A Comparison of In-Person and Telehealth Personalized Exercise Programs for Cancer Survivors: A Secondary Data Analysis
Simple Summary
Abstract
1. Introduction
- (1)
- evaluate the effectiveness of personalized exercise programs on cancer-related symptoms (e.g., pain, fatigue/fatigability, sleep, cognitive function, etc.), physical function, resilience, and HRQOL and,
- (2)
- compare the impact of the program when delivered through in-person sessions versus telehealth.
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Assignment Method and Blinding
2.4. Interventions
2.4.1. In-Person Home Exercise Program (iHBE)
2.4.2. Technology-Enhanced Home Exercise (TEHE) Program-Telehealth
2.4.3. Standard Care Control Group
2.5. Outcomes and Measures
2.5.1. Primary Outcomes
- 0–7 (no clinically significant insomnia)
- 8–14 (subthreshold insomnia)
- 15–21 (moderate clinical insomnia) and
- 22–28 (severe clinical insomnia)
2.5.2. Secondary Outcomes
2.6. Data Collection Procedures
2.7. Statistical Analysis
2.8. Sample Size
3. Results
3.1. Participant Flow and Baseline Characteristics
3.2. Effectiveness of Personalized Exercise Programs on Symptoms, Resilience, and Quality of Life
3.3. Effectiveness Comparison Between the Two Delivery Methods
4. Discussion
4.1. Implications
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANCOVA | Analysis of covariance |
HRQOL | Health-related quality of life |
iHBE | Personalized home-based exercise program |
ISI | Insomnia Severity Index |
MASQ | Multiple Ability Self-Report Questionnaire |
MoCA | Montreal Cognitive Assessment |
PA | Physical activity |
PFS | Pittsburgh Fatigability Scale |
PROMIS | Patient-Reported Outcome Measurement Information System |
SD | Standard deviation |
TEHE | Technology-enhanced home exercise program |
vSPPB | Virtual Short Physical Performance Battery |
References
- Tan, C.J.; Yip, S.Y.C.; Chan, R.J.; Chew, L.; Chan, A. Investigating how cancer-related symptoms influence work outcomes among cancer survivors: A systematic review. J. Cancer Surviv. 2022, 16, 1065–1078. [Google Scholar] [CrossRef] [PubMed]
- Al Maqbali, M.; Al Sinani, M.; Al Naamani, Z.; Al Badi, K.; Tanash, M.I. Prevalence of Fatigue in Patients with Cancer: A Systematic Review and Meta-Analysis. J. Pain. Symptom Manag. 2021, 61, 167–189.e14. [Google Scholar] [CrossRef] [PubMed]
- Misiąg, W.; Piszczyk, A.; Szymańska-Chabowska, A.; Chabowski, M. Physical Activity and Cancer Care—A Review. Cancers 2022, 14, 4154. [Google Scholar] [CrossRef] [PubMed]
- Mustian, K.M.; Alfano, C.M.; Heckler, C.; Kleckner, A.S.; Kleckner, I.R.; Leach, C.R.; Mohr, D.; Palesh, O.G.; Peppone, L.J.; Piper, B.F.; et al. Comparison of Pharmaceutical, Psychological, and Exercise Treatments for Cancer-Related Fatigue. JAMA Oncol. 2017, 3, 961. [Google Scholar] [CrossRef] [PubMed]
- Buffart, L.M.; Kalter, J.; Sweegers, M.G.; Courneya, K.S.; Newton, R.U.; Aaronson, N.K.; Jacobsen, P.B.; May, A.M.; Galvao, D.A.; Chinapaw, M.J.; et al. Effects and moderators of exercise on quality of life and physical function in patients with cancer: An individual patient data meta-analysis of 34 RCTs. Cancer Treat. Rev. 2017, 52, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Lukkahatai, N.; Ong, I.L.; Benjasirisan, C.; Saligan, L.N. Brain-Derived Neurotrophic Factor (BDNF) as a Marker of Physical Exercise or Activity Effectiveness in Fatigue, Pain, Depression, and Sleep Disturbances: A Scoping Review. Biomedicines 2025, 13, 332. [Google Scholar] [CrossRef] [PubMed]
- Borsati, A.; Toniolo, L.; Ciurnelli, C.; Bettariga, F.; Riva, S.T.; Frada, P.; Belluomini, L.; Trestini, I.; Tregnago, D.; Insolda, J.; et al. Cardiac autonomic dysfunction in patients with cancer: Exploring the role of physical exercise. J. Cancer Res. Clin. Oncol. 2025, 151, 197. [Google Scholar] [CrossRef] [PubMed]
