple Summary
Abstract
1. Introduction
1.1. Hepatocellular Carcinoma
1.2. Role of Androgen Receptor and Its Splice Variants in Hepatocellular Carcinoma
1.3. Current Landscape of HCC Therapeutics
1.4. Niclosamide as an Anti-Cancer Therapeutic
2. Materials and Methods
2.1. Cell Culture and Reagents
2.2. TCGA LIHC AR-SV Transcript Presence and Abundance
2.3. siRNA Knockdown
2.4. RNA Sequencing and GSEA Analysis
2.5. CRISPR AR Knockout
2.6. Protein Extraction and Immunoblotting
2.7. AR Protein ELISA
2.8. Invasion Assay
2.9. Cytotoxicity Assay
2.10. Pharmacokinetic Studies and Parameter Analyses
2.11. Thermodynamic Solubility Study
2.12. Pharmacokinetic Modeling Methods
2.13. Plasma Stability Study
2.14. Animal Tolerability Study
2.15. Hollow Fiber Assay
2.16. Statistical Analyses
3. Results
3.1. AR/AR-SV Regulated Oncogenic and Tumor-Suppressive Pathways
3.2. CRISPR AR KO Downregulates Cellular Invasion
3.3. Niclosamide Analogs Decrease AR Expression and Invasion in AR/AR-SV(±) HCC Cells
3.4. Niclosamide Analogs Demonstrate Improved Pharamcokinetics and Solubility
3.5. Valine–Niclosamide and Valine-Conjugated Niclosamide Analogs Demonstrate Improved Oral Exposure, Solubility, and Bioavailability
3.6. Valine–Niclosamide in an In Vivo Hollow Fiber Assay Model of AR-SV(±) HCC
3.7. Assessing Conversion of Valine-Conjugated Niclosamide Analogs to Parent
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HCC | Hepatocellular Carcinoma |
AR | Androgen Receptor |
AR-SV | Androgen Receptor Splice Variant |
NAFLD | Non-Alcoholic Fatty Liver Disease |
MAFLD | Metabolic Dysfunction-Associated Fatty Liver Disease |
ARE | Androgen Response Element |
TCGA | The Cancer Genome Atlas |
ICI | Immune Checkpoint Inhibitor |
mOS | Median Overall Survival |
WHO | World Health Organization |
ATCC | American Type Culture Collection |
PTX | Paclitaxel |
IDT | Integrated DNA Technologies |
DEG | Differentially Expressed Gene |
GSEA | Gene Set Enrichment Analysis |
MSigDB | Molecular Signature Database |
PK | Pharmacokinetic |
IV | Intravenous |
PO | Per Os/By Mouth |
HFA | Hollow Fiber Assay |
LBD | Ligand-Binding Domain |
LIHC | Liver Hepatocellular Carcinoma |
AUCall | Total Area Under the Curve |
Cmax | Maximum Concentration |
Tmax | Time at Maximum Concentration |
SGF | Simulated Gastric Fluid |
FaSSIF | Fasted-State Simulated Intestinal Fluid |
ALT | Alanine Aminotransferase |
AST | Aspartate Aminotransferase |
NEN | Niclosamide Ethanolamine Salt |
Nic-SMEDDS | Self-Microemulsifying Drug Delivery System Encapsulating Niclosamide |
References
- Llovet, J.M.; Pinyol, R.; Kelley, R.K.; El-Khoueiry, A.; Reeves, H.; Wang, X.W.; Gores, G.J.; Villanueva, A. Molecular Pathogenesis and Systemic Therapies for Hepatocellular Carcinoma. Nat. Cancer 2022, 3, 386–401. [Google Scholar] [CrossRef]
