REG3A: A Multifunctional Antioxidant Lectin at the Crossroads of Microbiota Regulation, Inflammation, and Cancer
Simple Summary
Abstract
1. Introduction
2. REG3A: Expression and Regulation
Organs | Condition | ||
---|---|---|---|
Physiological | Inflammatory | Malignant | |
Pancreas | β-cells (islets) | Pancreatitis [24], (inflamed acini) Cystic fibrosis [52] | Adenocarcinoma [53] |
Stomach | Epithelial cells | N/A | Gastric cancer [54] |
Small intestine | Paneth cells | Paneth cells Enterocytes | |
Colon | Not expressed | Colitis [55], Celiac disease, Crohn’s disease [56] (enterocytes) [55] | Colorectal cancer [57] |
Liver | Cholangiocytes | Hepatitis [21] (inflamed hepatocytes) [58,59] | Hepatocellular carcinoma [3,60] Cholangiocarcinoma [27] |
Bladder | Not expressed | N/A | Bladder cancer |
Skin | Keratinocytes | Skin lesions Psoriasis [28] | |
Mammary gland | N/A | N/A | Breast cancer |
Brain | Motoneurons [61] | Brain injury [62] Alzheimer [63] | |
Pituitary gland | Growth hormone producing cells | N/A | Adenoma [64] |
Lung | N/A | Fibrosis [65] | Lung cancer |
Trachea | N/A | N/A | Squamous cell carcinoma [66] |
PBMCs | N/A | Lupus nephritis [67], Polymyositis Dermatomyositis [68] | Gastric cancer [54] |
Link With Cancer | Conditions | |||
---|---|---|---|---|
In Vitro | In Vivo | Human Cohort | ||
Colorectal cancer | Suppressor | BMI1/MEL18 repress REG3A transcription [69] REG3A binds IL6/GP130 [69] REG3A inhibits IL6/STAT3 signaling [69] | rREG3A reduces polyps in AOM-DSS model [69] | REG3A inversely correlates with cancer (331 pairs NT/T) [57] High REG3A associates with better OS (n = 279) [57,69] REG3A inversely correlates with venous invasion [57] REG3A inversely correlates with STAT3 activation [69] |
Promoter | REG3A induces AKT and ERK [70] | REG3A promotes tumor growth in xenografts [70] | REG3A positively correlates with cancer (n = 335) [70] High REG3A associates with tumor size, differentiation, stage (n = 82) [70] | |
Gastric cancer | Suppressor | REG3A inhibits AKT and GSK3β activation. REG3A induces apoptosis. REG3A reduces cell invasion [71] | N/A | REG3A negatively correlates with cancer (30 NT/T pairs [25]; n = 876 [71]) High REG3A associates with better OS (n = 311) and disease-free survival (n = 565) [71] |
Promoter | REG3A inhibits proliferation, migration and invasion [72] REG3A suppresses JAK2/STAT3 signaling [72] | N/A | REG3A upregulated in cancer (41 NT/T pairs) [72] | |
Hepato- cellular carcinoma | Suppressor | Wnt/β-catenin induces REG3A [60] REG3A reduces proliferation [20] REG3A binds hexosamine pathway sugars [20] REG3A lowers O-GlcNAcylation [20] | REG3A inhibits cancer development (WHC/MYC, DEN) [20] REG3A lowers UDP-GlcNAc [20] | REG3A localizes to cirrhotic hepatocytes [26,27,58] REG3A links to low stage HCC, no vascular invasion, β-catenin mutation (n = 265) [73] REG3A associates with β-catenin activation (42 NT/T) [60] REG3A improves disease-free survival in cirrhosis (n = 216) [20] No link between REG3A and OS in patients with HCC (n = 507) [20] |
Promoter | HSC/HCC coculture induces REG3A via PDGFββ, reducing apoptosis [74] REG3A knockdown in coculture lowers p42//44 activation [74] | REG3A reduces tumor growth of Lx2/MH134 xenografts in C3H mice [74] | REG3A positively correlates with cancer (88 NT/T pairs) [74] | |
Pancreatic cancer | Suppressor | N/A | N/A | N/A |
Promoter | REG3A promotes proliferation, migration, and invasion; activates EGFR and GP130/JAK2/STAT3 [48,75,76,77] IL6 induces REG3A via JAK2/STAT3 [75] REG3A inhibits DC maturation [78] REG3A drives acini-to-ductal metaplasia via EXTL3/RAS/ERK (3D culture) [79] | REG3A promotes cancer in DMBA-caerulein and Pdx1-Cre; KrasG12D; Ink4a/Arffl/fl models [48,76,79,80] REG3A enhances tumor growth and induces immunosuppression in Panc02 xenografts [78] REG3A activates EGFR/JAK2/STAT3 and synergizes with IL6 to boost tumors in xenograft mice [75,78] | Serum REG3A < 17.5 µg/L links to cancer (n = 254) [48], high TNM grade (n = 58) [77] and poor survival [48,77] REG3A localizes to peritumoral acini and CK19+ preneoplastic lesions [48,77,79] REG3A correlates with IL6/JAK/STAT3 in peritumoral acini [77] |
3. REG3A: Balancing Defense and Harmony in the Gut
4. REG3A in Innate Immunity: Sensing DAMPs and Modulating Anti-Inflammatory Responses
5. REG3A in Tissue Regeneration: A Critical Link Between Inflammation and Repair
6. Systemic Roles of REG3A: Linking Metabolism to Health and Disease
7. REG3A and Cancer: A Dual-Edged Role
7.1. REG3A in Pancreatic Cancer: A Paracrine Oncogenic Role
7.2. REG3A in Liver Cancer: A Tumor Suppressive Role Targeting the O-GlcNAc Glycosylation Pathway
7.3. The REG3A Paradox: Conflicting Data Across Solid Tumor Models
7.4. The REG3A–Gut Microbiota–Inflammation–Cancer Axis: An Emerging Interface in Tumor Biology
8. Clinical Relevance and Therapeutic Perspectives
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AKT | Protein kinase B |
ALF | Acute liver failure |
AMP | Antimicrobial protein |
AMPK | Adenosine monophosphate-activated protein kinase |
CCL4 | Tetrachloromethane |
CRC | Colorectal cancer |
CRD | Carbohydrate-recognition domain |
DAMPs | Damage-associated molecular patterns |
DMBT1 | Deleted in malignant brain tumors 1 |
ECM | Extracellular matrix |
EGF | Epidermal growth factor |
EGFR | Epidermal growth factor receptor |
ERK | Extracellular signal-regulated kinase |
EXTL3 | Exostosin-like glycosyltransferase 3 |
FOXM1 | Forkhead box M1 |
GC | Gastric cancer |