- Alfano, C.M.; Smith, A.W.; Irwin, M.L.; Bowen, D.J.; Sorensen, B.; Reeve, B.B.; Meeske, K.A.; Bernstein, L.; Baumgartner, K.B.; Ballard-Barbash, R.; et al. Physical activity, long-term symptoms, and physical health-related quality of life among breast cancer survivors: A prospective analysis. J. Cancer Surviv. 2007, 1, 116–128. [Google Scholar] [CrossRef] [PubMed]
- Batalik, L.; Filakova, K.; Radkovcova, I.; Dosbaba, F.; Winnige, P.; Vlazna, D.; Batalikova, K.; Felsoci, M.; Stefanakis, M.; Liska, D.; et al. Cardio-Oncology Rehabilitation and Telehealth: Rationale for Future Integration in Supportive Care of Cancer Survivors. Front. Cardiovasc. Med. 2022, 9, 858334. [Google Scholar] [CrossRef] [PubMed]
- Pandarakutty, S.; Arulappan, J. Health-related quality of life of children and adolescents with sickle cell disease: An evolutionary concept analysis. Appl. Nurs. Res. ANR 2024, 80, 151862. [Google Scholar] [CrossRef] [PubMed]
- Lukkahatai, N.; Park, J.; Jia, H.M.; Martin, D.; Li, J.; Sheng, J.Y.; Gill, J.; Saligan, L.N.; Stearns, V.; Carducci, M. Feasibility of DNA Methylation Age as a Biomarker of Symptoms and Resilience among Cancer Survivors with Multiple Chronic Conditions. Biomedicines 2023, 11, 3076. [Google Scholar] [CrossRef] [PubMed]
- Lirola, M.J.; Hernandez-Rodriguez, A.I.; Cuenca-Piqueras, C.; Prados-Megias, M.E. Resilience and renewal: The personal impact of physical activity in breast cancer survivors. BMC Womens Health 2025, 25, 257. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.; Croker, H.; Fisher, A.; Williams, K.; Wardle, J.; Beeken, R.J. Cancer survivors’ attitudes towards and knowledge of physical activity, sources of information, and barriers and facilitators of engagement: A qualitative study. Eur. J. Cancer Care 2017, 26, e12641. [Google Scholar] [CrossRef] [PubMed]
- Samara, A.; Nistrup, A.; Al-Rammah, T.Y.; Aro, A.R. Lack of facilities rather than sociocultural factors as the primary barrier to physical activity among female Saudi university students. Int. J. Women’s Health 2015, 7, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Stisen, M.B.; Mechlenburg, I.; Bearne, L.M.; Godfrey, E.; Pedersen, A.B.; Sorensen, D. Exploring needs, barriers to, and facilitators of rehabilitation exercise following revision hip replacement—A grounded theory study. Disabil. Rehabil. 2023, 46, 5012–5020. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, K.; Ochi, E.; Okubo, R.; Shimizu, Y.; Kuchiba, A.; Ueno, T.; Shimazu, T.; Kinoshita, T.; Sakurai, N.; Matsuoka, Y. Effect of home-based high-intensity interval training and behavioural modification using information and communication technology on cardiorespiratory fitness and exercise habits among sedentary breast cancer survivors: Habit-B study protocol for a randomised controlled trial. BMJ Open 2019, 9, e030911. [Google Scholar] [CrossRef] [PubMed]
- Kuijlaars, I.A.R.; Sweerts, L.; Nijhuis-van der Sanden, M.W.G.; van Balen, R.; Staal, J.B.; van Meeteren, N.L.U.; Hoogeboom, T.J. Effectiveness of Supervised Home-Based Exercise Therapy Compared to a Control Intervention on Functions, Activities, and Participation in Older Patients After Hip Fracture: A Systematic Review and Meta-analysis. Arch. Phys. Med. Rehabil. 2019, 100, 101–114.e6. [Google Scholar] [CrossRef] [PubMed]
- De Labra, C.; Guimaraes-Pinheiro, C.; Maseda, A.; Lorenzo, T.; Millán-Calenti, J.C. Effects of physical exercise interventions in frail older adults: A systematic review of randomized controlled trials. BMC Geriatr. 2015, 15, 154. [Google Scholar] [CrossRef] [PubMed]
