De-Escalating Anticancer Treatment: Watch Your Step
Abstract
Simple Summary
Abstract
1. Background
2. De-Escalation in the Clinical Reality
2.1. Breast Cancer
2.2. Colorectal Cancer
2.3. Lung Cancer
2.4. Head and Neck Cancer
2.5. Ovarian Cancer
2.6. Prostate Cancer
3. Treatment De-Escalation—Limits of the Theory
4. Final Remarks and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bouche, G.; Gilbert, D.; Quartagno, M.; Dehbi, H.M.; Merrick, S.; Barjesteh van Waalwijk van Doorn-Khosrovani, S.; Stephens, R.; Parmar, M.; Langley, R.E. Determining the Optimal Use of Approved Drugs in Oncology. Lancet Oncol. 2025, 26, e282–e294. [Google Scholar] [CrossRef]
- Roncato, R.; Bignucolo, A.; Peruzzi, E.; Montico, M.; De Mattia, E.; Foltran, L.; Guardascione, M.; D’Andrea, M.; Favaretto, A.; Puglisi, F.; et al. Clinical Benefits and Utility of Pretherapeutic Dpyd and Ugt1a1 Testing in Gastrointestinal Cancer: A Secondary Analysis of the Prepare Randomized Clinical Trial. JAMA Netw. Open 2024, 7, e2449441. [Google Scholar] [CrossRef]
- Stetson, D.; Labrousse, P.; Russell, H.; Shera, D.; Abbosh, C.; Dougherty, B.; Barrett, J.C.; Hodgson, D.; Hadfield, J. Next-Generation Molecular Residual Disease Assays: Do We Have the Tools to Evaluate Them Properly? J. Clin. Oncol. 2024, 42, 2736–2740. [Google Scholar] [CrossRef]
- Ignatiadis, M.; Sledge, G.W.; Jeffrey, S.S. Liquid Biopsy Enters the Clinic—Implementation Issues and Future Challenges. Nat. Rev. Clin. Oncol. 2021, 18, 297–312. [Google Scholar] [CrossRef]
- Sparano, J.A.; Gray, R.J.; Makower, D.F.; Pritchard, K.I.; Albain, K.S.; Hayes, D.F.; Geyer, C.E., Jr.; Dees, E.C.; Perez, E.A.; Olson, J.A., Jr.; et al. Prospective Validation of a 21-Gene Expression Assay in Breast Cancer. N. Engl. J. Med. 2015, 373, 2005–2014. [Google Scholar] [CrossRef]
- Kalinsky, K.; Barlow, W.E.; Gralow, J.R.; Meric-Bernstam, F.; Albain, K.S.; Hayes, D.F.; Lin, N.U.; Perez, E.A.; Goldstein, L.J.; Chia, S.K.L.; et al. 21-Gene Assay to Inform Chemotherapy Benefit in Node-Positive Breast Cancer. N. Engl. J. Med. 2021, 385, 2336–2347. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, W.; Hu, X.; Yi, M.; Ye, C.; Yao, G. Short-Duration Versus 1-Year Adjuvant Trastuzumab in Early Her2 Positive Breast Cancer: A Meta-Analysis of Randomized Controlled Trials. Cancer Treat. Rev. 2019, 75, 12–19. [Google Scholar] [CrossRef]
- Earl, H.M.; Hiller, L.; Dunn, J.A.; Conte, P.F.; D’Amico, R.; Guarneri, V.; Joensuu, H.; Huttunen, T.; Georgoulias, V.; Abraham, J.; et al. Lba11 Individual Patient Data Meta-Analysis of 5 Non-Inferiority Rcts of Reduced Duration Single Agent Adjuvant Trastuzumab in the Treatment of Her2 Positive Early Breast Cancer. Ann. Oncol. 2021, 32, S1283. [Google Scholar] [CrossRef]
- Tolaney, S.M.; Barry, W.T.; Dang, C.T.; Yardley, D.A.; Moy, B.; Marcom, P.K.; Albain, K.S.; Rugo, H.S.; Ellis, M.; Shapira, I.; et al. Adjuvant Paclitaxel and Trastuzumab for Node-Negative, HER2-Positive Breast Cancer. N. Engl. J. Med. 2015, 372, 134–141. [Google Scholar] [CrossRef]
- Hanna, C.R.; Boyd, K.A.; Wincenciak, J.; Graham, J.; Iveson, T.; Jones, R.J.; Wilson, R. Do Clinical Trials Change Practice? A Longitudinal, International Assessment of Colorectal Cancer Prescribing Practices. Cancer Treat. Res. Commun. 2021, 28, 100445. [Google Scholar] [CrossRef]
