Clinicopathological Features and Risk Stratification of Multiple-Classifier Endometrial Cancers: A Multicenter Study from Poland
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Molecular Classification and Immunohistochemistry (IHC)
2.3. DNA Extraction and POLE Mutation Analysis
2.4. Statistical Analysis
2.5. Ethical Considerations
3. Results
3.1. Prevalence of Multiple-Classifier Tumors
3.2. MMRd, p53abn, and MMRd-p53abn Comparison
3.3. POLEmut and Multiple-Classifier POLEmut Comparison
4. Discussion
- Non-endometrioid histology: 11.9% vs. 2.85% (OR = 3.78, 95% CI: 1.19–12.02, p = 0.018);
- Grade 3 tumors: 28.6% vs. 11.8% (OR = 3.26, 95% CI: 1.55–6.86, p = 0.002);
- High–intermediate/high-risk (HIR/HR) status per ESGO/ESTRO/ESP 2021 guidelines: 59.5% vs. 37.8% (OR = 2.81, 95% CI: 1.50–5.25, p = 0.001).
- FIGO III–IV in 75% (POLEmut-p53abn) and 40% (POLEmut-MMRd-p53abn), compared to 6.7% in classical POLEmut ECs [28];
- Grade 3 tumors in 75% vs. 6.7% (OR = 42.00; p = 0.005);
- Lymph node metastases in 50% vs. 3.3% (OR = 29.00; p = 0.013).
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EC | Endometrial cancer |
POLEmut | POLE ultramutated |
MMRd | Mismatch repair deficient |
p53abn | p53 abnormal |
NSMP | No specific molecular profile |
HIR/HR | High–intermediate/high-risk |
G3 | High-grade |
TCGA | The Cancer Genome Atlas |
LVSI | Lymphovascular space invasion |
IHC | Immunohistochemistry |
NGS | Next-generation sequencing |
VUS | Variants of unknown significance |
OS | Overall survival rate |
PFS | Progression-free survival |
ESGO/ESTRO/ESP | European Society of Gynaecological Oncology/European Society for Radiotherapy and Oncology/Europe Society of Pathology |
FIGO | International Federation of Gynecology and Obstetrics |
ProMISE | Proactive Molecular Risk Classifier for Endometrial Cancer |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Giaquinto, A.N.; Broaddus, R.R.; Jemal, A.; Siegel, R.L. The Changing Landscape of Gynecologic Cancer Mortality in the United States. Obstet. Gynecol. 2022, 139, 440–442. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA A Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Oaknin, A.; Bosse, T.J.; Creutzberg, C.L.; Giornelli, G.; Harter, P.; Joly, F.; Lorusso, D.; Marth, C.; Makker, V.; Mirza, M.R.; et al. Endometrial cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2022, 33, 860–877. [Google Scholar] [CrossRef] [PubMed]
- Setiawan, V.W.; Yang, H.P.; Pike, M.C.; McCann, S.E.; Yu, H.; Xiang, Y.B.; Wolk, A.; Wentzensen, N.; Weiss, N.S.; Webb, P.M.; et al. Type I and II endometrial cancers: Have they different risk factors? J. Clin. Oncol. 2013, 31, 2607–2618. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- American Cancer Society. Cancer Facts & Figures 2022. Available online: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2022.html (accessed on 25 June 2025).