- Akce, M.; El-Rayes, B.F.; Bekaii-Saab, T.S. Frontline Therapy for Advanced Hepatocellular Carcinoma: An Update. Ther. Adv. Gastroenterol. 2022, 15, 17562848221086126. [Google Scholar] [CrossRef]
- Montgomery, E.J.; Xing, E.; Campbell, M.J.; Li, P.-K.; Blachly, J.S.; Tsung, A.; Coss, C.C. Constitutively Active Androgen Receptor in Hepatocellular Carcinoma. Int. J. Mol. Sci. 2022, 23, 13768. [Google Scholar] [CrossRef]
- Ma, W.-L.; Lai, H.-C.; Yeh, S.; Cai, X.; Chang, C. Androgen Receptor Roles in Hepatocellular Carcinoma, Cirrhosis, and Hepatitis. Endocr. Relat. Cancer 2014, 21, R165–R182. [Google Scholar] [CrossRef] [PubMed]
- Dauki, A.M.; Blachly, J.S.; Kautto, E.A.; Ezzat, S.; Abdel-Rahman, M.H.; Coss, C.C. Transcriptionally Active Androgen Receptor Splice Variants Promote Hepatocellular Carcinoma Progression. Cancer Res. 2020, 80, 561–575. [Google Scholar] [CrossRef] [PubMed]
- Harding, J.J.; Kelley, R.K.; Tan, B.; Capanu, M.; Do, G.K.; Shia, J.; Chou, J.F.; Ferrer, C.S.; Boussayoud, C.; Muenkel, K.; et al. Phase Ib Study of Enzalutamide with or Without Sorafenib in Patients with Advanced Hepatocellular Carcinoma. Oncologist 2020, 25, e1825–e1836. [Google Scholar] [CrossRef] [PubMed]
- Patel, T.H.; Brewer, J.R.; Fan, J.; Cheng, J.; Shen, Y.-L.; Xiang, Y.; Zhao, H.; Lemery, S.J.; Pazdur, R.; Kluetz, P.G.; et al. FDA Approval Summary: Tremelimumab in Combination with Durvalumab for the Treatment of Patients with Unresectable Hepatocellular Carcinoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2024, 30, 269–273. [Google Scholar] [CrossRef]
- Ma, W.-L.; Hsu, C.-L.; Wu, M.-H.; Wu, C.-T.; Wu, C.-C.; Lai, J.-J.; Jou, Y.-S.; Chen, C.-W.; Yeh, S.; Chang, C. Androgen Receptor Is a New Potential Therapeutic Target for the Treatment of Hepatocellular Carcinoma. Gastroenterology 2008, 135, 947–955.e5. [Google Scholar] [CrossRef]
- Zhang, H.; Spencer, K.; Burley, S.K.; Zheng, X.F.S. Toward Improving Androgen Receptor-Targeted Therapies in Male-Dominant Hepatocellular Carcinoma. Drug Discov. Today 2021, 26, 1539–1546. [Google Scholar] [CrossRef]
- Kadri, H.; Lambourne, O.A.; Mehellou, Y. Niclosamide, a Drug with Many (Re)Purposes. ChemMedChem 2018, 13, 1088–1091. [Google Scholar] [CrossRef]
- Li, Y.; Li, P.-K.; Roberts, M.J.; Arend, R.C.; Samant, R.S.; Buchsbaum, D.J. Multi-Targeted Therapy of Cancer by Niclosamide: A New Application for an Old Drug. Cancer Lett. 2014, 349, 8–14. [Google Scholar] [CrossRef]
- Jiang, H.; Li, A.M.; Ye, J. The Magic Bullet: Niclosamide. Front. Oncol. 2022, 12, 1004978. [Google Scholar] [CrossRef]