- Grothey, A.; Sobrero, A.F.; Shields, A.F.; Yoshino, T.; Paul, J.; Taieb, J.; Souglakos, J.; Shi, Q.; Kerr, R.; Labianca, R.; et al. Duration of Adjuvant Chemotherapy for Stage III Colon Cancer. N. Engl. J. Med. 2018, 378, 1177–1188. [Google Scholar] [CrossRef]
- Gallois, C.; Sroussi, M.; Andre, T.; Mouillet-Richard, S.; Agueeff, N.; Mulot, C.; Vernerey, D.; Louvet, C.; Bachet, J.B.; Dourthe, L.M.; et al. Prognostic Models From Transcriptomic Signatures of the Tumor Microenvironment and Cell Cycle in Stage III Colon Cancer From PETACC-8 and IDEA-France Trials. J. Clin. Oncol. 2025, 43, 1765–1776. [Google Scholar] [CrossRef]
- Kotani, D.; Oki, E.; Nakamura, Y.; Yukami, H.; Mishima, S.; Bando, H.; Shirasu, H.; Yamazaki, K.; Watanabe, J.; Kotaka, M.; et al. Molecular Residual Disease and Efficacy of Adjuvant Chemotherapy in Patients with Colorectal Cancer. Nat. Med. 2023, 29, 127–134. [Google Scholar] [CrossRef]
- Tie, J.; Cohen, J.D.; Lahouel, K.; Lo, S.N.; Wang, Y.; Kosmider, S.; Wong, R.; Shapiro, J.; Lee, M.; Harris, S.; et al. Circulating Tumor DNA Analysis Guiding Adjuvant Therapy in Stage II Colon Cancer. N. Engl. J. Med. 2022, 386, 2261–2272. [Google Scholar] [CrossRef]
- Tabernero, J.; Grothey, A.; Van Cutsem, E.; Yaeger, R.; Wasan, H.; Yoshino, T.; Desai, J.; Ciardiello, F.; Loupakis, F.; Hong, Y.S.; et al. Encorafenib Plus Cetuximab as a New Standard of Care for Previously Treated BRAF V600E-Mutant Metastatic Colorectal Cancer: Updated Survival Results and Subgroup Analyses from the BEACON Study. J. Clin. Oncol. 2021, 39, 273–284. [Google Scholar] [CrossRef]
- Ros, J.; Matito, J.; Villacampa, G.; Comas, R.; Garcia, A.; Martini, G.; Baraibar, I.; Saoudi, N.; Salva, F.; Martin, A.; et al. Plasmatic BRAF-V600E Allele Fraction as a Prognostic Factor in Metastatic Colorectal Cancer Treated with BRAF Combinatorial Treatments. Ann. Oncol. 2023, 34, 543–552. [Google Scholar] [CrossRef]
- Morris, V.K.; Yothers, G.; Kopetz, S.; Puhalla, S.L.; Lucas, P.C.; Iqbal, A.; Boland, P.M.; Deming, D.A.; Scott, A.J.; Lim, H.J.; et al. Phase II Results of Circulating Tumor DNA as a Predictive Biomarker in Adjuvant Chemotherapy in Patients with Stage II Colon Cancer: NRG-GI005 (COBRA) Phase II/III Study. J. Clin. Oncol. 2024, 42, 5. [Google Scholar] [CrossRef]
- Cervantes, A.; Martinelli, E.; Esmo Guidelines Committee. Updated Treatment Recommendation for Third-Line Treatment in Advanced Colorectal Cancer from the ESMO Metastatic Colorectal Cancer Living Guideline. Ann. Oncol. 2024, 35, 241–243. [Google Scholar] [CrossRef]
- Dong, S.; Wang, Z.; Zhang, J.-T.; Yan, B.; Zhang, C.; Gao, X.; Sun, H.; Li, Y.-S.; Yan, H.-H.; Tu, H.-Y.; et al. Circulating Tumor DNA-Guided De-Escalation Targeted Therapy for Advanced Non−Small Cell Lung Cancer: A Nonrandomized Controlled Trial. JAMA Oncol. 2024, 10, 932–940. [Google Scholar] [CrossRef]
- Remon, J.; Bortolot, M.; Bironzo, P.; Cortiula, F.; Menis, J.; Brandao, M.; Naidoo, J.; van Geel, R.; Reguart, N.; Arrieta, O.; et al. De-Escalation Strategies With Immune Checkpoint Blockers in Non-Small Cell Lung Cancer: Do We Already Have Enough Evidence? J. Clin. Oncol. 2025, 43, 1148–1156. [Google Scholar] [CrossRef]