- Lopez, C.; McGarragle, K.; Pritlove, C.; Jones, J.M.; Alibhai, S.M.; Lenton, E.; Santa Mina, D. Variability and limitations in home-based exercise program descriptions in oncology: A scoping review. Support. Care Cancer 2020, 28, 4005–4017. [Google Scholar] [CrossRef] [PubMed]
- Sturgeon, K.M.; Smith, A.M.; Federici, E.H.; Kodali, N.; Kessler, R.; Wyluda, E.; Cream, L.V.; Ky, B.; Schmitz, K.H. Feasibility of a tailored home-based exercise intervention during neoadjuvant chemotherapy in breast cancer patients. BMC Sports Sci. Med. Rehabil. 2022, 14, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lukkahatai, N.; Park, J.; Li, J.; Jia, H.M.; Martin, D.; Sheng, J.Y. Development of A Tailored Home-Based Exercise Program for Low-Income Cancer Survivors with Multiple Chronic Conditions: A Pilot Study. Int. J. Nurs. Health Care Res. 2023, 6, 1488. [Google Scholar] [CrossRef]
- Fleury, M.E.; Farner, A.M.; Unger, J.M. Association of the COVID-19 Outbreak With Patient Willingness to Enroll in Cancer Clinical Trials. JAMA Oncol. 2021, 7, 131. [Google Scholar] [CrossRef] [PubMed]
- Wosik, J.; Fudim, M.; Cameron, B.; Gellad, Z.F.; Cho, A.; Phinney, D.; Curtis, S.; Roman, M.; Poon, E.G.; Ferranti, J.; et al. Telehealth transformation: COVID-19 and the rise of virtual care. J. Am. Med. Inform. Assoc. JAMIA 2020, 27, 957–962. [Google Scholar] [CrossRef]
- Kim, H.; Lee, K.; Lee, Y.H.; Park, Y.; Park, Y.; Yu, Y.; Park, J.; Noh, S. The Effectiveness of a Mobile Phone-Based Physical Activity Program for Treating Depression, Stress, Psychological Well-Being, and Quality of Life Among Adults: Quantitative Study. JMIR mHealth and uHealth 2023, 11, e46286. [Google Scholar] [CrossRef] [PubMed]
- Lilje, S.C.; Olander, E.; Berglund, J.; Skillgate, E.; Anderberg, P. Experiences of Older Adults With Mobile Phone Text Messaging as Reminders of Home Exercises After Specialized Manual Therapy for Recurrent Low Back Pain: A Qualitative Study. JMIR mHealth and uHealth 2017, 5, e39. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Ligero, M.; Moral-Munoz, J.A.; Salazar, A.; Failde, I. mHealth Intervention for Improving Pain, Quality of Life, and Functional Disability in Patients With Chronic Pain: Systematic Review. JMIR mHealth and uHealth 2023, 11, e40844. [Google Scholar] [CrossRef] [PubMed]
- Novrianda, D.; Herini, E.S.; Haryanti, F.; Supriyadi, E.; Lazuardi, L. Chemo assist for children mobile health application to manage chemotherapy-related symptoms in acute leukemia in Indonesia: A user-centered design approach. BMC Pediatr. 2023, 23, 274. [Google Scholar] [CrossRef] [PubMed]
- Frikkel, J.; Gotte, M.; Beckmann, M.; Kasper, S.; Hense, J.; Teufel, M.; Schuler, M.; Tewes, M. Fatigue, barriers to physical activity and predictors for motivation to exercise in advanced Cancer patients. BMC Palliat. Care 2020, 19, 43. [Google Scholar] [CrossRef] [PubMed]
- Nyrop, K.A.; Deal, A.M.; Choi, S.K.; Wagoner, C.W.; Lee, J.T.; Wood, W.A.; Anders, C.; Carey, L.A.; Dees, E.C.; Jolly, T.A.; et al. Measuring and understanding adherence in a home-based exercise intervention during chemotherapy for early breast cancer. Breast Cancer Res. Treat. 2018, 168, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Duchek, D.; McDonough, M.H.; Bridel, W.; McNeely, M.L.; Culos-Reed, S.N. Understanding In-Person and Online Exercise Oncology Programme Delivery: A Mixed-Methods Approach to Participant Perspectives. Curr. Oncol. 2023, 30, 7366–7383. [Google Scholar] [CrossRef] [PubMed]
- Essentials of Cancer Exercise. Available online: https://www.thecancerspecialist.com/resources/essentials-of-cancer-exercise/ (accessed on 25 August 2024).