- Laila, U.E.; Zhao, Z.; Xu, D.-Y.; Liu, H.; Xu, Z.-X. Pharmacological Advances and Therapeutic Applications of Niclosamide in Cancer and Other Diseases. Eur. J. Med. Chem. 2025, 290, 117527. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Wei, W.; Ma, L.; Yang, B.; Gill, R.M.; Chua, M.-S.; Butte, A.J.; So, S. Computational Discovery of Niclosamide Ethanolamine, a Repurposed Drug Candidate That Reduces Growth of Hepatocellular Carcinoma Cells In Vitro and in Mice by Inhibiting Cell Division Cycle 37 Signaling. Gastroenterology 2017, 152, 2022–2036. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Lou, W.; Zhu, Y.; Nadiminty, N.; Schwartz, C.T.; Evans, C.P.; Gao, A.C. Niclosamide Inhibits Androgen Receptor Variants Expression and Overcomes Enzalutamide Resistance in Castration-Resistant Prostate Cancer. Clin. Cancer Res. 2014, 20, 3198–3210. [Google Scholar] [CrossRef] [PubMed]
- Zeyada, M.S.; Abdel-Rahman, N.; El-Karef, A.; Yahia, S.; El-Sherbiny, I.M.; Eissa, L.A. Niclosamide-Loaded Polymeric Micelles Ameliorate Hepatocellular Carcinoma in Vivo through Targeting Wnt and Notch Pathways. Life Sci. 2020, 261, 118458. [Google Scholar] [CrossRef]
- Chien, M.-H.; Ho, Y.-C.; Yang, S.-F.; Yang, Y.-C.; Lai, S.-Y.; Chen, W.-S.; Chen, M.-J.; Yeh, C.-B. Niclosamide, an Oral Antihelmintic Drug, Exhibits Antimetastatic Activity in Hepatocellular Carcinoma Cells through Downregulating Twist-Mediated CD10 Expression. Environ. Toxicol. 2018, 33, 659–669. [Google Scholar] [CrossRef]
- Balgi, A.D.; Fonseca, B.D.; Donohue, E.; Tsang, T.C.F.; Lajoie, P.; Proud, C.G.; Nabi, I.R.; Roberge, M. Screen for Chemical Modulators of Autophagy Reveals Novel Therapeutic Inhibitors of mTORC1 Signaling. PLoS ONE 2009, 4, e7124. [Google Scholar] [CrossRef]
- Fonseca, B.D.; Diering, G.H.; Bidinosti, M.A.; Dalal, K.; Alain, T.; Balgi, A.D.; Forestieri, R.; Nodwell, M.; Rajadurai, C.V.; Gunaratnam, C.; et al. Structure-Activity Analysis of Niclosamide Reveals Potential Role for Cytoplasmic pH in Control of Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling. J. Biol. Chem. 2012, 287, 17530–17545. [Google Scholar] [CrossRef]
- Jin, Y.; Lu, Z.; Ding, K.; Li, J.; Du, X.; Chen, C.; Sun, X.; Wu, Y.; Zhou, J.; Pan, J. Antineoplastic Mechanisms of Niclosamide in Acute Myelogenous Leukemia Stem Cells: Inactivation of the NF-κB Pathway and Generation of Reactive Oxygen Species. Cancer Res. 2010, 70, 2516–2527. [Google Scholar] [CrossRef]
- Ren, X.; Duan, L.; He, Q.; Zhang, Z.; Zhou, Y.; Wu, D.; Pan, J.; Pei, D.; Ding, K. Identification of Niclosamide as a New Small-Molecule Inhibitor of the STAT3 Signaling Pathway. ACS Med. Chem. Lett. 2010, 1, 454–459. [Google Scholar] [CrossRef]
- Liu, C.; Lou, W.; Armstrong, C.; Zhu, Y.; Evans, C.P.; Gao, A.C. Niclosamide Suppresses Cell Migration and Invasion in Enzalutamide Resistant Prostate Cancer Cells via Stat3-AR Axis Inhibition. Prostate 2015, 75, 1341–1353. [Google Scholar] [CrossRef]