- Bryant, A.K.; Sankar, K.; Zhao, L.; Strohbehn, G.W.; Elliott, D.; Moghanaki, D.; Kelley, M.J.; Ramnath, N.; Green, M.D. De-escalating Adjuvant Durvalumab Treatment Duration in Stage III Non-Small Cell Lung Cancer. Eur. J. Cancer 2022, 171, 55–63. [Google Scholar] [CrossRef]
- Pandruvada, S.; Kessler, R.; Thai, A. Head and Neck Cancer Treatment in the Era of Molecular Medicine. Adv. Cancer Res. 2023, 160, 205–252. [Google Scholar]
- Rosenberg, A.J.; Vokes, E.E. Optimizing Treatment De-Escalation in Head and Neck Cancer: Current and Future Perspectives. Oncologist 2021, 26, 40–48. [Google Scholar] [CrossRef]
- Morse, R.T.; Nelson, T.J.; Liu, H.C.; Sangchan, P.; Chitti, B.; Thompson, C.A.; Henderson, G.; Williamson, C.W.; Todd, J.R.; Prajapati, D.P.; et al. Redefining Candidates for Deintensification in Locoregionally Advanced P16+ Oropharyngeal Cancer Based on Relative Risk. Int. J. Radiat. Oncol. Biol. Phys. 2025, 121, 684–692. [Google Scholar] [CrossRef]
- Caruso, G.; Coleman, R.L.; Aletti, G.; Multinu, F.; Botticelli, A.; Palaia, I.; Cliby, W.; Colombo, N. Systemic Therapy De-Escalation in Advanced Ovarian Cancer: A New Era on the Horizon? Int. J. Gynecol. Cancer 2023, 33, 1448–1457. [Google Scholar] [CrossRef]
- Akamatsu, S.; Naito, Y.; Nagayama, J.; Sano, Y.; Inoue, S.; Matsuo, K.; Sano, T.; Ishida, S.; Matsukawa, Y.; Kato, M. Treatment Escalation and De-Escalation of De-Novo Metastatic Castration-Sensitive Prostate Cancer. Nagoya J. Med. Sci. 2024, 86, 169–180. [Google Scholar]
- Morote, J.; Aguilar, A.; Planas, J.; Trilla, E. Definition of Castrate Resistant Prostate Cancer: New Insights. Biomedicines 2022, 10, 689. [Google Scholar] [CrossRef]
- Fizazi, K.; Foulon, S.; Carles, J.; Roubaud, G.; McDermott, R.; Fléchon, A.; Tombal, B.; Supiot, S.; Berthold, D.; Ronchin, P.; et al. Abiraterone Plus Prednisone Added to Androgen Deprivation Therapy and Docetaxel in De Novo Metastatic Castration-Sensitive Prostate Cancer (Peace-1): A Multicentre, Open-Label, Randomised, Phase 3 Study with a 2 × 2 Factorial Design. Lancet 2022, 399, 1695–1707. [Google Scholar] [CrossRef]
- Swami, U.; Graf, R.P.; Nussenzveig, R.H.; Fisher, V.; Tukachinsky, H.; Schrock, A.B.; Li, G.; Ross, J.S.; Sayegh, N.; Tripathi, N.; et al. SPOP Mutations as a Predictive Biomarker for Androgen Receptor Axis-Targeted Therapy in De Novo Metastatic Castration-Sensitive Prostate Cancer. Clin. Cancer Res. 2022, 28, 4917–4925. [Google Scholar] [CrossRef]
- Kissel, M.; Krhili, S.L.; Minsat, M.; El Ayachy, R.; Bringer, S.; Lahmi, L.; Porte, J.; Labib, A.; Graff, P.; Crehange, G. Dose-Escalation in Prostate Cancer: Results of Randomized Trials. Cancer Radiother. 2022, 26, 899–904. [Google Scholar] [CrossRef]
- Nielson, C.M.; Bylsma, L.C.; Fryzek, J.P.; Saad, H.A.; Crawford, J. Relative Dose Intensity of Chemotherapy and Survival in Patients with Advanced Stage Solid Tumor Cancer: A Systematic Review and Meta-Analysis. Oncologist 2021, 26, e1609–e1618. [Google Scholar] [CrossRef]
- Chen, N. Impact of Anthracyclines in High Genomic Risk Node-Negative HR+/HER2- Breast Cancer. Available online: https://sabcs.org/Portals/0/Documents/Embargoed/GS3-03%20Embargoed.pdf?ver=i2jS4VEzTIiDPEWdqDHRwA%3d%3d (accessed on 15 June 2025).
