New Approach for Enhancing Survival in Glioblastoma Patients: A Longitudinal Pilot Study on Integrative Oncology
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
- Males and females;
- Age over 18 years old;
- Patients able to swallow and/or chew tablets and/or liquids;
- KarnofskyPS > 70;
- Adequate hematologic, liver, and kidney function (results of laboratory conducted within 7 days after the start of the study: hemoglobin > 9.0 g/dL; WBC > 3.0 × 109/L; absolute neutrophil count (ANC) > 1500/mm3 without transfusion or stimulation with hematopoietic growth factors; platelet count 100,000/μL; total bilirubin < 1.5, the upper limit of normal; alanine transferase (ALT) and aspartate transferase (AST) < 3, the upper limit of normal; serum creatinine < 1.5, the upper limit of normal;
- Patients able to understand and give their own informed consent;
- Histological confirmation of glioblastoma (WHO grade 4);
- Radiographic evidence of brain cancer;
- All patients diagnosed radiologically with a probable neoplastic lesion of cerebral origin who underwent surgical biopsy for histological diagnosis;
- Patients who underwent surgery (total, partial, extensive, or simple biopsy) for neoplasm removal;
- In all cases, biological parameters and the assessment of the lesion’s methylation status (O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation) were studied.
- Previous chemotherapy and radiotherapy treatment for GBM;
- Known hypersensitivity to any of the products used in the study;
- Karnofsky Performance Status (KPS) < 70;
- Having taken systemic antiblastic therapy, including cytotoxic therapy, signal transduction inhibitors, immunotherapy, and/or hormone therapy within 4 weeks before the start of the study;
- Severe comorbidities (heart disease, recent stroke, kidney failure (moderate/severe), autoimmune disease);
- Secondary malignancies;
- Intake of natural products containing curcuminoids, resveratrol, and Boswellia serrata in the 6 months prior to the start of the study.
2.2. Radiochemotherapy and Complementary Treatment
2.3. Statistical Analysis
3. Results
- Additional Survival Data
- Survivors at study conclusion: 10 patients remained alive at the end of the study.
- Long-term survivors: Approximately 12% of total patients (increasing to >16% in the IT protocol group) survived beyond 60 months.
- Median survival update: For the sample of survivors, median survival now exceeds 55 months.
- Comparison with Literature
Source | 5-Year Survival Rate |
Current study (all patients) | 16.0% |
Current study (complete surgery + high adherence) | 34.0% |
Literature references | 3–7% |
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ostrom, Q.T.; Bauchet, L.; Davis, F.G.; Deltour, I.; Fisher, J.L.; Langer, C.E.; Pekmezci, M.; Schwartzbaum, J.A.; Turner, M.C.; Walsh, K.M.; et al. The epidemiology of glioma in adults: A “state of the science” review. Neuro-Oncology 2014, 16, 896–913. [Google Scholar] [CrossRef]
- Ostrom, Q.T.; Patil, N.; Cioffi, G.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013–2017. Neuro-Oncology 2020, 22 (Suppl. S2), iv1–iv96. [Google Scholar] [CrossRef] [PubMed]