- Arend, R.C.; Londoño-Joshi, A.I.; Gangrade, A.; Katre, A.A.; Kurpad, C.; Li, Y.; Samant, R.S.; Li, P.-K.; Landen, C.N.; Yang, E.S.; et al. Niclosamide and Its Analogs Are Potent Inhibitors of Wnt/β-Catenin, mTOR and STAT3 Signaling in Ovarian Cancer. Oncotarget 2016, 7, 86803–86815. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.Y.; Yang, J.H.; Kim, N.H.; Lee, K.; Cha, Y.H.; Yun, J.S.; Kang, H.E.; Lee, Y.; Choi, J.; Kim, H.S.; et al. Anti-Helminthic Niclosamide Inhibits Ras-Driven Oncogenic Transformation via Activation of GSK-3. Oncotarget 2017, 8, 31856–31863. [Google Scholar] [CrossRef] [PubMed]
- Luo, F.; Luo, M.; Rong, Q.-X.; Zhang, H.; Chen, Z.; Wang, F.; Zhao, H.-Y.; Fu, L.-W. Niclosamide, an Antihelmintic Drug, Enhances Efficacy of PD-1/PD-L1 Immune Checkpoint Blockade in Non-Small Cell Lung Cancer. J. Immunother. Cancer 2019, 7, 245. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Greathouse, R.L.; Tiche, S.J.; Zhao, M.; He, B.; Li, Y.; Li, A.M.; Forgo, B.; Yip, M.; Li, A.; et al. Mitochondrial Uncoupling Induces Epigenome Remodeling and Promotes Differentiation in Neuroblastoma. Cancer Res. 2023, 83, 181–194. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Sennoune, S.R.; Dharmalingam-Nandagopal, G.; Sivaprakasam, S.; Bhutia, Y.D.; Ganapathy, V. Impact of Oncogenic Changes in P53 and KRAS on Macropinocytosis and Ferroptosis in Colon Cancer Cells and Anticancer Efficacy of Niclosamide with Differential Effects on These Two Processes. Cells 2024, 13, 951. [Google Scholar] [CrossRef]
- Schweizer, M.T.; Haugk, K.; McKiernan, J.S.; Gulati, R.; Cheng, H.H.; Maes, J.L.; Dumpit, R.F.; Nelson, P.S.; Montgomery, B.; McCune, J.S.; et al. A Phase I Study of Niclosamide in Combination with Enzalutamide in Men with Castration-Resistant Prostate Cancer. PLoS ONE 2018, 13, e0198389. [Google Scholar] [CrossRef]
- Walters Haygood, C.L.; Arend, R.C.; Gangrade, A.; Chettiar, S.; Regan, N.; Hassmann, C.J.; Li, P.-K.; Hidalgo, B.; Straughn, J.M.; Buchsbaum, D.J. Niclosamide Analogs for Treatment of Ovarian Cancer. Int. J. Gynecol. Cancer 2015, 25, 1377–1385. [Google Scholar] [CrossRef]
- Tang, Z.; Acuña, U.M.; Fernandes, N.F.; Chettiar, S.; Li, P.-K.; Blanco, E.C.D. Structure–Activity Relationship of Niclosamide Derivatives. Anticancer Res. 2017, 37, 2839–2843. [Google Scholar]
- Liu, Y.; Guerrero, D.Q.; Lechuga-Ballesteros, D.; Tan, M.; Ahmad, F.; Aleiwi, B.; Ellsworth, E.L.; Chen, B.; Chua, M.-S.; So, S. Lipid-Based Self-Microemulsion of Niclosamide Achieved Enhanced Oral Delivery and Anti-Tumor Efficacy in Orthotopic Patient-Derived Xenograft of Hepatocellular Carcinoma in Mice. Int. J. Nanomed. 2024, 19, 2639–2653. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Armstrong, C.M.; Ning, S.; Yang, J.C.; Lou, W.; Lombard, A.P.; Zhao, J.; Wu, C.-Y.; Yu, A.; Evans, C.P.; et al. ARVib Suppresses Growth of Advanced Prostate Cancer via Inhibition of Androgen Receptor Signaling. Oncogene 2021, 40, 5379–5392. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.; Mottamal, M.; Zhong, Q.; Bratton, M.; Zhang, C.; Guo, S.; Hossain, A.; Ma, P.; Zhang, Q.; Wang, G.; et al. Design, Synthesis, and Evaluation of Niclosamide Analogs as Therapeutic Agents for Enzalutamide-Resistant Prostate Cancer. Pharmaceuticals 2023, 16, 735. [Google Scholar] [CrossRef] [PubMed]