- Hoog, C.; Mehra, N.; Maliepaard, M.; Bol, K.; Gelderblom, H.; Sonke, G.S.; de Langen, A.J.; van de Donk, N.; Janssen, J.; Minnema, M.C.; et al. Dose Selection of Novel Anticancer Drugs: Exposing the Gap Between Selected and Required Doses. Lancet Oncol. 2024, 25, e340–e351. [Google Scholar] [CrossRef]
- Slamon, D.; Lipatov, O.; Nowecki, Z.; McAndrew, N.; Kukielka-Budny, B.; Stroyakovskiy, D.; Yardley, D.A.; Huang, C.S.; Fasching, P.A.; Crown, J.; et al. Ribociclib plus Endocrine Therapy in Early Breast Cancer. N. Engl. J. Med. 2024, 390, 1080–1091. [Google Scholar] [CrossRef]
- Johnston, S.R.D.; Harbeck, N.; Hegg, R.; Toi, M.; Martin, M.; Shao, Z.M.; Zhang, Q.Y.; Martinez Rodriguez, J.L.; Campone, M.; Hamilton, E.; et al. Abemaciclib Combined With Endocrine Therapy for the Adjuvant Treatment of HR+, HER2-, Node-Positive, High-Risk, Early Breast Cancer (monarchE). J. Clin. Oncol. 2020, 38, 3987–3998. [Google Scholar] [CrossRef]
- Malmberg, R.; Zietse, M.; Dumoulin, D.W.; Hendrikx, J.; Aerts, J.; van der Veldt, A.A.M.; Koch, B.C.P.; Sleijfer, S.; van Leeuwen, R.W.F. Alternative Dosing Strategies for Immune Checkpoint Inhibitors to Improve Cost-Effectiveness: A Special Focus on Nivolumab and Pembrolizumab. Lancet Oncol. 2022, 23, e552–e561. [Google Scholar] [CrossRef]
- Wesevich, A.; Goldstein, D.A.; Paydary, K.; Peer, C.J.; Figg, W.D.; Ratain, M.J. Interventional Pharmacoeconomics for Immune Checkpoint Inhibitors Through Alternative Dosing Strategies. Br. J. Cancer 2023, 129, 1389–1396. [Google Scholar] [CrossRef]
- Cercek, A. Neoadjuvant Treatment of Mismatch Repair-Deficient Colon Cancer—Clinically Meaningful? N. Engl. J. Med. 2024, 390, 2024–2025. [Google Scholar] [CrossRef]
- Chalabi, M.; Verschoor, Y.L.; Tan, P.B.; Balduzzi, S.; Van Lent, A.U.; Grootscholten, C.; Dokter, S.; Buller, N.V.; Grotenhuis, B.A.; Kuhlmann, K.; et al. Neoadjuvant Immunotherapy in Locally Advanced Mismatch Repair-Deficient Colon Cancer. N. Engl. J. Med. 2024, 390, 1949–1958. [Google Scholar] [CrossRef]
- Meng, L.-F.; Huang, J.-F.; Luo, P.-H.; Huang, S.-X.; Wang, H.-L. The Efficacy and Safety of Immune Checkpoint Inhibitor Plus Chemotherapy in Patients with Advanced Non-Small-Cell Lung Cancer: A Meta-Analysis. Investig. New Drugs 2022, 40, 810–817. [Google Scholar] [CrossRef]
- Bazarbachi, A.-H.; Magrini, N.; Aziz, Z.; Fojo, T. Evidence for a Reduction in Number of Cycles of Immune Checkpoint Inhibitors. Lancet Oncol. 2025, 26, 9–11. [Google Scholar] [CrossRef]
- Cascone, T.; Awad, M.M.; Spicer, J.D.; He, J.; Lu, S.; Sepesi, B.; Tanaka, F.; Taube, J.M.; Cornelissen, R.; Havel, L.; et al. Perioperative Nivolumab in Resectable Lung Cancer. N. Engl. J. Med. 2024, 390, 1756–1769. [Google Scholar] [CrossRef]
- Gluz, O.; Nitz, U.; Kolberg-Liedtke, C.; Prat, A.; Christgen, M.; Kuemmel, S.; Mohammadian, M.P.; Gebauer, D.; Kates, R.; Paré, L.; et al. De-escalated Neoadjuvant Chemotherapy in Early Triple-Negative Breast Cancer (TNBC): Impact of Molecular Markers and Final Survival Analysis of the WSG-ADAPT-TN Trial. Clin. Cancer Res. 2022, 28, 4995–5003. [Google Scholar] [CrossRef]