- Girardi, F.; Matz, M.; Stiller, C.; You, H.; Gragera, R.M.; Valkov, M.Y.; Bulliard, J.-L.; De, P.; Morrison, D.; Wanner, M.; et al. Global survival trends for brain tumors, by histology: Analysis of individual records for 556,237 adults diagnosed in 59 countries during 2000–2014 (CONCORD-3). Neuro-Oncology 2022, 25, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Castro, L.N.G.; Wesseling, P. The cIMPACT-NOW updates and their significance to current neuro-oncology practice. Neuro-Oncol. Pract. 2020, 8, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Brennan, C.W.; Verhaak, R.G.W.; McKenna, A.; Campos, B.; Noushmehr, H.; Salama, S.R.; Zheng, S.; Chakravarty, D.; Sanborn, J.Z.; Berman, S.H.; et al. The Somatic Genomic Landscape of Glioblastoma. Cell 2013, 155, 462–477, Erratum in Cell 2014, 157, 753. [Google Scholar] [CrossRef]
- Snuderl, M.; Fazlollahi, L.; Le, L.P.; Nitta, M.; Zhelyazkova, B.H.; Davidson, C.J.; Akhavanfard, S.; Cahill, D.P.; Aldape, K.D.; Betensky, R.A.; et al. Mosaic Amplification of Multiple Receptor Tyrosine Kinase Genes in Glioblastoma. Cancer Cell 2011, 20, 810–817. [Google Scholar] [CrossRef]
- Killela, P.J.; Reitman, Z.J.; Jiao, Y.; Bettegowda, C.; Agrawal, N.; Diaz, L.A., Jr.; Friedman, A.H.; Friedman, H.; Gallia, G.L.; Giovanella, B.C.; et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc. Natl. Acad. Sci. USA 2013, 110, 6021–6026. [Google Scholar] [CrossRef]
- Greider, C.W.; Blackburn, E.H. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 1989, 337, 331–337. [Google Scholar] [CrossRef]
- Nonoguchi, N.; Ohta, T.; Oh, J.-E.; Kim, Y.-H.; Kleihues, P.; Ohgaki, H. TERT promoter mutations in primary and secondary glioblastomas. Acta Neuropathol. 2013, 126, 931–937. [Google Scholar] [CrossRef]
- Zanotto-Filho, A.; Braganhol, E.; Edelweiss, M.I.; Behr, G.A.; Zanin, R.; Schröder, R.; Simões-Pires, A.; Battastini, A.M.O.; Moreira, J.C.F. The curry spice curcumin selectively inhibits cancer cells growth in vitro and in preclinical model of glioblastoma. J. Nutr. Biochem. 2012, 23, 591–601. [Google Scholar] [CrossRef]
- Hexem, E.; Taha, T.A.-E.A.; Dhemesh, Y.; Baqar, M.A.; Nada, A. Deciphering glioblastoma: Unveiling imaging markers for predicting MGMT promoter methylation status. Curr. Probl. Cancer 2025, 54, 101156. [Google Scholar] [CrossRef]
- Hegi, M.E.; Diserens, A.-C.; Gorlia, T.; Hamou, M.-F.; De Tribolet, N.; Weller, M.; Kros, J.M.; Hainfellner, J.A.; Mason, W.; Mariani, L.; et al. MGMT Gene Silencing and Benefit from Temozolomide in Glioblastoma. N. Engl. J. Med. 2005, 352, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Chi, A.S.; Sorensen, A.G.; Jain, R.K.; Batchelor, T.T. Angiogenesis as a Therapeutic Target in Malignant Gliomas. Oncologist 2009, 14, 621–636. [Google Scholar] [CrossRef] [PubMed]
- Weller, M.; dan der Bent, M.; Tonn, J.C.; Stupp, R.; Preusser, M.; Cohen-Jonathan-Moyal, E.; Henriksson, R.; Le Rhun, E.; Balana, C.; Chinot, O.; et al. European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol. 2017, 18, e315–e329. [Google Scholar] [CrossRef] [PubMed]
- Galli, R.; Binda, E.; Orfanelli, U.; Cipelletti, B.; Gritti, A.; De Vitis, S.; Fiocco, R.; Foroni, C.; Dimeco, F.; Vescovi, A. Isolation and Characterization of Tumorigenic, Stem-like Neural Precursors from Human Glioblastoma. Cancer Res. 2004, 64, 7011–7021. [Google Scholar] [CrossRef]