- Cancer Genome Atlas Research Network; Kandoth, C.; Schultz, N.; Cherniack, A.D.; Akbani, R.; Liu, Y.; Shen, H.; Robertson, A.G.; Pashtan, I.; Shen, R.; et al. Integrated genomic characterization of endometrial carcinoma. Nature 2013, 497, 67–73, Erratum in Nature 2013, 500, 242. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Talhouk, A.; McConechy, M.K.; Leung, S.; Li-Chang, H.H.; Kwon, J.S.; Melnyk, N.; Yang, W.; Senz, J.; Boyd, N.; Karnezis, A.N.; et al. A clinically applicable molecular-based classification for endometrial cancers. Br. J. Cancer 2015, 113, 299–310. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bosse, T.; Nout, R.A.; McAlpine, J.N.; McConechy, M.K.; Britton, H.; Hussein, Y.R.; Gonzalez, C.; Ganesan, R.; Steele, J.C.; Harrison, B.T.; et al. Molecular Classification of Grade 3 Endometrioid Endometrial Cancers Identifies Distinct Prognostic Subgroups. Am. J. Surg. Pathol. 2018, 42, 561–568. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Talhouk, A.; McConechy, M.K.; Leung, S.; Yang, W.; Lum, A.; Senz, J.; Boyd, N.; Pike, J.; Anglesio, M.; Kwon, J.S.; et al. Confirmation of ProMisE: A simple, genomics-based clinical classifier for endometrial cancer. Cancer 2017, 123, 802–813. [Google Scholar] [CrossRef] [PubMed]
- Concin, N.; Matias-Guiu, X.; Vergote, I.; Cibula, D.; Mirza, M.R.; Marnitz, S.; Ledermann, J.; Bosse, T.; Chargari, C.; Fagotti, A.; et al. ESGO/ESTRO/ESP guidelines for the management of patients with endometrial carcinoma. Int. J. Gynecol. Cancer. 2021, 31, 12–39. [Google Scholar] [CrossRef] [PubMed]
- Stelloo, E.; Nout, R.A.; Osse, E.M.; Jürgenliemk-Schulz, I.J.; Jobsen, J.J.; Lutgens, L.C.; van der Steen-Banasik, E.M.; Nijman, H.W.; Putter, H.; Bosse, T.; et al. Improved Risk Assessment by Integrating Molecular and Clinicopathological Factors in Early-stage Endometrial Cancer-Combined Analysis of the PORTEC Cohorts. Clin. Cancer Res. 2016, 22, 4215–4224. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, A.; McAlpine, J.N. Molecular Profiling of Endometrial Cancer From TCGA to Clinical Practice. J. Natl. Compr. Cancer Netw. 2023, 21, 210–216. [Google Scholar] [CrossRef] [PubMed]
- León-Castillo, A.; Gilvazquez, E.; Nout, R.; Smit, V.T.; McAlpine, J.N.; McConechy, M.; Kommoss, S.; Brucker, S.Y.; Carlson, J.W.; Epstein, E.; et al. Clinicopathological and molecular characterisation of ‘multiple-classifier’ endometrial carcinomas. J. Pathol. 2020, 250, 312–322. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De Vitis, L.A.; Schivardi, G.; Caruso, G.; Fumagalli, C.; Vacirca, D.; resa Te Achilarre, M.; Aloisi, A.; Garbi, A.; Zanagnolo, V.; Aletti, G.; et al. Clinicopathological Characteristics of Multiple-Classifier Endometrial Cancers: A Retrospective Multi-Institutional Study. Int. J. Gynecol. Cancer 2024, 34, 229–238. [Google Scholar] [CrossRef]
- Zammarrelli, W.A., 3rd; Kim, S.H.; Da Cruz Paula, A.; Rios-Doria, E.V.; Ehmann, S.; Yeoshoua, E.; Hanlon, E.J.; Zhou, Q.; Iasonos, A.; Alektiar, K.M.; et al. Risk Stratification of Stage I Grade 3 Endometrioid Endometrial Carcinoma in the Era of Molecular Classification. JCO Precis Oncol. 2022, 6, e2200194. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Michalova, K.; Strakova-Peterikova, A.; Ondic, O.; Vanecek, T.; Michal, M.; Hejhalova, N.; Holub, P.; Slavik, P.; Hluchy, A.; Gettse, P.; et al. Next-generation sequencing in the molecular classification of endometrial carcinomas: Experience with 270 cases suggesting a potentially more aggressive clinical behavior of multiple classifier endometrial carcinomas. Virchows Arch. 2024. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Murali, R.; Delair, D.F.; Bean, S.M.; Abu-Rustum, N.R.; Soslow, R.A. Evolving Roles of Histologic Evaluation and Molecular/Genomic Profiling in the Management of Endometrial Cancer. J. Natl. Compr. Cancer Netw. 2018, 16, 201–209. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- WHO Classification of Tumours Editorial Board. Female Genital Tumours, 5th ed.; International Agency for Research on Cancer: Lyon, France, 2020. [Google Scholar]
- Kommoss, S.; McConechy, M.K.; Kommoss, F.; Leung, S.; Bunz, A.; Magrill, J.; Britton, H.; Kommoss, F.; Grevenkamp, F.; Karnezis, A.; et al. Final validation of the ProMisE molecular classifier for endometrial carcinoma in a large population-based case series. Ann. Oncol. 2018, 29, 1180–1188. [Google Scholar] [CrossRef] [PubMed]
- ClinVar. Available online: https://www.ncbi.nlm.nih.gov/clinvar/ (accessed on 25 June 2025).