- Erickson, B.J.; Kirk, S.; Lee, Y.; Bathe, O.; Kearns, M.; Gerdes, C.; Rieger-Christ, K.; Lemmerman, J. The Cancer Genome Atlas Liver Hepatocellular Carcinoma Collection (TCGA-LIHC), Version 5; National Cancer Institute (NCI): Bethesda, MD, USA, 2016. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef]
- Liberzon, A.; Birger, C.; Thorvaldsdóttir, H.; Ghandi, M.; Mesirov, J.P.; Tamayo, P. The Molecular Signatures Database (MSigDB) Hallmark Gene Set Collection. Cell Syst. 2015, 1, 417–425. [Google Scholar] [CrossRef]
- Chang, Y.-W.; Yeh, T.-K.; Lin, K.-T.; Chen, W.-C.; Yao, H.-T.; Lan, S.-J.; Wu, Y.-S.; Hsieh, H.-P.; Chen, C.-M.; Chen, C.-T. Pharmacokinetics of Anti-SARS-CoV Agent Niclosamide and Its Analogs in Rats. J. Food Drug Anal. 2020, 14, 329–333. [Google Scholar] [CrossRef]
- Liu, C.; Armstrong, C.; Zhu, Y.; Lou, W.; Gao, A.C. Niclosamide Enhances Abiraterone Treatment via Inhibition of Androgen Receptor Variants in Castration Resistant Prostate Cancer. Oncotarget 2016, 7, 32210–32220. [Google Scholar] [CrossRef]
- Mook, R.A.; Wang, J.; Ren, X.-R.; Chen, M.; Spasojevic, I.; Barak, L.S.; Lyerly, H.K.; Chen, W. Structure-Activity Studies of Wnt/β-Catenin Inhibition in the Niclosamide Chemotype: Identification of Derivatives with Improved Drug Exposure. Bioorg. Med. Chem. 2015, 23, 5829–5838. [Google Scholar] [CrossRef]
- Gelderblom, H.; Verweij, J.; Nooter, K.; Sparreboom, A. Cremophor EL: The Drawbacks and Advantages of Vehicle Selection for Drug Formulation. Eur. J. Cancer Oxf. Engl. 1990 2001, 37, 1590–1598. [Google Scholar] [CrossRef]
- Hollingshead, M.G.; Alley, M.C.; Camalier, R.F.; Abbott, B.J.; Mayo, J.G.; Malspeis, L.; Grever, M.R. In Vivo Cultivation of Tumor Cells in Hollow Fibers. Life Sci. 1995, 57, 131–141. [Google Scholar] [CrossRef]
- Bridges, E.M.; Bibby, M.C.; Burchill, S.A. The Hollow Fiber Assay for Drug Responsiveness in the Ewing’s Sarcoma Family of Tumors. J. Pediatr. 2006, 149, 103–111. [Google Scholar] [CrossRef]
- Phillips, R.M.; Pearce, J.; Loadman, P.M.; Bibby, M.C.; Cooper, P.A.; Swaine, D.J.; Double, J.A. Angiogenesis in the Hollow Fiber Tumor Model Influences Drug Delivery to Tumor Cells: Implications for Anticancer Drug Screening Programs. Cancer Res. 1998, 58, 5263–5266. [Google Scholar] [PubMed]