- Yuan, X.; Curtin, J.; Xiong, Y.; Liu, G.; Waschsmann-Hogiu, S.; Farkas, D.L.; Black, K.L.; Yu, J.S. Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 2004, 23, 9392–9400. [Google Scholar] [CrossRef]
- Lathia, J.D.; Mack, S.C.; Mulkearns-Hubert, E.E.; Valentim, C.L.; Rich, J.N. Cancer stem cells in glioblastoma. Genes Dev. 2015, 29, 1203–1217. [Google Scholar] [CrossRef]
- Lacroix, M.; Abi-Said, D.; Fourney, D.R.; Gokaslan, Z.L.; Shi, W.; DeMonte, F.; Lang, F.F.; McCutcheon, I.E.; Hassenbusch, S.J.; Holland, E.; et al. A multivariate analysis of 416 patients with glioblastoma multiforme: Prognosis, extent of resection, and survival. J. Neurosurg. 2001, 95, 190–198. [Google Scholar] [CrossRef]
- Guo, D.; Bell, E.H.; Chakravarti, A. Lipid metabolism emerges as a promising target for malignant glioma therapy. CNS Oncol. 2013, 2, 289–299. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Zhang, Z.; Chen, X.; You, G.; Yang, P.; Yan, W.; Bao, Z.-S.; Yao, K.; Wang, L.; et al. Surgical extent impacts the value of the established prognosticators in glioblastoma patients: A prospective translational study in Asia. Head Neck Oncol. 2012, 4, 80. [Google Scholar] [CrossRef]
- Mutter, N.; Stupp, R. Temozolomide: A milestone in neuro-oncology and beyond? Expert Rev. Anticancer. Ther. 2006, 6, 1187–1204. [Google Scholar] [CrossRef]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef]
- Stupp, R.; Hegi, M.E.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.B.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009, 10, 459–466. [Google Scholar] [CrossRef]
- Wick, W.; Gorlia, T.; Taphoorn, M.; Sahm, F.; Harting, I.; Brandes, A.A.; Taal, W.; Domont, J.; Idbaih, A.; Campone, M.; et al. Lomustine and Bevacizumab in Progressive Glioblastoma. N. Engl. J. Med. 2017, 377, 1954–1963. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.-Z.; Wang, Z.-F.; Lan, T.; Huang, W.-H.; Zhao, Y.-H.; Ma, C.; Li, Z.-Q. Carmustine as a Supplementary Therapeutic Option for Glioblastoma: A Systematic Review and Meta-Analysis. Front. Neurol. 2020, 11, 1036. [Google Scholar] [CrossRef] [PubMed]
- Glas, M.; Hundsberger, T.; Stuplich, M.; Wiewrodt, D.; Kurzwelly, D.; Nguyen-Huu, B.; Rasch, K.; Herrlinger, U. Nimustine plus teniposide in recurrent glioblastoma. J. Clin. Oncol. 2008, 26, 13018. [Google Scholar] [CrossRef]
- Addeo, R.; Caraglia, M.; De Santi, M.S.; Montella, L.; Abbruzzese, A.; Parlato, C.; Vincenzi, B.; Carraturo, M.; Faiola, V.; Genovese, M.; et al. A new schedule of fotemustine in temozolomide-pretreated patients with relapsing glioblastoma. J. Neuro-Oncol. 2010, 102, 417–424. [Google Scholar] [CrossRef]
- Weller, M.; Butowski, N.; Tran, D.D.; Recht, L.D.; Lim, M.; Hirte, H.; Ashby, L.; Mechtler, L.; Goldlust, S.A.; Iwamoto, F.; et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): A randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017, 18, 1373–1385. [Google Scholar] [CrossRef]
- Lombardi, G.; De Salvo, G.L.; Brandes, A.A.; Eoli, M.; Rudà, R.; Faedi, M.; Lolli, I.; Pace, A.; Daniele, B.; Pasqualetti, F.; et al. Regorafenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): A multicentre, open-label, randomised, controlled, phase 2 trial. Lancet Oncol. 2019, 20, 110–119. [Google Scholar] [CrossRef]
- Prasad, G.; A Haas-Kogan, D. Radiation-induced gliomas. Expert Rev. Neurother. 2009, 9, 1511–1517. [Google Scholar] [CrossRef] [PubMed]