- OncoKB. Memorial Sloan Kettering Cancer Center. Available online: https://www.oncokb.org/ (accessed on 25 June 2025).
- Varsome. The Human Genomics Community. Available online: https://www.varsome.com/ (accessed on 25 June 2025).
- Szatkowski, W.; Kluz, T.; Cieślak-Steć, M.; Śliwińska, M.; Nowak-Jastrząb, M.; Winkler, I.; Tomaszewski, J.; Blecharz, P. Analysis of Differences in the Classification of Endometrial Cancer Patients in Poland. Cancers 2025, 17, 213. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, Y.; Wu, S.F.; Bao, W. Molecular subtypes of endometrial cancer: Implications for adjuvant treatment strategies. Int. J. Gynaecol. Obstet. 2024, 164, 436–459. [Google Scholar] [CrossRef] [PubMed]
- Vermij, L.; Smit, V.; Horeweg, N.; Bosse, T. Molecular Classification in Endometrial Cancer: Opportunities and Challenges. J. Clin. Pathol. 2021, 74, 345–352. [Google Scholar] [CrossRef]
- Bogani, G.; Murgia, F.; Ditto, A.; Raspagliesi, F. Outcomes of Multiple-Classifier Endometrial Cancer: A Retrospective Study. Eur. J. Surg. Oncol. 2024, 50, 107269. [Google Scholar] [CrossRef]
- Kato, M.K.; Fujii, E.; Asami, Y.; Momozawa, Y.; Hiranuma, K.; Komatsu, M.; Hamamoto, R.; Ebata, T.; Matsumoto, K.; Ishikawa, M.; et al. Clinical features and impact of p53 status on sporadic mismatch repair deficiency and Lynch syndrome in uterine cancer. Cancer Sci. 2024, 115, 1646–1655. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jamieson, A.; Thompson, E.F.; Huvila, J.; Leung, S.; Lum, A.; Morin, C.; Ennour-Idrissi, K.; Sebastianelli, A.; Renaud, M.C.; Gregoire, J.; et al. Endometrial carcinoma molecular subtype correlates with the presence of lymph node metastases. Gynecol. Oncol. 2022, 165, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Mirza, M.R.; Chase, D.M.; Slomovitz, B.M.; dePont Christensen, R.; Novák, Z.; Black, D.; Gilbert, L.; Sharma, S.; Valabrega, G.; Landrum, L.M.; et al. RUBY Investigators. Dostarlimab for Primary Advanced or Recurrent Endometrial Cancer. N. Engl. J. Med. 2023, 388, 2145–2158. [Google Scholar] [CrossRef] [PubMed]
- Léon-Castillo, A. Update in the molecular classification of endometrial carcinoma. Int. J. Gynecol. Cancer. 2023, 33, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Dedeurwaerdere, F.; Claes, K.B.; Van Dorpe, J.; Rottiers, I.; Van der Meulen, J.; Breyne, J.; Swaerts, K.; Martens, G. Comparison of microsatellite instability detection by immunohistochemistry and molecular techniques in colorectal and endometrial cancer. Sci. Rep. 2021, 11, 12880. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Variable | Group | MMRd (A) (N = 246) | p53abn (B) (N = 156) | MMRd-p53abn (C) (N = 42) | p*-Value (A vs. C) | OR (95% CI, A vs. C) | p*-Value (B vs. C) | MMRd + MMRd-p53abn (N = 288) |