GFAT | Glucosamine:fructose-6-phosphate aminotransferase |
GlcNAc | N-acetylglucosamine |
HCC | Hepatocellular carcinoma |
HIP | Hepatocarcinoma-intestine-pancreas associated protein |
INGAP | Islet neogenesis-associated protein |
JAK | Janus kinase |
LncRNA | Long non-coding RNA |
LPS | Lipopolysaccharide |
MAPK | Mitogen-activated protein kinase |
NMDA | N-methyl-D-aspartic acid |
OGA | O-GlcNAcase |
OGT | O-GlcNAc transferase |
PAMPs | Pathogen-associated molecular patterns |
PAP | Pancreatitis-associated protein |
PDAC | Pancreatic ductal adenocarcinoma |
PDB | Protein data bank |
PDGF | Platelet-derived growth factor |
PTP | Pancreatic thread protein |
REG | Regenerating gene |
ROS | Reactive oxygen species |
SHP-1 | Src homology region 2 (SH2) domain-containing phosphatase-1 |
SOCS3 | Suppressor of cytokine signaling 3 |
STAT-3 | Signal transducer and activator of transcription-3 |
TNFα | Tumor necrosis factor α |
References
- Keim, V.; Rohr, G.; Stöckert, H.G.; Haberich, F.J. An Additional Secretory Protein in the Rat Pancreas. Digestion 1984, 29, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Keim, V.; Iovanna, J.L.; Rohr, G.; Usadel, K.H.; Dagorn, J.C. Characterization of a Rat Pancreatic Secretory Protein Associated with Pancreatitis. Gastroenterology 1991, 100, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Lasserre, C.; Christa, L.; Simon, M.T.; Vernier, P.; Bréchot, C. A Novel Gene (HIP) Activated in Human Primary Liver Cancer. Cancer Res. 1992, 52, 5089–5095. [Google Scholar] [PubMed]
- Unno, M.; Yonekura, H.; Nakagawara, K.; Watanabe, T.; Miyashita, H.; Moriizumi, S.; Okamoto, H.; Itoh, T.; Teraoka, H. Structure, Chromosomal Localization, and Expression of Mouse Reg Genes, Reg I and Reg II. A Novel Type of Reg Gene, Reg II, Exists in the Mouse Genome. J. Biol. Chem. 1993, 268, 15974–15982. [Google Scholar] [CrossRef]
- Nata, K.; Liu, Y.; Xu, L.; Ikeda, T.; Akiyama, T.; Noguchi, N.; Kawaguchi, S.; Yamauchi, A.; Takahashi, I.; Shervani, N.J.; et al. Molecular Cloning, Expression and Chromosomal Localization of a Novel Human REG Family Gene, REG III. Gene 2004, 340, 161–170. [Google Scholar] [CrossRef]
- Watanabe, T.; Yonekura, H.; Terazono, K.; Yamamoto, H.; Okamoto, H. Complete Nucleotide Sequence of Human Reg Gene and Its Expression in Normal and Tumoral Tissues. The Reg Protein, Pancreatic Stone Protein, and Pancreatic Thread Protein Are One and the Same Product of the Gene. J. Biol. Chem. 1990, 265, 7432–7439. [Google Scholar] [CrossRef]
- Moriizumi, S.; Watanabe, T.; Unno, M.; Nakagawara, K.; Suzuki, Y.; Miyashita, H.; Yonekura, H.; Okamoto, H. Isolation, Structural Determination and Expression of a Novel Reg Gene, Human regI Beta. Biochim. Biophys. Acta 1994, 1217, 199–202. [Google Scholar] [CrossRef]
- Lasserre, C.; Simon, M.T.; Ishikawa, H.; Diriong, S.; Nguyen, V.C.; Christa, L.; Vernier, P.; Brechot, C. Structural Organization and Chromosomal Localization of a Human Gene (HIP/PAP) Encoding a C-Type Lectin Overexpressed in Primary Liver Cancer. Eur. J. Biochem. 1994, 224, 29–38. [Google Scholar] [CrossRef]
- Iovanna, J.; Orelle, B.; Keim, V.; Dagorn, J.C. Messenger RNA Sequence and Expression of Rat Pancreatitis-Associated Protein, a Lectin-Related Protein Overexpressed during Acute Experimental Pancreatitis. J. Biol. Chem. 1991, 266, 24664–24669. [Google Scholar] [CrossRef]
- Abergel, C.; Chenivesse, S.; Stinnakre, M.G.; Guasco, S.; Bréchot, C.; Claverie, J.M.; Devinoy, E.; Christa, L. Crystallization and Preliminary Crystallographic Study of HIP/PAP, a Human C-Lectin Overexpressed in Primary Liver Cancers. Acta Crystallogr. D Biol. Crystallogr. 1999, 55, 1487–1489. [Google Scholar] [CrossRef]
- Mukherjee, S.; Partch, C.L.; Lehotzky, R.E.; Whitham, C.V.; Chu, H.; Bevins, C.L.; Gardner, K.H.; Hooper, L.V. Regulation of C-Type Lectin Antimicrobial Activity by a Flexible N-Terminal Prosegment. J. Biol. Chem. 2009, 284, 4881–4888. [Google Scholar] [CrossRef]
- Graf, R.; Schiesser, M.; Scheele, G.A.; Marquardt, K.; Frick, T.W.; Ammann, R.W.; Bimmler, D. A Family of 16-kDa Pancreatic Secretory Stress Proteins Form Highly Organized Fibrillar Structures upon Tryptic Activation. J. Biol. Chem. 2001, 276, 21028–21038. [Google Scholar] [CrossRef]
- Medveczky, P.; Szmola, R.; Sahin-Tóth, M. Proteolytic Activation of Human Pancreatitis-Associated Protein Is Required for Peptidoglycan Binding and Bacterial Aggregation. Biochem. J. 2009, 420, 335–343. [Google Scholar] [CrossRef]
- Schiesser, M.; Bimmler, D.; Frick, T.W.; Graf, R. Conformational Changes of Pancreatitis-Associated Protein (PAP) Activated by Trypsin Lead to Insoluble Protein Aggregates. Pancreas 2001, 22, 186–192. [Google Scholar] [CrossRef]
- Ho, M.-R.; Lou, Y.-C.; Lin, W.-C.; Lyu, P.-C.; Huang, W.-N.; Chen, C. Human Pancreatitis-Associated Protein Forms Fibrillar Aggregates with a Native-like Conformation. J. Biol. Chem. 2006, 281, 33566–33576. [Google Scholar] [CrossRef] [PubMed]
- Christa, L.; Felin, M.; Morali, O.; Simon, M.T.; Lasserre, C.; Brechot, C.; Sève, A.P. The Human HIP Gene, Overexpressed in Primary Liver Cancer Encodes for a C-Type Carbohydrate Binding Protein with Lactose Binding Activity. FEBS Lett. 1994, 337, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Drickamer, K. C-Type Lectin-like Domains. Curr. Opin. Struct. Biol. 1999, 9, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Lehotzky, R.E.; Partch, C.L.; Mukherjee, S.; Cash, H.L.; Goldman, W.E.; Gardner, K.H.; Hooper, L.V. Molecular Basis for Peptidoglycan Recognition by a Bactericidal Lectin. Proc. Natl. Acad. Sci. USA 2010, 107, 7722–7727. [Google Scholar] [CrossRef]