- Temmink, O.H.; Prins, H.-J.; van Gelderop, E.; Peters, G.J. The Hollow Fibre Assay as a Model for in Vivo Pharmacodynamics of Fluoropyrimidines in Colon Cancer Cells. Br. J. Cancer 2007, 96, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Mi, Q.; Pezzuto, J.M.; Farnsworth, N.R.; Wani, M.C.; Kinghorn, A.D.; Swanson, S.M. Use of the in Vivo Hollow Fiber Assay in Natural Products Anticancer Drug Discovery. J. Nat. Prod. 2009, 72, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Chae, S.; Kim, Y.B.; Lee, J.-S.; Cho, H. Resistance to Paclitaxel in Hepatoma Cells Is Related to Static JNK Activation and Prohibition into Entry of Mitosis. Am. J. Physiol.-Gastrointest. Liver Physiol. 2012, 302, G1016–G1024. [Google Scholar] [CrossRef]
- Gibbons, J.A.; Ouatas, T.; Krauwinkel, W.; Ohtsu, Y.; van der Walt, J.-S.; Beddo, V.; de Vries, M.; Mordenti, J. Clinical Pharmacokinetic Studies of Enzalutamide. Clin. Pharmacokinet. 2015, 54, 1043–1055. [Google Scholar] [CrossRef]
- Díaz-González, Á.; Sapena, V.; Boix, L.; Brunet, M.; Torres, F.; LLarch, N.; Samper, E.; Millán, O.; Corominas, J.; Iserte, G.; et al. Pharmacokinetics and Pharmacogenetics of Sorafenib in Patients with Hepatocellular Carcinoma: Implications for Combination Trials. Liver Int. Off. J. Int. Assoc. Study Liver 2020, 40, 2476–2488. [Google Scholar] [CrossRef]
- Ducreux, M.; Abou-Alfa, G.K.; Bekaii-Saab, T.; Berlin, J.; Cervantes, A.; de Baere, T.; Eng, C.; Galle, P.; Gill, S.; Gruenberger, T.; et al. The Management of Hepatocellular Carcinoma. Current Expert Opinion and Recommendations Derived from the 24th ESMO/World Congress on Gastrointestinal Cancer, Barcelona, 2022. ESMO Open 2023, 8, 101567. [Google Scholar] [CrossRef]
- Pauk, K.; Zadražilová, I.; Imramovský, A.; Vinšová, J.; Pokorná, M.; Masaříková, M.; Čížek, A.; Jampílek, J. New Derivatives of Salicylamides: Preparation and Antimicrobial Activity against Various Bacterial Species. Bioorg. Med. Chem. 2013, 21, 6574–6581. [Google Scholar] [CrossRef]
- Kim, I.; Song, X.; Vig, B.S.; Mittal, S.; Shin, H.-C.; Lorenzi, P.J.; Amidon, G.L. A Novel Nucleoside Prodrug-Activating Enzyme: Substrate Specificity of Biphenyl Hydrolase-like Protein. Mol. Pharm. 2004, 1, 117–127. [Google Scholar] [CrossRef]
- Beauchamp, L.M.; Orr, G.F.; de Miranda, P.; Bumette, T.; Krenitsky, T.A. Amino Acid Ester Prodrugs of Acyclovir. Antivir. Chem. Chemother. 1992, 3, 157–164. [Google Scholar] [CrossRef]
- Kim, I.; Chu, X.; Kim, S.; Provoda, C.J.; Lee, K.-D.; Amidon, G.L. Identification of a Human Valacyclovirase: BIPHENYL HYDROLASE-LIKE PROTEIN AS VALACYCLOVIR HYDROLASE*. J. Biol. Chem. 2003, 278, 25348–25356. [Google Scholar] [CrossRef]
- Chida, K.; Oshi, M.; Roy, A.M.; Yachi, T.; Nara, M.; Yamada, K.; Matsuura, O.; Hashizume, T.; Endo, I.; Takabe, K. E2F Targets Score Is Associated with Cell Proliferation and Survival of Hepatocellular Carcinoma Patients. Surgery 2023, 174, 307–314. [Google Scholar] [CrossRef]