- Adjuvant Pembrolizumab and Chemotherapy or Surveillance in Early Triple Negative Breast Cancer with High Stromal Tumor-Infiltrating Lymphocytes (TILs) Score. 2023. Available online: https://clinicaltrials.gov/study/NCT06078384 (accessed on 30 January 2025).
- Baxter, N.N.; Kennedy, E.B.; Bergsland, E.; Berlin, J.; George, T.J.; Gill, S.; Gold, P.J.; Hantel, A.; Jones, L.; Lieu, C.; et al. Adjuvant Therapy for Stage II Colon Cancer: ASCO Guideline Update. J. Clin. Oncol. 2022, 40, 892–910. [Google Scholar] [CrossRef]
- Rosberg, V.; Jessen, M.; Qvortrup, C.; Smith, H.G.; Krarup, P.M. Impact of Adjuvant Chemotherapy on Long-Term Overall Survival in Patients with High-Risk Stage II Colon Cancer: A Nationwide Cohort Study. Acta Oncol. 2023, 62, 1076–1082. [Google Scholar] [CrossRef]
- Schrag, D.; Shi, Q.; Weiser, M.R.; Gollub, M.J.; Saltz, L.B.; Musher, B.L.; Goldberg, J.; Baghdadi, T.A.; Goodman, K.A.; McWilliams, R.R.; et al. Preoperative Treatment of Locally Advanced Rectal Cancer. N. Engl. J. Med. 2023, 389, 322–334. [Google Scholar] [CrossRef]
- Garattini, S.K.; Garattini, S.K.; Basile, D.; Bonotto, M.; Ongaro, E.; Porcu, L.; Corvaja, C.; Cattaneo, M.; Andreotti, V.J.; Lisanti, C.; et al. Drug Holidays and Overall Survival of Patients with Metastatic Colorectal Cancer. Cancers 2021, 13, 3504. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boige, V.; Blons, H.; François, E.; Ben Abdelghani, M.; Phelip, J.M.; Le Brun-Ly, V.; Mineur, L.; Galais, M.P.; Villing, A.L.; Hautefeuille, V.; et al. Maintenance Therapy with Cetuximab After FOLFIRI Plus Cetuximab for RAS Wild-Type Metastatic Colorectal Cancer: A Phase 2 Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e2333533. [Google Scholar] [CrossRef]
- Caruso, G.; Tomao, F.; Parma, G.; Lapresa, M.; Multinu, F.; Palaia, I.; Aletti, G.; Colombo, N. Poly (Adp-Ribose) Polymerase Inhibitors (Parpi) in Ovarian Cancer: Lessons Learned and Future Directions. Int. J. Gynecol. Cancer 2023, 33, 431–443. [Google Scholar] [CrossRef]
- Milano, G.; Ferrero, J.M.; Francois, E. Comparative Pharmacology of Oral Fluoropyrimidines: A Focus on Pharmacokinetics, Pharmacodynamics and Pharmacomodulation. Br. J. Cancer 2004, 91, 613–617. [Google Scholar] [CrossRef]
- Goldstein, D.A.; Chen, Q.; Ayer, T.; Howard, D.H.; Lipscomb, J.; Harvey, R.D.; El-Rayes, B.F.; Flowers, C.R. Cost Effectiveness Analysis of Pharmacokinetically-Guided 5-Fluorouracil in FOLFOX Chemotherapy for Metastatic Colorectal Cancer. Clin. Color. Cancer 2014, 13, 219–225. [Google Scholar] [CrossRef]
- Goldstein, D.A.; Strohbehn, G.W.; Serritella, A.V.; Hyman, D.A.; Lichter, A.S.; Ratain, M.J. Interventional Pharmacoeconomics. Cancer J. 2020, 26, 330–334. [Google Scholar] [CrossRef]