- Cash, H.L.; Whitham, C.V.; Behrendt, C.L.; Hooper, L.V. Symbiotic Bacteria Direct Expression of an Intestinal Bactericidal Lectin. Science 2006, 313, 1126–1130. [Google Scholar] [CrossRef]
- Moniaux, N.; Geoffre, N.; Deshayes, A.; Dos Santos, A.; Job, S.; Lacoste, C.; Nguyen, T.-S.; Darnaud, M.; Friedel-Arboleas, M.; Guettier, C.; et al. Tumor Suppressive Role of the Antimicrobial Lectin REG3A Targeting the O -GlcNAc Glycosylation Pathway. Hepatology 2025, 81, 1416–1432. [Google Scholar] [CrossRef]
- Moniaux, N.; Song, H.; Darnaud, M.; Garbin, K.; Gigou, M.; Mitchell, C.; Samuel, D.; Jamot, L.; Amouyal, P.; Amouyal, G.; et al. Human Hepatocarcinoma-Intestine-Pancreas/Pancreatitis-Associated Protein Cures Fas-Induced Acute Liver Failure in Mice by Attenuating Free-Radical Damage in Injured Livers. Hepatology 2011, 53, 618–627. [Google Scholar] [CrossRef]
- Moniaux, N.; Darnaud, M.; Garbin, K.; Dos Santos, A.; Guettier, C.; Samuel, D.; Amouyal, G.; Amouyal, P.; Bréchot, C.; Faivre, J. The Reg3α (HIP/PAP) Lectin Suppresses Extracellular Oxidative Stress in a Murine Model of Acute Liver Failure. PLoS ONE 2015, 10, e0125584. [Google Scholar] [CrossRef]
- Gonzalez, P.; Dos Santos, A.; Darnaud, M.; Moniaux, N.; Rapoud, D.; Lacoste, C.; Nguyen, T.-S.; Moullé, V.S.; Deshayes, A.; Amouyal, G.; et al. Antimicrobial Protein REG3A Regulates Glucose Homeostasis and Insulin Resistance in Obese Diabetic Mice. Commun. Biol. 2023, 6, 269. [Google Scholar] [CrossRef]
- Hervieu, V.; Christa, L.; Gouysse, G.; Bouvier, R.; Chayvialle, J.-A.; Bréchot, C.; Scoazec, J.-Y. HIP/PAP, a Member of the Reg Family, Is Expressed in Glucagon-Producing Enteropancreatic Endocrine Cells and Tumors. Hum. Pathol. 2006, 37, 1066–1075. [Google Scholar] [CrossRef]
- Choi, B.; Suh, Y.; Kim, W.-H.; Christa, L.; Park, J.; Bae, C.-D. Downregulation of Regenerating Islet-Derived 3 Alpha (REG3A) in Primary Human Gastric Adenocarcinomas. Exp. Mol. Med. 2007, 39, 796–804. [Google Scholar] [CrossRef]
- Christa, L.; Carnot, F.; Simon, M.T.; Levavasseur, F.; Stinnakre, M.G.; Lasserre, C.; Thepot, D.; Clement, B.; Devinoy, E.; Brechot, C. HIP/PAP Is an Adhesive Protein Expressed in Hepatocarcinoma, Normal Paneth, and Pancreatic Cells. Am. J. Physiol. 1996, 271, G993–G1002. [Google Scholar] [CrossRef] [PubMed]
- Christa, L.; Simon, M.T.; Brezault-Bonnet, C.; Bonte, E.; Carnot, F.; Zylberberg, H.; Franco, D.; Capron, F.; Roskams, T.; Bréchot, C. Hepatocarcinoma-Intestine-Pancreas/Pancreatic Associated Protein (HIP/PAP) Is Expressed and Secreted by Proliferating Ductules as Well as by Hepatocarcinoma and Cholangiocarcinoma Cells. Am. J. Pathol. 1999, 155, 1525–1533. [Google Scholar] [CrossRef]
- Lai, Y.; Li, D.; Li, C.; Muehleisen, B.; Radek, K.A.; Park, H.J.; Jiang, Z.; Li, Z.; Lei, H.; Quan, Y.; et al. The Antimicrobial Protein REG3A Regulates Keratinocyte Proliferation and Differentiation after Skin Injury. Immunity 2012, 37, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, C.; Vrontakis, M.; Molnar, P.; Schroedter, I.C.; Katsumata, N.; Murphy, L.J.; Shiu, R.P.; Friesen, H.G. Expression of Pituitary Peptide 23 in the Rat Uterus: Regulation by Estradiol. Mol. Cell. Endocrinol. 1995, 108, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Tachibana, K.; Marquardt, H.; Yokoya, S.; Friesen, H.G. Growth Hormone-Releasing Hormone Stimulates and Somatostatin Inhibits the Release of a Novel Protein by Cultured Rat Pituitary Cells. Mol. Endocrinol. 1988, 2, 973–978. [Google Scholar] [CrossRef]
- Brandl, K.; Plitas, G.; Mihu, C.N.; Ubeda, C.; Jia, T.; Fleisher, M.; Schnabl, B.; DeMatteo, R.P.; Pamer, E.G. Vancomycin-Resistant Enterococci Exploit Antibiotic-Induced Innate Immune Deficits. Nature 2008, 455, 804–807. [Google Scholar] [CrossRef]
- Natividad, J.M.M.; Hayes, C.L.; Motta, J.-P.; Jury, J.; Galipeau, H.J.; Philip, V.; Garcia-Rodenas, C.L.; Kiyama, H.; Bercik, P.; Verdu, E.F. Differential Induction of Antimicrobial REGIII by the Intestinal Microbiota and Bifidobacterium Breve NCC2950. Appl. Environ. Microbiol. 2013, 79, 7745–7754. [Google Scholar] [CrossRef]
- Shin, J.H.; Bozadjieva-Kramer, N.; Shao, Y.; Lyons-Abbott, S.; Rupp, A.C.; Sandoval, D.A.; Seeley, R.J. The Gut Peptide Reg3g Links the Small Intestine Microbiome to the Regulation of Energy Balance, Glucose Levels, and Gut Function. Cell Metab. 2022, 34, 1765–1778.e6. [Google Scholar] [CrossRef]
- Vaishnava, S.; Behrendt, C.L.; Ismail, A.S.; Eckmann, L.; Hooper, L.V. Paneth Cells Directly Sense Gut Commensals and Maintain Homeostasis at the Intestinal Host-Microbial Interface. Proc. Natl. Acad. Sci. USA 2008, 105, 20858–20863. [Google Scholar] [CrossRef]
- Zheng, Y.; Valdez, P.A.; Danilenko, D.M.; Hu, Y.; Sa, S.M.; Gong, Q.; Abbas, A.R.; Modrusan, Z.; Ghilardi, N.; de Sauvage, F.J.; et al. Interleukin-22 Mediates Early Host Defense against Attaching and Effacing Bacterial Pathogens. Nat. Med. 2008, 14, 282–289. [Google Scholar] [CrossRef]
- Vaishnava, S.; Yamamoto, M.; Severson, K.M.; Ruhn, K.A.; Yu, X.; Koren, O.; Ley, R.; Wakeland, E.K.; Hooper, L.V. The Antibacterial Lectin RegIIIgamma Promotes the Spatial Segregation of Microbiota and Host in the Intestine. Science 2011, 334, 255–258. [Google Scholar] [CrossRef]