- Pitter, K.L.; Tamagno, I.; Alikhanyan, K.; Hosni-Ahmed, A.; Pattwell, S.S.; Donnola, S.; Dai, C.; Ozawa, T.; Chang, M.; Chan, T.A.; et al. Corticosteroids compromise survival in glioblastoma. Brain 2016, 139, 1458–1471. [Google Scholar] [CrossRef] [PubMed]
- Munoz-Casabella, A.; Wahner-Roedler, D.L.; Croghan, I.T.; Petterson, T.M.; Fuehrer, D.L.; Bauer, B.A. Use of Complementary and Integrative Medicine Among Patients With Glioblastoma Multiforme Seen at a Tertiary Care Center. Glob. Adv. Health Med. 2022, 11, 2164957X221078543. [Google Scholar] [CrossRef]
- Yin, W.; Deng, X.-K.; Yin, F.-Z.; Zhang, X.-C.; Cai, B.-C. The cytotoxicity induced by brucine from the seed of Strychnos nux-vomica proceeds via apoptosis and is mediated by cyclooxygenase 2 and caspase 3 in SMMC 7221 cells. Food Chem. Toxicol. 2007, 45, 1700–1708. [Google Scholar] [CrossRef]
- Tsai, N.; Chen, Y.; Lee, C.; Lin, P.; Cheng, Y.; Chang, W.; Lin, S.; Harn, H. The natural compound n-butylidenephthalide derived from Angelica sinensis inhibits malignant brain tumor growth in vitro and in vivo3. J. Neurochem. 2006, 99, 1251–1262. [Google Scholar] [CrossRef]
- Karmakar, S.; Banik, N.L.; Ray, S.K. Molecular Mechanism of Inositol Hexaphosphate-mediated Apoptosis in Human Malignant Glioblastoma T98G Cells. Neurochem. Res. 2007, 32, 2094–2102. [Google Scholar] [CrossRef]
- Racoma, I.O.; Meisen, W.H.; Wang, Q.-E.; Kaur, B.; Wani, A.A.; Bratton, S.B. Thymoquinone Inhibits Autophagy and Induces Cathepsin-Mediated, Caspase-Independent Cell Death in Glioblastoma Cells. PLoS ONE 2013, 8, e72882. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-H.; Lee, T.H.; Jung, C.H.; Kim, Y.-H. Wogonin induces apoptosis by activating the AMPK and p53 signaling pathways in human glioblastoma cells. Cell. Signal. 2012, 24, 2216–2225. [Google Scholar] [CrossRef]
- Lee, D.-Y.; Lee, M.-K.; Kim, G.-S.; Noh, H.-J.; Lee, M.-H. Brazilin Inhibits Growth and Induces Apoptosis in Human Glioblastoma Cells. Molecules 2013, 18, 2449–2457. [Google Scholar] [CrossRef]
- Khan, M.; Yu, B.; Rasul, A.; Al Shawi, A.; Yi, F.; Yang, H.; Ma, T. Jaceosidin Induces Apoptosis in U87 Glioblastoma Cells through G2/M Phase Arrest. Evid.-Based Complement. Altern. Med. 2012, 2012, 703034. [Google Scholar] [CrossRef]
- Lee, M.-Y.; Liao, M.-H.; Tsai, Y.-N.; Chiu, K.-H.; Wen, H.-C. Identification and Anti-human Glioblastoma Activity of Tagitinin C from Tithonia diversifolia Methanolic Extract. J. Agric. Food Chem. 2011, 59, 2347–2355. [Google Scholar] [CrossRef]
- Chang, H.-F.; Huang, W.-T.; Chen, H.-J.; Yang, L.-L. Apoptotic Effects of γ-Mangostin from the Fruit Hull of Garcinia mangostana on Human Malignant Glioma Cells. Molecules 2010, 15, 8953–8966. [Google Scholar] [CrossRef]
- Gnoula, C.; Mégalizzi, V.; De Nève, N.; Sauvage, S.; Ribaucour, F.; Guissou, P.; Duez, P.; Dubois, J.; Ingrassia, L.; Lefranc, F.; et al. Balanitin-6 and -7: Diosgenyl saponins isolated from Balanites aegyptiaca Del. display significant anti-tumor activity in vitro and in vivo. Int. J. Oncol. 2008, 32, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Yu, Y.; Wang, L.; Wu, B.; Xia, L.; Feng, F.; Ling, Z.; Wang, S. Additive antiangiogenesis effect of ginsenoside Rg3 with low-dose metronomic temozolomide on rat glioma cells both in vivo and in vitro. J. Exp. Clin. Cancer Res. 2016, 35, 32. [Google Scholar] [CrossRef]