- Cheng, Y.; Chu, S.; Pu, J.; Chen, M.; Hong, K.; Maciag, P.; Chan, I.; Zhu, L.; Bello, A.; Li, Y. Exposure-Response–Based Multiattribute Clinical Utility Score Framework to Facilitate Optimal Dose Selection for Oncology Drugs. J. Clin. Oncol. 2024, 42, 4145–4152. [Google Scholar] [CrossRef]
- Maki, R.G. Trials and Tribulations in Rare Cancer Clinical Research. J. Clin. Oncol. 2024, 42, 865–867. [Google Scholar] [CrossRef]
- Kumar, Y.; Gupta, S.; Singla, R.; Hu, Y.C. A Systematic Review of Artificial Intelligence Techniques in Cancer Prediction and Diagnosis. Arch. Comput. Methods Eng. 2022, 29, 2043–2070. [Google Scholar] [CrossRef]
Tumor Location | De-Escalation Principle | Personalized Approach | Main Results | References |
---|---|---|---|---|
Breast Cancer (HER2−, ER+) | Application of the Oncotype Dx in deciding adjuvant chemotherapy | Yes (Oncotype Dx score) |
| [5,6] |
Breast Cancer (HER2+) | Reduction in the adjuvant treatment duration with trastuzumab Adjustment of chemotherapy intensity | No |
| [7,8,9] |
Colorectal Cancer (Stage II) | Identify patients who can safely avoid adjuvant chemotherapy Detect minimal residual disease using ctDNA to assess the risk of recurrence | Yes (ctDNA) |
| [17,45,46] |
Colorectal Cancer (Stage III) | Shortening adjuvant chemotherapy duration for low-risk patients | No |
| [11,14,17] |
Rectal Cancer | Avoiding preoperative chemoradiotherapy (CRT) for patients with locally advanced rectal cancer based on tumor response to neoadjuvant FOLFOX chemotherapy | No |
| [47] |
Colorectal Cancer (Metastatic) | De-escalation strategies: maintenance therapy, stop-and-go approaches, and drug holidays | No |
| [18,48,49] |
Non-Small-Cell Lung Cancer | Use of ctDNA to guide de-escalation of tyrosine kinase inhibitors (TKIs) Reduction in immune checkpoint blocker (CPI) doses and/or treatment durations | Yes (ctDNA) |
| [19,20,21] |
Head and Neck Cancer | De-intensification strategies (e.g., reducing chemotherapy, radiotherapy) | Yes (multifactorial model) |
| [23,24] |
Ovarian Cancer | Use of PARP inhibitors and reduction in adjuvant chemotherapy intensity | Yes (BRCA mutation) |
| [50] |
Prostate Cancer | Adjusting hormonal therapy intensity Exploring omics tools for individualized treatment | Yes (omics) |
| [26,28,29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrero, J.-M.; Bouriga, R.; Gal, J.; Milano, G. De-Escalating Anticancer Treatment: Watch Your Step. Cancers 2025, 17, 2474. https://doi.org/10.3390/cancers17152474
Ferrero J-M, Bouriga R, Gal J, Milano G. De-Escalating Anticancer Treatment: Watch Your Step. Cancers. 2025; 17(15):2474. https://doi.org/10.3390/cancers17152474
Chicago/Turabian StyleFerrero, Jean-Marc, Rym Bouriga, Jocelyn Gal, and Gérard Milano. 2025. "De-Escalating Anticancer Treatment: Watch Your Step" Cancers 17, no. 15: 2474. https://doi.org/10.3390/cancers17152474
APA StyleFerrero, J.-M., Bouriga, R., Gal, J., & Milano, G. (2025). De-Escalating Anticancer Treatment: Watch Your Step. Cancers, 17(15), 2474. https://doi.org/10.3390/cancers17152474