- van Ampting, M.T.J.; Rodenburg, W.; Vink, C.; Kramer, E.; Schonewille, A.J.; Keijer, J.; van der Meer, R.; Bovee-Oudenhoven, I.M.J. Ileal Mucosal and Fecal Pancreatitis Associated Protein Levels Reflect Severity of Salmonella Infection in Rats. Dig. Dis. Sci. 2009, 54, 2588–2597. [Google Scholar] [CrossRef] [PubMed]
- van Ampting, M.T.J.; Loonen, L.M.P.; Schonewille, A.J.; Konings, I.; Vink, C.; Iovanna, J.; Chamaillard, M.; Dekker, J.; van der Meer, R.; Wells, J.M.; et al. Intestinally Secreted C-Type Lectin Reg3b Attenuates Salmonellosis but Not Listeriosis in Mice. Infect. Immun. 2012, 80, 1115–1120. [Google Scholar] [CrossRef] [PubMed]
- Loonen, L.M.P.; Stolte, E.H.; Jaklofsky, M.T.J.; Meijerink, M.; Dekker, J.; van Baarlen, P.; Wells, J.M. REG3γ-Deficient Mice Have Altered Mucus Distribution and Increased Mucosal Inflammatory Responses to the Microbiota and Enteric Pathogens in the Ileum. Mucosal. Immunol. 2014, 7, 939–947. [Google Scholar] [CrossRef] [PubMed]
- Dusetti, N.J.; Ortiz, E.M.; Mallo, G.V.; Dagorn, J.C.; Iovanna, J.L. Pancreatitis-Associated Protein I (PAP I), an Acute Phase Protein Induced by Cytokines. Identification of Two Functional Interleukin-6 Response Elements in the Rat PAP I Promoter Region. J. Biol. Chem. 1995, 270, 22417–22421. [Google Scholar] [CrossRef]
- Gurr, W.; Yavari, R.; Wen, L.; Shaw, M.; Mora, C.; Christa, L.; Sherwin, R.S. A Reg Family Protein Is Overexpressed in Islets from a Patient with New-Onset Type 1 Diabetes and Acts as T-Cell Autoantigen in NOD Mice. Diabetes 2002, 51, 339–346. [Google Scholar] [CrossRef]
- Yoshino, N.; Ishihara, S.; Rumi, M.A.K.; Ortega-Cava, C.F.; Yuki, T.; Kazumori, H.; Takazawa, S.; Okamoto, H.; Kadowaki, Y.; Kinoshita, Y. Interleukin-8 Regulates Expression of Reg Protein in Helicobacter Pylori-Infected Gastric Mucosa. Am. J. Gastroenterol. 2005, 100, 2157–2166. [Google Scholar] [CrossRef]
- Wu, Y.; Quan, Y.; Liu, Y.; Liu, K.; Li, H.; Jiang, Z.; Zhang, T.; Lei, H.; Radek, K.A.; Li, D.; et al. Hyperglycaemia Inhibits REG3A Expression to Exacerbate TLR3-Mediated Skin Inflammation in Diabetes. Nat. Commun. 2016, 7, 13393. [Google Scholar] [CrossRef]
- Hendrikx, T.; Duan, Y.; Wang, Y.; Oh, J.-H.; Alexander, L.M.; Huang, W.; Stärkel, P.; Ho, S.B.; Gao, B.; Fiehn, O.; et al. Bacteria Engineered to Produce IL-22 in Intestine Induce Expression of REG3G to Reduce Ethanol-Induced Liver Disease in Mice. Gut 2019, 68, 1504–1515. [Google Scholar] [CrossRef] [PubMed]
- Gironella, M.; Iovanna, J.L.; Sans, M.; Gil, F.; Peñalva, M.; Closa, D.; Miquel, R.; Piqué, J.M.; Panés, J. Anti-Inflammatory Effects of Pancreatitis Associated Protein in Inflammatory Bowel Disease. Gut 2005, 54, 1244–1253. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, J.L.M.; Harris, A.C.; Greenson, J.K.; Braun, T.M.; Holler, E.; Teshima, T.; Levine, J.E.; Choi, S.W.J.; Huber, E.; Landfried, K.; et al. Regenerating Islet-Derived 3-Alpha Is a Biomarker of Gastrointestinal Graft-versus-Host Disease. Blood 2011, 118, 6702–6708. [Google Scholar] [CrossRef]
- Ding, X.; Liu, S.; Zhu, S.; Zhou, B.; Ma, H. A Pilot Study on Human Circulating System Indicated That Regenerating Islet-Derived Protein 3 Gamma (REG3A) Is a Potential Prognostic Biomarker for Sepsis. Am. J. Cardiol. 2023, 190, 90–95. [Google Scholar] [CrossRef]
- Nigri, J.; Gironella, M.; Bressy, C.; Vila-Navarro, E.; Roques, J.; Lac, S.; Bontemps, C.; Kozaczyk, C.; Cros, J.; Pietrasz, D.; et al. PAP/REG3A Favors Perineural Invasion in Pancreatic Adenocarcinoma and Serves as a Prognostic Marker. Cell. Mol. Life Sci. 2017, 74, 4231–4243. [Google Scholar] [CrossRef]
- DePriest, B.P.; Li, H.; Bidgoli, A.; Onstad, L.; Couriel, D.; Lee, S.J.; Paczesny, S. Regenerating Islet-Derived Protein 3-α Is a Prognostic Biomarker for Gastrointestinal Chronic Graft-versus-Host Disease. Blood Adv. 2022, 6, 2981–2986. [Google Scholar] [CrossRef]
- Li, W.-S.; Chen, T.-J.; Lee, S.-W.; Yang, C.-C.; Tian, Y.-F.; Kuo, Y.-H.; Tsai, H.-H.; Wu, L.-C.; Yeh, C.-F.; Shiue, Y.-L.; et al. REG3A Overexpression Functions as a Negative Predictive and Prognostic Biomarker in Rectal Cancer Patients Receiving CCRT. Histol. Histopathol. 2024, 39, 91–104. [Google Scholar] [CrossRef]
- Nitta, Y.; Konishi, H.; Makino, T.; Tanaka, T.; Kawashima, H.; Iovanna, J.L.; Nakatani, T.; Kiyama, H. Urinary Levels of Hepatocarcinoma-Intestine-Pancreas/Pancreatitis-Associated Protein as a Diagnostic Biomarker in Patients with Bladder Cancer. BMC Urol. 2012, 12, 24. [Google Scholar] [CrossRef]
- Sarles, J.; Barthellemy, S.; Férec, C.; Iovanna, J.; Roussey, M.; Farriaux, J.P.; Toutain, A.; Berthelot, J.; Maurin, N.; Codet, J.P.; et al. Blood Concentrations of Pancreatitis Associated Protein in Neonates: Relevance to Neonatal Screening for Cystic Fibrosis. Arch. Dis. Child. Fetal Neonatal Ed. 1999, 80, F118–F122. [Google Scholar] [CrossRef]
- Xie, M.-J.; Motoo, Y.; Iovanna, J.L.; Su, S.-B.; Ohtsubo, K.; Matsubara, F.; Sawabu, N. Overexpression of Pancreatitis-Associated Protein (PAP) in Human Pancreatic Ductal Adenocarcinoma. Dig. Dis. Sci. 2003, 48, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, N.; Zembutsu, H.; Yamaguchi, K.; Sasaki, K.; Tsuruma, T.; Nishidate, T.; Denno, R.; Hirata, K. Identification of Novel Molecular Markers for Detection of Gastric Cancer Cells in the Peripheral Blood Circulation Using Genome-Wide Microarray Analysis. Exp. Ther. Med. 2011, 2, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, H.; Fukushima, K.; Naito, H.; Funayama, Y.; Unno, M.; Takahashi, K.; Kitayama, T.; Matsuno, S.; Ohtani, H.; Takasawa, S.; et al. Increased Expression of HIP/PAP and Regenerating Gene III in Human Inflammatory Bowel Disease and a Murine Bacterial Reconstitution Model. Inflamm. Bowel Dis. 2003, 9, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Marafini, I.; Di Sabatino, A.; Zorzi, F.; Monteleone, I.; Sedda, S.; Cupi, M.L.; Antenucci, C.; Biancheri, P.; Giuffrida, P.; Di Stefano, M.; et al. Serum Regenerating Islet-Derived 3-Alpha Is a Biomarker of Mucosal Enteropathies. Aliment. Pharmacol. Ther. 2014, 40, 974–981. [Google Scholar] [CrossRef]