- De La Ossa, D.H.P.; Lorente, M.; Gil-Alegre, M.E.; Torres, S.; García-Taboada, E.; Aberturas, M.D.R.; Molpeceres, J.; Velasco, G.; Torres-Suárez, A.I. Local Delivery of Cannabinoid-Loaded Microparticles Inhibits Tumor Growth in a Murine Xenograft Model of Glioblastoma Multiforme. PLoS ONE 2013, 8, e54795. [Google Scholar] [CrossRef]
- Barthomeuf, C.; Lamy, S.; Blanchette, M.; Boivin, D.; Gingras, D.; Béliveau, R. Inhibition of sphingosine-1-phosphate- and vascular endothelial growth factor-induced endothelial cell chemotaxis by red grape skin polyphenols correlates with a decrease in early platelet-activating factor synthesis. Free Radic. Biol. Med. 2006, 40, 581–590. [Google Scholar] [CrossRef]
- Ramachandran, C.; Portalatin, G.; Quirin, K.-W.; Escalon, E.; Khatib, Z.; Melnick, S.J. Inhibition of AKT signaling by supercritical CO2 extract of mango ginger (Curcuma amada Roxb.) in human glioblastoma cells. J. Complement. Integr. Med. 2015, 12, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Roomi, M.W.; Kalinovsky, T.; Niedzwiecki, A.; Rath, M. Modulation of uPA, MMPs and their inhibitors by a novel nutrient mixture in human glioblastoma cell lines. Int. J. Oncol. 2014, 45, 887–894. [Google Scholar] [CrossRef]
- Mishra, R.; Kaur, G.; Najbauer, J. Aqueous Ethanolic Extract of Tinospora cordifolia as a Potential Candidate for Differentiation Based Therapy of Glioblastomas. PLoS ONE 2013, 8, e78764. [Google Scholar] [CrossRef]
- Jiao, Y.; Li, H.; Liu, Y.; Guo, A.; Xu, X.; Qu, X.; Wang, S.; Zhao, J.; Li, Y.; Cao, Y. Resveratrol Inhibits the Invasion of Glioblastoma-Initiating Cells via Down-Regulation of the PI3K/Akt/NF-κB Signaling Pathway. Nutrients 2015, 7, 4383–4402. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A.; Johnson, I.T.; Saltmarsh, M. Polyphenols: Antioxidants and beyond. Am. J. Clin. Nutr. 2005, 81, 215S–217S. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, P.; Janmeda, P.; Docea, A.O.; Yeskaliyeva, B.; Razis, A.F.A.; Modu, B.; Calina, D.; Sharifi-Rad, J. Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Front. Chem. 2023, 11, 1158198. [Google Scholar] [CrossRef]
- Vauzour, D.; Rodriguez-Mateos, A.; Corona, G.; Oruna-Concha, M.J.; Spencer, J.P.E. Polyphenols and Human Health: Prevention of Disease and Mechanisms of Action. Nutrients 2010, 2, 1106–1131. [Google Scholar] [CrossRef]
- Singaravelan, N.; Tollefsbol, T.O. Polyphenol-Based Prevention and Treatment of Cancer Through Epigenetic and Combinatorial Mechanisms. Nutrients 2025, 17, 616. [Google Scholar] [CrossRef] [PubMed]
- Hatcher, H.; Planalp, R.; Cho, J.; Torti, F.M.; Torti, S.V. Curcumin: From ancient medicine to current clinical trials. Cell. Mol. Life Sci. 2008, 65, 1631–1652. [Google Scholar] [CrossRef]
- Hu, S.; Xu, Y.; Meng, L.; Huang, L.; Sun, H. Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells. Exp. Ther. Med. 2018, 16, 1266–1272. [Google Scholar] [CrossRef]
- Ravagnan, G.; De Filippis, A.; Cartenì, M.; De Maria, S.; Cozza, V.; Petrazzuolo, M.; Tufano, M.A.; Donnarumma, G. Polydatin, A Natural Precursor of Resveratrol, Induces β-Defensin Production and Reduces Inflammatory Response. Inflammation 2012, 36, 26–34. [Google Scholar] [CrossRef]