- Rock, C.L.; Thomson, C.; Gansler, T.; Gapstur, S.M.; McCullough, M.L.; Patel, A.V.; Andrews, K.S.; Bandera, E.V.; Spees, C.K.; Robien, K.; et al. American Cancer Society guideline for diet and physical activity for cancer prevention. CA A Cancer J. Clin. 2020, 70, 245–271. [Google Scholar] [CrossRef] [PubMed]
- Stephan, A.; Stadelmann, V.A.; Leunig, M.; Impellizzeri, F.M. Measurement properties of PROMIS short forms for pain and function in total hip arthroplasty patients. J. Patient-Rep. Outcomes 2021, 5, 41. [Google Scholar] [CrossRef] [PubMed]
- Cella, D.; Choi, S.W.; Condon, D.M.; Schalet, B.; Hays, R.D.; Rothrock, N.E.; Yount, S.; Cook, K.F.; Gershon, R.C.; Amtmann, D.; et al. PROMIS(®) Adult Health Profiles: Efficient Short-Form Measures of Seven Health Domains. Value Health 2019, 22, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Glynn, N.W.; Santanasto, A.J.; Simonsick, E.M.; Boudreau, R.M.; Beach, S.R.; Schulz, R.; Newman, A.B. The Pittsburgh Fatigability scale for older adults: Development and validation. J. Am. Geriatr. Soc. 2015, 63, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Bastien, C.H.; Vallières, A.; Morin, C.M. Validation of the Insomnia Severity Index as an outcome measure for insomnia research. Sleep Med. 2001, 2, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, C.; Yang, C.H.; West, D. A Comparison of Sedentary Behavior as Measured by the Fitbit and ActivPAL in College Students. Int. J. Environ. Res. Public Health 2021, 18, 3914. [Google Scholar] [CrossRef] [PubMed]
- Wazqar, D.Y. Cognitive Dysfunction and Its Predictors in Adult Patients with Cancer Receiving Chemotherapy: A Cross-Sectional Correlational Study. J. Nurs. Res. 2019, 27, e56. [Google Scholar] [CrossRef] [PubMed]
- Seidenberg, M.; Haltiner, A.; Taylor, M.A.; Hermann, B.B.; Wyler, A. Development and validation of a Multiple Ability Self-Report Questionnaire. J. Clin. Exp. Neuropsychol. 1994, 16, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Bollaert, R.E.; Marsh, A.P.; Cutter, G.R.; Motl, R.W. The Virtual Short Physical Performance Battery: Psychometric Properties and Validation in Older Adults with Multiple Sclerosis. J. Appl. Gerontol. Off. J. South. Gerontol. Soc. 2019, 38, 1492–1505. [Google Scholar] [CrossRef] [PubMed]
- Marsh, A.P.; Wrights, A.P.; Haakonssen, E.H.; Dobrosielski, M.A.; Chmelo, E.A.; Barnard, R.T.; Pecorella, A.; Ip, E.H.; Rejeski, W.J. The Virtual Short Physical Performance Battery. J. Gerontol. A Biol. Sci. Med. Sci. 2015, 70, 1233–1241. [Google Scholar] [CrossRef] [PubMed]
- Reid, R.E.R.; Insogna, J.A.; Carver, T.E.; Comptour, A.M.; Bewski, N.A.; Sciortino, C.; Andersen, R.E. Validity and reliability of Fitbit activity monitors compared to ActiGraph GT3X+ with female adults in a free-living environment. J. Sci. Med. Sport 2017, 20, 578–582. [Google Scholar] [CrossRef] [PubMed]
- Nazari, G.; MacDermid, J.C.; Sinden, K.E.; Richardson, J.; Tang, A. Inter-Instrument Reliability and Agreement of Fitbit Charge Measurements of Heart Rate and Activity at Rest, during the Modified Canadian Aerobic Fitness Test, and in Recovery. Physiother. Canada. Physiother. Can. 2019, 71, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Campbell-Sills, L.; Stein, M.B. Psychometric analysis and refinement of the connor–davidson resilience scale (CD-RISC): Validation of a 10-item measure of resilience. J. Trauma. Stress 2007, 20, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Brazier, J.E.; Harper, R.; Jones, N.M.; O’Cathain, A.; Thomas, K.J.; Usherwood, T.; Westlake, L. Validating the SF-36 health survey questionnaire: New outcome measure for primary care. BMJ 1992, 305, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Huizinga, F.; Westerink, N.L.; Berendsen, A.J.; Walenkamp, A.M.E.; MHG, D.E.G.; Oude Nijeweeme, J.K.; GH, D.E.B.; Berger, M.Y.; Brandenbarg, D. Home-based Physical Activity to Alleviate Fatigue in Cancer Survivors: A Systematic Review and Meta-analysis. Med. Sci. Sports Exerc. 2021, 53, 2661–2674. [Google Scholar] [CrossRef] [PubMed]