- Zheng, H.; Sugawara, A.; Okamoto, H.; Takasawa, S.; Takahashi, H.; Masuda, S.; Takano, Y. Expression Profile of the REG Gene Family in Colorectal Carcinoma. J. Histochem. Cytochem. 2011, 59, 106–115. [Google Scholar] [CrossRef]
- Li, Q.; Li, H.; Lv, Y.; Zhang, Q.; Zhang, X.; Li, S.; Zheng, X.; Wang, Y.; Hao, Z. Hepatocarcinoma-Intestine-Pancreas/Pancreatitis-Associated Protein (HIP/PAP) Confers Protection against Hepatic Fibrosis through Downregulation of Transforming Growth Factor β Receptor II. Lab. Investig. 2020, 100, 466–482. [Google Scholar] [CrossRef]
- Yan, A.W.; Fouts, D.E.; Brandl, J.; Stärkel, P.; Torralba, M.; Schott, E.; Tsukamoto, H.; Nelson, K.E.; Brenner, D.A.; Schnabl, B. Enteric Dysbiosis Associated with a Mouse Model of Alcoholic Liver Disease. Hepatology 2011, 53, 96–105. [Google Scholar] [CrossRef]
- Cavard, C.; Terris, B.; Grimber, G.; Christa, L.; Audard, V.; Radenen-Bussiere, B.; Simon, M.-T.; Renard, C.-A.; Buendia, M.-A.; Perret, C. Overexpression of Regenerating Islet-Derived 1 Alpha and 3 Alpha Genes in Human Primary Liver Tumors with Beta-Catenin Mutations. Oncogene 2006, 25, 599–608. [Google Scholar] [CrossRef]
- Livesey, F.J.; O’Brien, J.A.; Li, M.; Smith, A.G.; Murphy, L.J.; Hunt, S.P. A Schwann Cell Mitogen Accompanying Regeneration of Motor Neurons. Nature 1997, 390, 614–618. [Google Scholar] [CrossRef] [PubMed]
- Ampo, K.-I.; Suzuki, A.; Konishi, H.; Kiyama, H. Induction of Pancreatitis-Associated Protein (PAP) Family Members in Neurons after Traumatic Brain Injury. J. Neurotrauma 2009, 26, 1683–1693. [Google Scholar] [CrossRef] [PubMed]
- Duplan, L.; Michel, B.; Boucraut, J.; Barthellémy, S.; Desplat-Jego, S.; Marin, V.; Gambarelli, D.; Bernard, D.; Berthézène, P.; Alescio-Lautier, B.; et al. Lithostathine and Pancreatitis-Associated Protein Are Involved in the Very Early Stages of Alzheimer’s Disease. Neurobiol. Aging 2001, 22, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Bartoli, C.; Baeza, N.; Figarella, C.; Pellegrini, I.; Figarella-Branger, D. Expression of Peptide-23/Pancreatitis-Associated Protein and Reg Genes in Human Pituitary and Adenomas: Comparison with Other Fetal and Adult Human Tissues. J. Clin. Endocrinol. Metab. 1998, 83, 4041–4046. [Google Scholar] [CrossRef]
- Zheng, X.; Li, Q.; Tian, H.; Li, H.; Lv, Y.; Wang, Y.; He, L.; Huo, Y.; Hao, Z. HIP/PAP Protects against Bleomycin-Induced Lung Injury and Inflammation and Subsequent Fibrosis in Mice. J. Cell. Mol. Med. 2020, 24, 6804–6821. [Google Scholar] [CrossRef]
- Masui, T.; Ota, I.; Itaya-Hironaka, A.; Takeda, M.; Kasai, T.; Yamauchi, A.; Sakuramoto-Tsuchida, S.; Mikami, S.; Yane, K.; Takasawa, S.; et al. Expression of REG III and Prognosis in Head and Neck Cancer. Oncol. Rep. 2013, 30, 573–578. [Google Scholar] [CrossRef]
- You, G.; Cao, H.; Yan, L.; He, P.; Wang, Y.; Liu, B.; Shao, F. MicroRNA-10a-3p Mediates Th17/Treg Cell Balance and Improves Renal Injury by Inhibiting REG3A in Lupus Nephritis. Int. Immunopharmacol. 2020, 88, 106891. [Google Scholar] [CrossRef]
- Jiang, T.; Huang, Y.; Liu, H.; Xu, Q.; Gong, Y.; Chen, Y.; Hu, X.; Han, Z.; Gao, M. Reduced miR-146a Promotes REG3A Expression and Macrophage Migration in Polymyositis and Dermatomyositis. Front. Immunol. 2020, 11, 37. [Google Scholar] [CrossRef]
- Liu, X.; Wei, W.; Li, X.; Shen, P.; Ju, D.; Wang, Z.; Zhang, R.; Yang, F.; Chen, C.; Cao, K.; et al. BMI1 and MEL18 Promote Colitis-Associated Cancer in Mice via REG3B and STAT3. Gastroenterology 2017, 153, 1607–1620. [Google Scholar] [CrossRef]
- Ye, Y.; Xiao, L.; Wang, S.-J.; Yue, W.; Yin, Q.-S.; Sun, M.-Y.; Xia, W.; Shao, Z.-Y.; Zhang, H. Up-Regulation of REG3A in Colorectal Cancer Cells Confers Proliferation and Correlates with Colorectal Cancer Risk. Oncotarget 2016, 7, 3921–3933. [Google Scholar] [CrossRef]
- Qiu, Y.-S.; Liao, G.-J.; Jiang, N.-N. REG3A Overexpression Suppresses Gastric Cancer Cell Invasion, Proliferation and Promotes Apoptosis through PI3K/Akt Signaling Pathway. Int. J. Mol. Med. 2018, 41, 3167–3174. [Google Scholar] [CrossRef]
- Chen, Z.-F.; Huang, Z.-M.; Xue, H.-B.; Lin, X.-Q.; Chen, R.-P.; Chen, M.-J.; Jin, R.-F. REG3A Promotes the Proliferation, Migration, and Invasion of Gastric Cancer Cells. Onco. Targets Ther. 2017, 10, 2017–2023. [Google Scholar] [CrossRef]
- Yuan, R.-H.; Jeng, Y.-M.; Chen, H.-L.; Hsieh, F.-J.; Yang, C.-Y.; Lee, P.-H.; Hsu, H.-C. Opposite Roles of Human Pancreatitis-Associated Protein and REG1A Expression in Hepatocellular Carcinoma: Association of Pancreatitis-Associated Protein Expression with Low-Stage Hepatocellular Carcinoma, Beta-Catenin Mutation, and Favorable Prognosis. Clin. Cancer Res. 2005, 11, 2568–2575. [Google Scholar] [CrossRef]