- Kido, T.; Lau, Y.-F.C. Androgen Receptor Variant 7 Exacerbates Hepatocarcinogenesis in a C-MYC-Driven Mouse HCC Model. Oncogenesis 2023, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Hu, Y.; Smith, D.E. Impact of Peptide Transporter 1 on the Intestinal Absorption and Pharmacokinetics of Valacyclovir after Oral Dose Escalation in Wild-Type and PepT1 Knockout Mice. Drug Metab. Dispos. Biol. Fate Chem. 2013, 41, 1867–1874. [Google Scholar] [CrossRef]
- McDonough, A.C.; Cheng, J.Y.; Mohammed, S.; Li, P.-K.; Bhutia, Y. Abstract 4479: Design, Synthesis, and Evaluation of Amino Acid Conjugated Niclosamide Prodrugs as a PepT1 Substrate. Cancer Res. 2024, 84, 4479. [Google Scholar] [CrossRef]
IC50 in µM | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Compound | SNU423 | SNU475 | HepG2 | THLE-2 | Primary Male Hepatocytes | |||||
IC50 | 95% CI | IC50 | 95% CI | IC50 | 95% CI | IC50 | 95% CI | IC50 | 95% CI | |
Niclosamide | 0.25 | 0.20–0.32 | 1.33 | 0.96–1.9 | 0.60 | 0.45–0.81 | 0.37 | 0.29–0.48 | 7.16 | 3.3–16.3 |
Compound #7 | 0.28 | 0.24–0.34 | 6.6 | 3.1–13.9 | 0.45 | 0.32–0.63 | 0.31 | 0.25–0.40 | >30 | ND |
Compound #11 | 0.58 | 0.44–0.76 | 0.89 | 0.62–1.3 | 1.86 | 1.3–2.8 | 0.56 | 0.16–2.2 | 9.47 | 2.6–37.8 |
Enzalutamide | 16.6 | 12.1–22.9 | 14.9 | 9.0–24.6 | >30 | ND 2 | >30 | ND | >30 | ND |
Sorafenib | 6.1 | 4.6–8.1 | 4.20 | 2.8–6.4 | 10.76 | 6.8–16.9 | >30 | ND | 5.10 | 1.2–20.4 |
Lenvatinib | >30 | 24.1–50.9 | 13.0 | 4.4–23.1 | >30 | ND | 25.13 | ND | >30 | ND |
Regorafenib | 5.5 | 4.1–7.4 | 1.63 | 0.77–3.5 | 11.90 | 7.7–18.2 | >30 | ND | >30 | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoelzen, E.J.; Radomska, H.S.; Kulp, S.K.; Adeluola, A.A.; Granchie, L.A.; Cheng, J.; Dauki, A.M.; Campbell, M.J.; Mohammed, S.; Xing, E.; et al. Valine–Niclosamide for Treatment of Androgen Receptor Splice Variant-Positive Hepatocellular Carcinoma. Cancers 2025, 17, 2535. https://doi.org/10.3390/cancers17152535
Hoelzen EJ, Radomska HS, Kulp SK, Adeluola AA, Granchie LA, Cheng J, Dauki AM, Campbell MJ, Mohammed S, Xing E, et al. Valine–Niclosamide for Treatment of Androgen Receptor Splice Variant-Positive Hepatocellular Carcinoma. Cancers. 2025; 17(15):2535. https://doi.org/10.3390/cancers17152535
Chicago/Turabian StyleHoelzen, Emma J., Hanna S. Radomska, Samuel K. Kulp, Adeoluwa A. Adeluola, Lauren A. Granchie, Jeffrey Cheng, Anees M. Dauki, Moray J. Campbell, Shabber Mohammed, Enming Xing, and et al. 2025. "Valine–Niclosamide for Treatment of Androgen Receptor Splice Variant-Positive Hepatocellular Carcinoma" Cancers 17, no. 15: 2535. https://doi.org/10.3390/cancers17152535
APA StyleHoelzen, E. J., Radomska, H. S., Kulp, S. K., Adeluola, A. A., Granchie, L. A., Cheng, J., Dauki, A. M., Campbell, M. J., Mohammed, S., Xing, E., Hai, M., Fukuda, M., Cheng, X., Phelps, M. A., Li, P.-K., & Coss, C. C. (2025). Valine–Niclosamide for Treatment of Androgen Receptor Splice Variant-Positive Hepatocellular Carcinoma. Cancers, 17(15), 2535. https://doi.org/10.3390/cancers17152535