- Türk, K.E. Efficacy of a Home-Based, Unsupervised Physical Activity Program on Fatigue, Sleep Quality, and Quality of Life in Survivors of Breast Cancer. Clin. J. Oncol. Nurs. 2024, 28, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Huether, K. Energy through motion©: An evidence-based exercise program to reduce Cancer-related fatigue and improve quality of life. Clin. J. Oncol. Nurs. 2016, 20, E60–E70. [Google Scholar] [CrossRef] [PubMed]
- Howie, E.K.; Daniels, B.T.; Human, A.; Gray, M.; Baum, J.I. Effectiveness and implementation of a virtual versus in-person walking program among employees on physical activity, fitness, and cognition. Health Technol. 2021, 11, 909–917. [Google Scholar] [CrossRef]
- Ghisi, G.L.d.M.; Aultman, C.; Vanzella, L.; Konidis, R.; Sandison, N.; Oh, P. Effectiveness of a virtual vs. in-person group-based education curriculum to increase disease-related knowledge and change health behaviour among cardiac rehabilitation participants. Patient Educ. Couns. 2024, 118, 108021. [Google Scholar] [CrossRef] [PubMed]
- Al-Badri, M.; Kilroy, C.L.; Shahar, J.I.; Tomah, S.; Gardner, H.; Sin, M.; Votta, J.; Phillips-Stoll, A.; Price, A.; Beaton, J.; et al. In-person and virtual multidisciplinary intensive lifestyle interventions are equally effective in patients with type 2 diabetes and obesity. Ther. Adv. Endocrinol. Metab. 2022, 13, 20420188221093220. [Google Scholar] [CrossRef] [PubMed]
- Afari, N.; Yarish, N.M.; Wooldridge, J.S.; Materna, K.; Hernandez, J.; Blanco, B.H.; Camodeca, A.L.; Peters, J.J.; Herbert, M.S. Lessons Learned from Transition of an In-Person to a Virtual Randomized Controlled Trial for Weight and Fitness Concerns in Active-Duty Service Members: Survey Study. J. Med. Internet Res. 2022, 24, e37797. [Google Scholar] [CrossRef] [PubMed]
- Direito, A.; Walsh, D.; Hinbarji, M.; Albatal, R.; Tooley, M.; Whittaker, R.; Maddison, R. Using the Intervention Mapping and Behavioral Intervention Technology Frameworks: Development of an mHealth Intervention for Physical Activity and Sedentary Behavior Change. Health Educ. Behav. 2018, 45, 331–348. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.L.; Winters-Stone, K.M.; Wiskemann, J.; May, A.M.; Schwartz, A.L.; Courneya, K.S.; Zucker, D.S.; Matthews, C.E.; Ligibel, J.A.; Gerber, L.H.; et al. Exercise Guidelines for Cancer Survivors: Consensus Statement from International Multidisciplinary Roundtable. Med. Sci. Sports Exerc. 2019, 51, 2375–2390. [Google Scholar] [CrossRef] [PubMed]
- Potter, L.N.; Yap, J.; Dempsey, W.; Wetter, D.W.; Nahum-Shani, I. Integrating Intensive Longitudinal Data (ILD) to Inform the Development of Dynamic Theories of Behavior Change and Intervention Design: A Case Study of Scientific and Practical Considerations. Prev. Sci. 2023, 24, 1659–1671. [Google Scholar] [CrossRef] [PubMed]
- Szczepocka, E.; Mokros, Ł.; Kaźmierski, J.; Nowakowska, K.; Łucka, A.; Antoszczyk, A.; Oltra-Cucarella, J.; Werzowa, W.; Hellevik, M.; Skouras, S.; et al. Virtual reality-based training may improve visual memory and some aspects of sustained attention among healthy older adults—Preliminary results of a randomized controlled study. BMC Psychiatry 2024, 24, 347. [Google Scholar] [CrossRef] [PubMed]