- Cho, Y.; Park, M.J.; Kim, K.; Park, J.-Y.; Kim, J.; Kim, W.; Yoon, J.-H. Tumor-Stroma Crosstalk Enhances REG3A Expressions That Drive the Progression of Hepatocellular Carcinoma. Int. J. Mol. Sci. 2020, 21, 472. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, J.; Wang, H.; Yin, G.; Liu, Y.; Lei, X.; Xiang, M. REG3A Accelerates Pancreatic Cancer Cell Growth under IL-6-Associated Inflammatory Condition: Involvement of a REG3A-JAK2/STAT3 Positive Feedback Loop. Cancer Lett. 2015, 362, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Loncle, C.; Bonjoch, L.; Folch-Puy, E.; Lopez-Millan, M.B.; Lac, S.; Molejon, M.I.; Chuluyan, E.; Cordelier, P.; Dubus, P.; Lomberk, G.; et al. IL17 Functions through the Novel REG3β-JAK2-STAT3 Inflammatory Pathway to Promote the Transition from Chronic Pancreatitis to Pancreatic Cancer. Cancer Res. 2015, 75, 4852–4862. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Teng, Y.; Xie, K.; He, X.; Chen, G.; Zhang, K.; Liao, Q.; Zhang, J.; Zhou, X.; Zhu, Y.; et al. REG3A Secreted by Peritumoral Acinar Cells Enhances Pancreatic Ductal Adenocarcinoma Progression via Activation of EGFR Signaling. Cell Commun. Signal. 2025, 23, 96. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Z.; Cheng, Q.; Wang, H.; Cao, H.; Xu, Q.; Tuo, Y.; Jiang, L.; Zou, Y.; Ren, H.; et al. Acceleration of Pancreatic Tumorigenesis under Immunosuppressive Microenvironment Induced by Reg3g Overexpression. Cell Death Dis. 2017, 8, e3033. [Google Scholar] [CrossRef]
- Zhang, H.; Corredor, A.L.G.; Messina-Pacheco, J.; Li, Q.; Zogopoulos, G.; Kaddour, N.; Wang, Y.; Shi, B.-Y.; Gregorieff, A.; Liu, J.-L.; et al. REG3A/REG3B Promotes Acinar to Ductal Metaplasia through Binding to EXTL3 and Activating the RAS-RAF-MEK-ERK Signaling Pathway. Commun. Biol. 2021, 4, 688. [Google Scholar] [CrossRef]
- Yin, G.; Du, J.; Cao, H.; Liu, X.; Xu, Q.; Xiang, M. Reg3g Promotes Pancreatic Carcinogenesis in a Murine Model of Chronic Pancreatitis. Dig. Dis. Sci. 2015, 60, 3656–3668. [Google Scholar] [CrossRef]
- Mukherjee, S.; Zheng, H.; Derebe, M.G.; Callenberg, K.M.; Partch, C.L.; Rollins, D.; Propheter, D.C.; Rizo, J.; Grabe, M.; Jiang, Q.-X.; et al. Antibacterial Membrane Attack by a Pore-Forming Intestinal C-Type Lectin. Nature 2014, 505, 103–107. [Google Scholar] [CrossRef]
- Mukherjee, S.; Vaishnava, S.; Hooper, L.V. Multi-Layered Regulation of Intestinal Antimicrobial Defense. Cell. Mol. Life Sci. 2008, 65, 3019–3027. [Google Scholar] [CrossRef]
- Stelter, C.; Käppeli, R.; König, C.; Krah, A.; Hardt, W.-D.; Stecher, B.; Bumann, D. Salmonella-Induced Mucosal Lectin RegIIIβ Kills Competing Gut Microbiota. PLoS ONE 2011, 6, e20749. [Google Scholar] [CrossRef]
- Miki, T.; Holst, O.; Hardt, W.-D. The Bactericidal Activity of the C-Type Lectin RegIIIβ against Gram-Negative Bacteria Involves Binding to Lipid A. J. Biol. Chem. 2012, 287, 34844–34855. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Fouts, D.E.; Stärkel, P.; Hartmann, P.; Chen, P.; Llorente, C.; DePew, J.; Moncera, K.; Ho, S.B.; Brenner, D.A.; et al. Intestinal REG3 Lectins Protect against Alcoholic Steatohepatitis by Reducing Mucosa-Associated Microbiota and Preventing Bacterial Translocation. Cell Host Microbe 2016, 19, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Darnaud, M.; Dos Santos, A.; Gonzalez, P.; Augui, S.; Lacoste, C.; Desterke, C.; De Hertogh, G.; Valentino, E.; Braun, E.; Zheng, J.; et al. Enteric Delivery of Regenerating Family Member 3 Alpha Alters the Intestinal Microbiota and Controls Inflammation in Mice with Colitis. Gastroenterology 2018, 154, 1009–1023.e14. [Google Scholar] [CrossRef] [PubMed]
- Frazier, K.; Kambal, A.; Zale, E.A.; Pierre, J.F.; Hubert, N.; Miyoshi, S.; Miyoshi, J.; Ringus, D.L.; Harris, D.; Yang, K.; et al. High-Fat Diet Disrupts REG3γ and Gut Microbial Rhythms Promoting Metabolic Dysfunction. Cell Host Microbe 2022, 30, 809–823.e6. [Google Scholar] [CrossRef]
- Nalpas, B.; Ichaï, P.; Jamot, L.; Carbonell, N.; Rudler, M.; Mathurin, P.; Durand, F.; Gerken, G.; Manns, M.; Trautwein, C.; et al. A Proof of Concept, Phase II Randomized European Trial, on the Efficacy of ALF-5755, a Novel Extracellular Matrix-Targeted Antioxidant in Patients with Acute Liver Diseases. PLoS ONE 2016, 11, e0150733. [Google Scholar] [CrossRef]
- Simon, M.-T.; Pauloin, A.; Normand, G.; Lieu, H.-T.; Mouly, H.; Pivert, G.; Carnot, F.; Tralhao, J.G.; Brechot, C.; Christa, L. HIP/PAP Stimulates Liver Regeneration after Partial Hepatectomy and Combines Mitogenic and Anti-Apoptotic Functions through the PKA Signaling Pathway. FASEB J. 2003, 17, 1441–1450. [Google Scholar] [CrossRef]
- Lieu, H.-T.; Batteux, F.; Simon, M.-T.; Cortes, A.; Nicco, C.; Zavala, F.; Pauloin, A.; Tralhao, J.G.; Soubrane, O.; Weill, B.; et al. HIP/PAP Accelerates Liver Regeneration and Protects against Acetaminophen Injury in Mice. Hepatology 2005, 42, 618–626. [Google Scholar] [CrossRef]
- Lieu, H.-T.; Simon, M.-T.; Nguyen-Khoa, T.; Kebede, M.; Cortes, A.; Tebar, L.; Smith, A.J.H.; Bayne, R.; Hunt, S.P.; Bréchot, C.; et al. Reg2 Inactivation Increases Sensitivity to Fas Hepatotoxicity and Delays Liver Regeneration Post-Hepatectomy in Mice. Hepatology 2006, 44, 1452–1464. [Google Scholar] [CrossRef] [PubMed]
- Haldipur, P.; Dupuis, N.; Degos, V.; Moniaux, N.; Chhor, V.; Rasika, S.; Schwendimann, L.; le Charpentier, T.; Rougier, E.; Amouyal, P.; et al. HIP/PAP Prevents Excitotoxic Neuronal Death and Promotes Plasticity. Ann. Clin. Transl. Neurol. 2014, 1, 739–754. [Google Scholar] [CrossRef] [PubMed]
- Nishimune, H.; Vasseur, S.; Wiese, S.; Birling, M.C.; Holtmann, B.; Sendtner, M.; Iovanna, J.L.; Henderson, C.E. Reg-2 Is a Motoneuron Neurotrophic Factor and a Signalling Intermediate in the CNTF Survival Pathway. Nat. Cell Biol. 2000, 2, 906–914. [Google Scholar] [CrossRef] [PubMed]