---|---|---|---|---|---|---|---|---|
Age at surgery (years) | Mean (SD) | 66.05 (9.62) | 68.19 (9.90) | 67.81 (11.85) | 0.291 | - | 0.718 | 66.32 (9.99%) |
<60 years | 72 (29.27%) | 24 (15.38%) | 11 (26.19%) | 0.300 | - | 0.098 | 83 (28.82%) | |
60–70 years | 80 (32.52%) | 51 (32.69%) | 9 (21.43%) | 89 (30.90%) | ||||
>70 years | 93 (37.80%) | 77 (49.36%) | 22 (52.38%) | 115 (39.93%) | ||||
Unknown | 1 (0.41%) | 0 (0.00%) | 0 (0.00%) | 1 (0.35%) | ||||
Histology | Endometrioid | 239 (97.15%) | 101 (64.74%) | 37 (88.10%) | 0.018 | 3.78 (1.19–12.02) | 0.002 | 276 (95.83%) |
Non-endometrioid | 7 (2.85%) | 55 (35.26%) | 5 (11.90%) | 12 (4.17%) | ||||
Grade | G1–G2 | 216 (87.80%) | 91 (58.33%) | 28 (66.67%) | 0.002 | 3.26 (1.55–6.86) | 0.170 | 244 (84.72%) |
G3 | 29 (11.79%) | 48 (30.77%) | 12 (28.57%) | 41 (14.24%) | ||||
Unknown | 1 (0.41%) | 17 (10.90%) | 2 (4.76%) | 3 (1.04%) | ||||
LVSI | Absent or focal | 181 (73.58%) | 102 (65.38%) | 25 (59.52%) | 0.054 | 1.88 (0.96–3.66) | 0.818 | 206 (71.53%) |
Substantial | 64 (26.02%) | 51 (32.69%) | 17 (40.48%) | 81 (28.13%) | ||||
Unknown | 1 (0.41%) | 2 (1.28%) | 0 (0.00%) | 1 (0.35%) | ||||
Myometrial invasion | <1/2 | 140 (56.91%) | 81 (51.92%) | 18 (42.86%) | 0.091 | 1.81 (0.94–3.49) | 0.277 | 158 (54.86%) |
≥1/2 | 105 (42.68%) | 75 (48.08%) | 23 (54.76%) | 128 (44.44%) | ||||
Unknown | 1 (0.41%) | 0 (0.00%) | 1 (2.38%) | 2 (0.69%) | ||||
Cervical involvement | No | 177 (71.95%) | 101 (64.74%) | 27 (64.29%) | 0.359 | 1.35 (0.67–2.71) | 1.000 | 204 (70.83%) |
Yes | 68 (27.64%) | 55 (35.26%) | 14 (33.33%) | 82 (28.47%) | ||||
Unknown | 1 (0.41%) | 0 (0.00%) | 1 (2.38%) | 2 (0.69%) | ||||
Lymph node metastases | No | 208 (84.55%) | 124 (79.49%) | 31 (73.81%) | 0.067 | 3.02 (1.08–8.45) | 0.721 | 239 (82.99%) |
Yes | 13 (5.28%) | 16 (10.26%) | 6 (14.29%) | 19 (6.60%) | ||||
Unknown | 25 (10.16%) | 16 (10.26%) | 5 (11.90%) | 30 (10.42%) | ||||
Distant metastases | No | 236 (95.93%) | 145 (92.95%) | 41 (97.62%) | 1.000 | - | 0.208 | 277 (96.18%) |
Yes | 3 (1.22%) | 8 (5.13%) | 0 (0.00%) | 3 (1.04%) | ||||
Unknown | 7 (2.85%) | 3 (1.92%) | 1 (2.38%) | 8 (2.78%) | ||||
FIGO stage | Early (I–II) | 205 (83.33%) | 111 (71.15%) | 31 (73.81%) | 0.192 | 2.13 (0.96–4.72) | 0.854 | 236 (81.94%) |
Advanced (III–IV) | 34 (13.82%) | 42 (26.92%) | 10 (23.81%) | 44 (15.28%) | ||||