- Muiños, M.; Ballesteros, S. Does physical exercise improve perceptual skills and visuospatial attention in older adults? A review. Eur. Rev. Aging Phys. Act. 2018, 15, 2. [Google Scholar] [CrossRef]
- Pinheiro, V.H.G.; Pinto, S.S.; Cardozo, P.S.; Andrade, L.S.; Alberton, C.L. The effect of exercise on cognitive function in breast cancer survivors: Systematic review and meta-analysis of randomized controlled trials. Support. Care Cancer 2025, 33, 577. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Tao, X.; Lei, B.; Zhang, Y.; Li, G.; Lv, Y.; Yu, L. Effects of Exercise on Depression and Anxiety in Lung Cancer Survivors: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Curr. Oncol. 2025, 32, 304. [Google Scholar] [CrossRef] [PubMed]
- Moeini, B.; Bashirian, S.; Soltanian, A.R.; Ghaleiha, A.; Taheri, M. Examining the Effectiveness of a Web-Based Intervention for Depressive Symptoms in Female Adolescents: Applying Social Cognitive Theory. J. Res. Health Sci. 2019, 19, e00454. [Google Scholar] [PubMed]
- Andersen, S.M.; Chen, S. The relational self: An interpersonal social-cognitive theory. Psychol. Rev. 2002, 109, 619–645. [Google Scholar] [CrossRef] [PubMed]
- Cashion, A.K.; Gill, J.; Hawes, R.; Henderson, W.A.; Saligan, L. National Institutes of Health Symptom Science Model sheds light on patient symptoms. Nurs. Outlook 2016, 64, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Cashion, A.K.; Grady, P.A. The National Institutes of Health/National Institutes of Nursing Research intramural research program and the development of the National Institutes of Health Symptom Science Model. Nurs. Outlook 2015, 63, 484–487. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xia, W.; Zhang, J.; Wu, M.; Tian, L. Effects of internet-based mindfulness interventions on anxiety and depression symptoms in cancer patients: A meta-analysis. Gen. Hosp. Psychiatry 2025, 94, 126–141. [Google Scholar] [CrossRef] [PubMed]
- Yeh, C.H.; Lukkahatai, N.; Campbell, C.; Sair, H.; Zhang, F.; Mensah, S.; Garry, C.; Zeng, J.; Chen, C.; Pinedo, M.; et al. Preliminary Effectiveness of Auricular Point Acupressure on Chemotherapy-Induced Neuropathy: Part 1 Self-Reported Outcomes. Pain Manag. Nurs. 2019, 20, 614–622. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, J.; Jin, Y.; Zhang, Q. Auricular Acupressure Therapy for Patients with Cancer with Sleep Disturbance: A Systematic Review and Meta-Analysis. Evid. Based Complement. Altern. Med. 2021, 2021, 3996101. [Google Scholar] [CrossRef] [PubMed]
- Shen, A.; Li, M.; Ning, H.; Han, G.; Castelli, G.; Qiang, W.; Lu, Q.; Lukkahatai, N. The promising application of acupressure for management of cancer-related lymphedema: A scoping review. Asia Pac. J. Oncol. Nurs. 2025, 12, 100669. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Yi, X.; Gao, D.; Gao, Z.; Huang, S.; Chao, M.; Chen, W.; Ding, M. The effects of the combined exercise intervention based on internet and social media software (CEIBISMS) on quality of life, muscle strength and cardiorespiratory capacity in Chinese postoperative breast cancer patients: A randomized controlled trial. Health Qual. Life Outcomes 2019, 17, 109. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Ryu, S.; Zhou, W.; Adams, K.; Hassan, M.; Zhang, R.; Blaes, A.; Wolfson, J.; Sun, J. Effects of personalized exercise prescriptions and social media delivered through mobile health on cancer survivors’ physical activity and quality of life. J. Sport Health Sci. 2023, 12, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Yen, T.W.F.; Pan, I.W.; Shih, Y.T. Impact of state telehealth policies on telehealth use among patients with newly diagnosed cancer. JNCI Cancer Spectr. 