- Namikawa, K.; Fukushima, M.; Murakami, K.; Suzuki, A.; Takasawa, S.; Okamoto, H.; Kiyama, H. Expression of Reg/PAP Family Members during Motor Nerve Regeneration in Rat. Biochem. Biophys. Res. Commun. 2005, 332, 126–134. [Google Scholar] [CrossRef]
- Lörchner, H.; Pöling, J.; Gajawada, P.; Hou, Y.; Polyakova, V.; Kostin, S.; Adrian-Segarra, J.M.; Boettger, T.; Wietelmann, A.; Warnecke, H.; et al. Myocardial Healing Requires Reg3β-Dependent Accumulation of Macrophages in the Ischemic Heart. Nat. Med. 2015, 21, 353–362. [Google Scholar] [CrossRef]
- Lörchner, H.; Hou, Y.; Adrian-Segarra, J.M.; Kulhei, J.; Detzer, J.; Günther, S.; Gajawada, P.; Warnecke, H.; Niessen, H.W.; Pöling, J.; et al. Reg Proteins Direct Accumulation of Functionally Distinct Macrophage Subsets after Myocardial Infarction. Cardiovasc. Res. 2018, 114, 1667–1679. [Google Scholar] [CrossRef]
- Kim, B.T.; Kitagawa, H.; Tamura, J.; Saito, T.; Kusche-Gullberg, M.; Lindahl, U.; Sugahara, K. Human Tumor Suppressor EXT Gene Family Members EXTL1 and EXTL3 Encode Alpha 1,4- N-Acetylglucosaminyltransferases That Likely Are Involved in Heparan Sulfate/ Heparin Biosynthesis. Proc. Natl. Acad. Sci. USA 2001, 98, 7176–7181. [Google Scholar] [CrossRef]
- Kobayashi, S.; Akiyama, T.; Nata, K.; Abe, M.; Tajima, M.; Shervani, N.J.; Unno, M.; Matsuno, S.; Sasaki, H.; Takasawa, S.; et al. Identification of a Receptor for Reg (Regenerating Gene) Protein, a Pancreatic Beta-Cell Regeneration Factor. J. Biol. Chem. 2000, 275, 10723–10726. [Google Scholar] [CrossRef]
- Levetan, C.S.; Upham, L.V.; Deng, S.; Laury-Kleintop, L.; Kery, V.; Nolan, R.; Quinlan, J.; Torres, C.; El-Hajj, R.J. Discovery of a Human Peptide Sequence Signaling Islet Neogenesis. Endocr. Pract. 2008, 14, 1075–1083. [Google Scholar] [CrossRef]
- Takasawa, S.; Ikeda, T.; Akiyama, T.; Nata, K.; Nakagawa, K.; Shervani, N.J.; Noguchi, N.; Murakami-Kawaguchi, S.; Yamauchi, A.; Takahashi, I.; et al. Cyclin D1 Activation through ATF-2 in Reg-Induced Pancreatic Beta-Cell Regeneration. FEBS Lett. 2006, 580, 585–591. [Google Scholar] [CrossRef]
- Watanabe, T.; Yonemura, Y.; Yonekura, H.; Suzuki, Y.; Miyashita, H.; Sugiyama, K.; Moriizumi, S.; Unno, M.; Tanaka, O.; Kondo, H. Pancreatic Beta-Cell Replication and Amelioration of Surgical Diabetes by Reg Protein. Proc. Natl. Acad. Sci. USA 1994, 91, 3589–3592. [Google Scholar] [CrossRef]
- Petropavlovskaia, M.; Daoud, J.; Zhu, J.; Moosavi, M.; Ding, J.; Makhlin, J.; Assouline-Thomas, B.; Rosenberg, L. Mechanisms of Action of Islet Neogenesis-Associated Protein: Comparison of the Full-Length Recombinant Protein and a Bioactive Peptide. Am. J. Physiol. Endocrinol. Metab. 2012, 303, E917–E927. [Google Scholar] [CrossRef]
- Jamal, A.-M.; Lipsett, M.; Sladek, R.; Laganière, S.; Hanley, S.; Rosenberg, L. Morphogenetic Plasticity of Adult Human Pancreatic Islets of Langerhans. Cell Death Differ. 2005, 12, 702–712. [Google Scholar] [CrossRef]
- Lipsett, M.A.; Austin, E.B.; Castellarin, M.L.; Lemay, J.; Rosenberg, L. Evidence for the Homeostatic Regulation of Induced Beta Cell Mass Expansion. Diabetologia 2006, 49, 2910–2919. [Google Scholar] [CrossRef] [PubMed]
- Kapur, R.; Højfeldt, T.W.; Højfeldt, T.W.; Rønn, S.G.; Karlsen, A.E.; Heller, R.S. Short-Term Effects of INGAP and Reg Family Peptides on the Appearance of Small β-Cells Clusters in Non-Diabetic Mice. Islets 2012, 4, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Dungan, K.M.; Buse, J.B.; Ratner, R.E. Effects of Therapy in Type 1 and Type 2 Diabetes Mellitus with a Peptide Derived from Islet Neogenesis Associated Protein (INGAP). Diabetes Metab. Res. Rev. 2009, 25, 558–565. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Wang, X.; Li, B.; Chowdhury, S.; Lu, Y.; Srikant, C.B.; Ning, G.; Liu, J.-L. Pancreatic Islet-Specific Overexpression of Reg3β Protein Induced the Expression of pro-Islet Genes and Protected the Mice against Streptozotocin-Induced Diabetes Mellitus. Am. J. Physiol. Endocrinol. Metab. 2011, 300, E669–E680. [Google Scholar] [CrossRef]
- Huang, Y.; Qi, H.; Zhang, Z.; Wang, E.; Yun, H.; Yan, H.; Su, X.; Liu, Y.; Tang, Z.; Gao, Y.; et al. Gut REG3γ-Associated Lactobacillus Induces Anti-Inflammatory Macrophages to Maintain Adipose Tissue Homeostasis. Front. Immunol. 2017, 8, 1063. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, P.; Seebauer, C.T.; Mazagova, M.; Horvath, A.; Wang, L.; Llorente, C.; Varki, N.M.; Brandl, K.; Ho, S.B.; Schnabl, B. Deficiency of Intestinal Mucin-2 Protects Mice from Diet-Induced Fatty Liver Disease and Obesity. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 310, G310–G322. [Google Scholar] [CrossRef]
- Bluemel, S.; Wang, L.; Martino, C.; Lee, S.; Wang, Y.; Williams, B.; Horvath, A.; Stadlbauer, V.; Zengler, K.; Schnabl, B. The Role of Intestinal C-Type Regenerating Islet Derived-3 Lectins for Nonalcoholic Steatohepatitis. Hepatol. Commun. 2018, 2, 393–406. [Google Scholar] [CrossRef]
- Montalto, G.; Iovanna, J.L.; Soresi, M.; Dusetti, N.; Carroccio, A.; Barthelemy-Bialas, S.; Cartabellotta, A.; Dagorn, J.C. Clinical Evaluation of Pancreatitis-Associated Protein as a Serum Marker of Hepatocellular Carcinoma: Comparison with Alpha-Fetoprotein. Oncology 1998, 55, 421–425. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, H.; Han, Y.; Liu, X.; Wang, M.; Wang, X.; Yin, G.; Li, X.; Xiang, M. SOCS3 Methylation in Synergy with Reg3A Overexpression Promotes Cell Growth in Pancreatic Cancer. J. Mol. Med. 2014, 92, 1257–1269. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, J.; Yu, M.; Zhang, X.; Li, H. Over-Expression of REG 3 A Gene Can Inhibit the Proliferation, Invasion and Migration of Human Breast Cancer. Int. J. Clin. Exp. Pathol. 2016, 9, 12104–12113. [Google Scholar]