Unknown | 7 (2.85%) | 3 (1.92%) | 1 (2.38%) | 8 (2.78%) | ||||
Risk group | Low or intermediate | 153 (62.20%) | 46 (29.49%) | 17 (40.48%) | 0.001 | 2.81 (1.50–5.25) | 0.319 | 170 (59.03%) |
High–intermediate and higher | 93 (37.80%) | 110 (70.51%) | 25 (59.52%) | 118 (40.97%) |
Variable | Group | POLEmut (N = 30) | POLEmut-MMRd (N = 18) | POLEmut-p53abn (N = 4) | POLEmut-MMRd-p53abn (N = 10) | p-Value (POLEmut vs. POLEmut-MMRd) | p-Value (POLEmut vs. POLEmut-p53abn) | OR (95% CI, POLEmut vs. POLEmut-p53abn) | p-Value (POLEmut vs. POLEmut-MMRd-p53abn) | Total (N = 62) |
---|---|---|---|---|---|---|---|---|---|---|
Grade | G3 | 2 (6.67%) | 3 (16.67%) | 3 (75.00%) | 2 (20.00%) | 0.198 | 0.005 * | 42.00 (2.87–614.8) | 0.247 | 10 (16.13%) |
Lymph node metastases | Yes | 1 (3.33%) | 1 (5.56%) | 2 (50.00%) | 3 (30.00%) | 1.000 | 0.013 | 29.00 (1.77–475.3) | 0.192 | 7 (11.29%) |
FIGO stage | Advanced (III–IV) | 2 (6.67%) | 2 (11.11%) | 3 (75.00%) | 4 (40.00%) | 1.000 | 0.005 * | 42.00 (2.87–614.8) | 0.033 * | 11 (17.74%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szatkowski, W.; Nowak-Jastrząb, M.; Kluz, T.; Kmieć, A.; Cieślak-Steć, M.; Śliwińska, M.; Winkler, I.; Tomaszewski, J.; Jakubowicz, J.; Pacholczak-Madej, R.; et al. Clinicopathological Features and Risk Stratification of Multiple-Classifier Endometrial Cancers: A Multicenter Study from Poland. Cancers 2025, 17, 2483. https://doi.org/10.3390/cancers17152483
Szatkowski W, Nowak-Jastrząb M, Kluz T, Kmieć A, Cieślak-Steć M, Śliwińska M, Winkler I, Tomaszewski J, Jakubowicz J, Pacholczak-Madej R, et al. Clinicopathological Features and Risk Stratification of Multiple-Classifier Endometrial Cancers: A Multicenter Study from Poland. Cancers. 2025; 17(15):2483. https://doi.org/10.3390/cancers17152483
Chicago/Turabian StyleSzatkowski, Wiktor, Małgorzata Nowak-Jastrząb, Tomasz Kluz, Aleksandra Kmieć, Małgorzata Cieślak-Steć, Magdalena Śliwińska, Izabela Winkler, Jacek Tomaszewski, Jerzy Jakubowicz, Renata Pacholczak-Madej, and et al. 2025. "Clinicopathological Features and Risk Stratification of Multiple-Classifier Endometrial Cancers: A Multicenter Study from Poland" Cancers 17, no. 15: 2483. https://doi.org/10.3390/cancers17152483
APA StyleSzatkowski, W., Nowak-Jastrząb, M., Kluz, T., Kmieć, A., Cieślak-Steć, M., Śliwińska, M., Winkler, I., Tomaszewski, J., Jakubowicz, J., Pacholczak-Madej, R., & Blecharz, P. (2025). Clinicopathological Features and Risk Stratification of Multiple-Classifier Endometrial Cancers: A Multicenter Study from Poland. Cancers, 17(15), 2483. https://doi.org/10.3390/cancers17152483