2023, 7, pkad072. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.; Ekaireb, R.; Woods, A.; Wick, E.; Sarin, A. Telehealth Policy and Rural-Urban Disparities in Cancer Care Access. Ann. Surg. 2025. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Duffens, A.M.; Zhu, S.; Shirazi, A.; Gupta, A.; Liu, R. Telehealth and Health Care Contact Days Among Patients with Advanced Cancer After COVID-19. JAMA Netw. Open 2025, 8, e2516762. [Google Scholar] [CrossRef] [PubMed]
Characteristics | In-Person Exercise Study (iHBE) (n = 25) | Telehealth Exercise Study (TEHE) (n = 50) | |
---|---|---|---|
Age (mean ± SD) | 73.92 ± 6.74 | 58.30 ± 12.43 | |
Sex (n, %) | Male | 12 (48.0) | 24 (48.0) |
Female | 13 (52.0) | 26 (52.0) | |
Race (n, %) | White | 9 (36.0) | 41 (82.0) |
Black or African American | 15 (60.0) | 3 (6.0) | |
Others | 1 (4.0) | 6 (12.0) | |
Education (n, %) | College/university and less | 11 (44.0) | 6 (12.0) |
Graduate level | 11 (44.0) | 41 (82.0) | |
Not disclosed | 3 (12.0) | 3 (6.0) | |
Employment (n, %) | Employed | 7 (28.0) | 19 (38.0) |
Not employed | 18 (72.0) | 31 (62.0) | |
Marital status (n, %) | Married | 8 (32.0) | 38 (76.0) |
Single, divorced, or widowed | 17 (68.0) | 12 (24.0) | |
Cancer types (n, %) | Thoracic cancers | 1 (4.0) | 4 (8.0) |
Breast cancers | 4 (16.0) | 13 (26.0) | |
Gastrointestinal cancers | - | 8 (16.0) | |
Genitourinary cancers | 11 (44.0) | 11 (22.0) | |
Gynecologic cancers | 5 (20.0) | 3 (6.0) | |
Central nervous system cancers | - | 2 (4.0) | |
Skin cancers | - | 1 (2.0) | |
Metastatic cancers | 4 (16.0) | 8 (16.0) | |
Baseline self-report fatigue (mean ± SD) | 46.97 ± 9.82 | 51.23 ± 9.91 |
Variables | Categories | In-Person Group (iHBE) (n = 15) | Telehealth Group (TEHE) (n = 38) | Control (n = 22) | χ2/F | p |
---|---|---|---|---|---|---|
Age (mean ± SD) | 74.33 ± 7.62 | 58.61 ± 12.10 | 64.59 ± 13.43 | 9.686 | <0.001 | |
Gender (n,%) | Male | 7 (46.7) | 18 (47.4) | 11 (50.0) | 0.052 | >0.009 |
Female | 8 (53.3) | 20 (52.6) | 11 (50.0) | |||
Race (n,%) | White | 5 (33.3%) | 32 (84.2%) | 13 (59.1) | 18.836 | <0.001 |
Black or African American | 9 (60.0%) | 2 (5.3%) | 7 (31.8) | |||
Others | 1 (6.7%) | 4 (10.5%) | 2 (9.1) | |||
Education (n,%) | Less than college | 6 (42.9%) | 4 (10.8%) | 11 (61.1%) | 15.75 | <0.001 |
College graduate | 8 (57.1%) | 33 (89.2%) | 7 (38.9%) | |||
Employment (n,%) | Employed | 4 (26.7) | 14 (37.8) | 8 (36.4) | 0.531 | 0.811 |
Not employed | 11 (73.3) | 24 (63.2) | 14 (63.6) | |||
Marital status (n,%) | Married | 7 (46.7) | 28 (73.7) | 11 (50.0) | 4.996 | 0.092 |
Single, divorced, or widowed | 10 (26.3) | 11 (50.0) | 8 (53.3) |
Variables | Exercise Groups (In-Person + Telehealth) (n = 53) | Control Group (n = 22) | ||||||
---|---|---|---|---|---|---|---|---|
Mean ± SD | t | Mean ± SD | t | |||||
Baseline | Completion | Baseline | Completion | |||||
Pain | 48.1 ± 9.2 | 49.7 ± 10.8 | −0.99 | 46.6 ± 8.5 | 52.0 ± 7.7 | −3.1 ** | ||
Fatigue | 50.0 ± 11.0 | 50.1 ± 10.5 | −0.08 | 46.5 ± 8.7 | 50.2 ± 9.4 | −1.5 | ||
Fatigability | Physical | 25.6 ± 15.0 | 19.8 ± 13.9 | 3.0 ** | 18.8 ± 19.1 | 19.3 ± 17.0 | −0.13 | |
Mental | 21.8 ± 15.0 | 15.4 ± 14.2 | 3.1 ** | 11.5 ± 13.1 | 12.8 ± 12.0 | −0.39 | ||
Sleep | Insomnia severity score | 16.8 ± 6.2 | 14.9 ± 5.0 | 1.9 | 17.8 ± 4.8 | 17.1 ± 6.8 | 0.57 | |