- Rosty, C.; Christa, L.; Kuzdzal, S.; Baldwin, W.M.; Zahurak, M.L.; Carnot, F.; Chan, D.W.; Canto, M.; Lillemoe, K.D.; Cameron, J.L.; et al. Identification of Hepatocarcinoma-Intestine-Pancreas/Pancreatitis-Associated Protein I as a Biomarker for Pancreatic Ductal Adenocarcinoma by Protein Biochip Technology. Cancer Res. 2002, 62, 1868–1875. [Google Scholar] [PubMed]
- Cerwenka, H.; Aigner, R.; Bacher, H.; Werkgartner, G.; el-Shabrawi, A.; Quehenberger, F.; Mischinger, H.J. Pancreatitis-Associated Protein (PAP) in Patients with Pancreatic Cancer. Anticancer Res. 2001, 21, 1471–1474. [Google Scholar] [PubMed]
- Xu, Q.; Fu, R.; Yin, G.; Liu, X.; Liu, Y.; Xiang, M. Microarray-Based Gene Expression Profiling Reveals Genes and Pathways Involved in the Oncogenic Function of REG3A on Pancreatic Cancer Cells. Gene 2016, 578, 263–273. [Google Scholar] [CrossRef]
- Fukushima, N.; Koopmann, J.; Sato, N.; Prasad, N.; Carvalho, R.; Leach, S.D.; Hruban, R.H.; Goggins, M. Gene Expression Alterations in the Non-Neoplastic Parenchyma Adjacent to Infiltrating Pancreatic Ductal Adenocarcinoma. Mod. Pathol. 2005, 18, 779–787. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, X.; Li, D.-C. Expression of HIP/PAP in Hepatocellular Carcinoma and Effect of siRNA on Migration and Invasion in HCC Cells. Asian Pac. J. Trop. Med. 2015, 8, 848–854. [Google Scholar] [CrossRef]
- Kimura, M.; Naito, H.; Tojo, T.; Itaya-Hironaka, A.; Dohi, Y.; Yoshimura, M.; Nakagawara, K.-I.; Takasawa, S.; Taniguchi, S. REG Iα Gene Expression Is Linked with the Poor Prognosis of Lung Adenocarcinoma and Squamous Cell Carcinoma Patients via Discrete Mechanisms. Oncol. Rep. 2013, 30, 2625–2631. [Google Scholar] [CrossRef]
- Mikami, S.; Ota, I.; Masui, T.; Uchiyama, T.; Okamoto, H.; Kimura, T.; Takasawa, S.; Kitahara, T. Resveratrol-induced REG III Expression Enhances Chemo- and Radiosensitivity in Head and Neck Cancer in Xenograft Mice. Oncol. Rep. 2019, 42, 436–442. [Google Scholar] [CrossRef]
- Wang, L.; Tuo, H.; Song, Z.; Li, W.; Peng, Y. Reg3A (Regenerating Family Member 3 Alpha) Acts as a Tumor Suppressor by Targeting DMBT1 (Deleted in Malignant Brain Tumors 1) in Gastric Cancer. Bioengineered 2021, 12, 7644–7655. [Google Scholar] [CrossRef]
- Yari, H.; Jin, L.; Teng, L.; Wang, Y.; Wu, Y.; Liu, G.Z.; Gao, W.; Liang, J.; Xi, Y.; Feng, Y.C.; et al. LncRNA REG1CP Promotes Tumorigenesis through an Enhancer Complex to Recruit FANCJ Helicase for REG3A Transcription. Nat. Commun. 2019, 10, 5334. [Google Scholar] [CrossRef]
- Fernandez, E.; Wargo, J.A.; Helmink, B.A. The Microbiome and Cancer: A Translational Science Review. JAMA 2025, 333, 2188–2196. [Google Scholar] [CrossRef]
- Kostic, A.D.; Chun, E.; Robertson, L.; Glickman, J.N.; Gallini, C.A.; Michaud, M.; Clancy, T.E.; Chung, D.C.; Lochhead, P.; Hold, G.L.; et al. Fusobacterium Nucleatum Potentiates Intestinal Tumorigenesis and Modulates the Tumor-Immune Microenvironment. Cell Host Microbe 2013, 14, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Permain, J.; Hock, B.; Eglinton, T.; Purcell, R. Functional Links between the Microbiome and the Molecular Pathways of Colorectal Carcinogenesis. Cancer Metastasis Rev. 2024, 43, 1463–1474. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Li, Q.; Gu, Q.; Zhang, C. Fusobacterium Nucleatum: A Novel Regulator of Antitumor Immune Checkpoint Blockade Therapy in Colorectal Cancer. Am. J. Cancer Res. 2024, 14, 3962–3975. [Google Scholar] [CrossRef]
- Li, S.; Duan, Y.; Luo, S.; Zhou, F.; Wu, Q.; Lu, Z. Short-Chain Fatty Acids and Cancer. Trends Cancer 2025, 11, 154–168. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, L.-Q.; Song, S.; Xu, M.; Li, C.-P. Helicobacter Pylori Infection Promotes the Progression of Gastric Cancer by Regulating the Expression of DMBT1. World J. Clin. Oncol. 2025, 16, 105322. [Google Scholar] [CrossRef]
- Lee, K.S.; Kalantzis, A.; Jackson, C.B.; O’Connor, L.; Murata-Kamiya, N.; Hatakeyama, M.; Judd, L.M.; Giraud, A.S.; Menheniott, T.R. Helicobacter Pylori CagA Triggers Expression of the Bactericidal Lectin REG3γ via Gastric STAT3 Activation. PLoS ONE 2012, 7, e30786. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faivre, J.; Shalhoub, H.; Nguyen, T.S.; Xie, H.; Moniaux, N. REG3A: A Multifunctional Antioxidant Lectin at the Crossroads of Microbiota Regulation, Inflammation, and Cancer. Cancers 2025, 17, 2395. https://doi.org/10.3390/cancers17142395
Faivre J, Shalhoub H, Nguyen TS, Xie H, Moniaux N. REG3A: A Multifunctional Antioxidant Lectin at the Crossroads of Microbiota Regulation, Inflammation, and Cancer. Cancers. 2025; 17(14):2395. https://doi.org/10.3390/cancers17142395
Chicago/Turabian StyleFaivre, Jamila, Hala Shalhoub, Tung Son Nguyen, Haishen Xie, and Nicolas Moniaux. 2025. "REG3A: A Multifunctional Antioxidant Lectin at the Crossroads of Microbiota Regulation, Inflammation, and Cancer" Cancers 17, no. 14: 2395. https://doi.org/10.3390/cancers17142395
APA StyleFaivre, J., Shalhoub, H., Nguyen, T. S., Xie, H., & Moniaux, N. (2025). REG3A: A Multifunctional Antioxidant Lectin at the Crossroads of Microbiota Regulation, Inflammation, and Cancer. Cancers, 17(14), 2395. https://doi.org/10.3390/cancers17142395