Sleep time (hr.) | 7.2 ± 1.1 | 7.3 ± 1.4 | −1.2 | 6.8 ± 1.1 | 7.4 ± 1.4 | −1.7 | ||
Cognitive function | MoCA 1 score | 27.2 ± 1.9 | 26.9 ± 2.0 | 0.8 | 24.7 ± 4.3 | 25.9 ± 3.6 | −1.7 | |
MASQ 2 |
| 11.4 ± 4.5 | 11.3 ± 5.0 | 0.34 | 13.0 ± 6.0 | 13.6 ± 6.2 | −0.82 | |
| 9.2 ± 5.0 | 7.8 ± 3.7 | 1.6 | 10.5 ± 5.6 | 11.1 ± 5.1 | −0.84 | ||
| 16.8 ± 4.4 | 17.1 ± 4.4 | −0.37 | 16.4 ± 4.9 | 16.8 ± 6.1 | −0.35 | ||
| 15.7 ± 4.2 | 15.6 ± 4.3 | 0.12 | 14.4 ± 4.4 | 15.5 ± 3.9 | −1.7 | ||
| 18.0 ± 4.2 | 16.9 ± 4.4 | 1.9 | 15.4 ± 5.0 | 15.3 ± 4.5 | 0.15 | ||
Physical function | vSPPB score 3 | 9.3 ± 2.3 | 9.7 ± 2.5 | −1.0 | 8.3 ± 3.1 | 7.6 ± 2.4 | 1.2 | |
Average daily steps over 7 days (×1000), | 6.3 ± 3.3 | 6.7 ± 4.3 | −0.71 | 5.5 ± 2.3 | 4.5 ± 2.3 | 1.8 | ||
Resilience | 31.8 ± 6.4 | 32.1 ± 5.6 | −0.44 | 36.7 ± 7.4 | 37.4 ± 7.8 | −0.49 | ||
Quality of Life | Physical component | 50.8 ± 10.2 | 49.6 ± 10.8 | 0.79 | 52.6 ± 9.2 | 49.7 ± 8.0 | 1.56 | |
Mental component | 49.7 ± 10.3 | 49.5 ± 10.1 | 0.15 | 53.1 ± 6.8 | 50.0 ± 10.3 | 1.40 |
Variables | Mean Change ± SD | F | p | |||
---|---|---|---|---|---|---|
In-Person (n = 15) | Telehealth (n = 38) | |||||
Pain | 2.0 ± 11.1 | 1.4 ± 8.6 | 0.21 | 0.888 | ||
Fatigue | 1.0 ± 7.6 | −0.2 ± 9.8 | 0.25 | 0.862 | ||
Fatigability | Physical | 0.3 ± 8.3 | −7.6 ± 11.1 | 1.03 | 0.394 | |
Mental | −0.6 ± 10.5 | −8.1 ± 11.2 | 1.17 | 0.339 | ||
Sleep | Insomnia severity score | −1.4 ± 8.4 | −2.0 ± 5.0 | 0.64 | 0.595 | |
Sleep time (minutes) | 12.9 ± 37.9 | 7.2 ± 43.6 | 0.644 | 0.430 | ||
Cognitive function | MoCA 1 score | −1.4 ± 2.6 | 0.1 ± 2.2 | 1.40 | 0.265 | |
MASQ 2 | Language | 0.3 ± 3.8 | −0.3 ± 2.0 | 0.19 | 0.904 | |
Visuo-perceptual | −1.1 ± 2.2 | −1.5 ± 5.8 | 3.55 | 0.027 | ||
Verbal memory | 1.1 ± 7.6 | 0.4 ± 4.0 | 0.39 | 0.760 | ||
Visual memory | 0.1 ± 1.6 | −0.1 ± 3.2 | 0.66 | 0.584 | ||
Attention | −1.2 ± 4.1 | −1.1 ± 3.2 | 0.02 | 1.000 | ||
Physical function | vSPPB score 3 | −0.4 ± 1.8 | 0.6 ± 1.7 | 0.60 | 0.622 | |
Average daily steps | 185.2 ± 3148.1 | 418.4 ± 2544.4 | 0.28 | 0.842 | ||
Resilience | −1.1 ± 4.5 | 0.7 ± 4.4 | 2.02 | 0.133 | ||
Quality of Life | Physical component | 0.7 ± 9.5 | −1.9 ± 6.8 | 0.41 | 0.745 | |
Mental component | −1.0 ± 4.9 | 0.56 ± 8.5 | 0.61 | 0.613 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lukkahatai, N.; Han, G.; Benjasirisan, C.; Park, J.; Jia, H.M.; Li, M.; Li, J.; Sheng, J.Y.; Carducci, M.; Saligan, L.N. A Comparison of In-Person and Telehealth Personalized Exercise Programs for Cancer Survivors: A Secondary Data Analysis. Cancers 2025, 17, 2432. https://doi.org/10.3390/cancers17152432
Lukkahatai N, Han G, Benjasirisan C, Park J, Jia HM, Li M, Li J, Sheng JY, Carducci M, Saligan LN. A Comparison of In-Person and Telehealth Personalized Exercise Programs for Cancer Survivors: A Secondary Data Analysis. Cancers. 2025; 17(15):2432. https://doi.org/10.3390/cancers17152432
Chicago/Turabian StyleLukkahatai, Nada, Gyumin Han, Chitchanok Benjasirisan, Jongmin Park, Hejingzi Monica Jia, Mingfang Li, Junxin Li, Jennifer Y. Sheng, Michael Carducci, and Leorey N. Saligan. 2025. "A Comparison of In-Person and Telehealth Personalized Exercise Programs for Cancer Survivors: A Secondary Data Analysis" Cancers 17, no. 15: 2432. https://doi.org/10.3390/cancers17152432
APA StyleLukkahatai, N., Han, G., Benjasirisan, C., Park, J., Jia, H. M., Li, M., Li, J., Sheng, J. Y., Carducci, M., & Saligan, L. N. (2025). A Comparison of In-Person and Telehealth Personalized Exercise Programs for Cancer Survivors: A Secondary Data Analysis. Cancers, 17(15), 2432. https://doi.org/10.3390/cancers17152432