- Karami, A.; Fakhri, S.; Kooshki, L.; Khan, H. Polydatin: Pharmacological Mechanisms, Therapeutic Targets, Biological Activities, and Health Benefits. Molecules 2022, 27, 6474. [Google Scholar] [CrossRef]
- Xiao, Q.; Zhu, W.; Feng, W.; Lee, S.S.; Leung, A.W.; Shen, J.; Gao, L.; Xu, C. A Review of Resveratrol as a Potent Chemoprotective and Synergistic Agent in Cancer Chemotherapy. Front. Pharmacol. 2019, 9, 1534. [Google Scholar] [CrossRef]
- Chen, G.; Yang, Z.; Wen, D.; Guo, J.; Xiong, Q.; Li, P.; Zhao, L.; Wang, J.; Wu, C.; Dong, L. Polydatin has anti-inflammatory and antioxidant effects in LPS-induced macrophages and improves DSS-induced mice colitis. Immun. Inflamm. Dis. 2021, 9, 959–970. [Google Scholar] [CrossRef]
- Shah, M.A.; Hamid, A.; Faheem, H.I.; Rasul, A.; Baokbah, T.A.S.; Haris, M.; Yousaf, R.; Saleem, U.; Iqbal, S.; Alves, M.S.; et al. Uncovering the Anticancer Potential of Polydatin: A Mechanistic Insight. Molecules 2022, 27, 7175. [Google Scholar] [CrossRef]
- Chen, Y.; Niu, J.; Li, L.; Li, Z.; Jiang, J.; Zhu, M.; Dong, T.; Zhang, J.; Shi, C.; Xu, P.; et al. Polydatin executes anticancer effects against glioblastoma multiforme by inhibiting the EGFR-AKT/ERK1/2/STAT3-SOX2/Snail signaling pathway. Life Sci. 2020, 258, 118158. [Google Scholar] [CrossRef] [PubMed]
- Serafino, A.; Krasnowska, E.K.; Romanò, S.; De Gregorio, A.; Colone, M.; Dupuis, M.L.; Bonucci, M.; Ravagnan, G.; Stringaro, A.; Fuggetta, M.P. The Synergistic Combination of Curcumin and Polydatin Improves Temozolomide Efficacy on Glioblastoma Cells. Int. J. Mol. Sci. 2024, 25, 10572. [Google Scholar] [CrossRef]
- Yadav, V.R.; Prasad, S.; Sung, B.; Gelovani, J.G.; Guha, S.; Krishnan, S.; Aggarwal, B.B. Boswellic acid inhibits growth and metastasis of human colorectal cancer in orthotopic mouse model by downregulating inflammatory, proliferative, invasive and angiogenic biomarkers. Int. J. Cancer 2011, 130, 2176–2184. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.R.; Prasad, S.; Sung, B.; Kannappan, R.; Aggarwal, B.B. Targeting Inflammatory Pathways by Triterpenoids for Prevention and Treatment of Cancer. Toxins 2010, 2, 2428–2466. [Google Scholar] [CrossRef]
- Kirste, S.; Treier, M.; Wehrle, S.J.; Becker, G.; Abdel-Tawab, M.; Gerbeth, K.; Hug, M.J.; Lubrich, B.; Grosu, A.-L.; Momm, F. Boswellia serrata acts on cerebral edema in patients irradiated for brain tumors. Cancer 2011, 117, 3788–3795. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.Z. Boswellia serrata, a potential antiinflammatory agent: An overview. Indian J. Pharm. Sci. 2011, 73, 255–261. [Google Scholar]
- Meka, B.; Ravada, S.R.; Kumar, M.M.K.; Nagasree, K.P.; Golakoti, T. Synthesis of new analogs of AKBA and evaluation of their anti-inflammatory activities. Bioorganic Med. Chem. 2017, 25, 1374–1388. [Google Scholar] [CrossRef]
- Upadhyay, R.; Elguindy, A.N.M.; Salts, L.; Donovan, K.; Sengupta, S.; Wang, K.; Giglio, P.; Chao, S.; Chakravarti, A.; Singh, R.; et al. Boswellia Serrata for Cerebral Radiation Necrosis After Radiosurgery for Brain Metastases. Int. J. Radiat. Oncol. Biol. Phys. 2025, 115, 135–143. [Google Scholar] [CrossRef]
- Patel, S.S.; Acharya, A.; Ray, R.S.; Agrawal, R.; Raghuwanshi, R.; Jain, P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit. Rev. Food Sci. Nutr. 2019, 60, 887–939. [Google Scholar] [CrossRef] [PubMed]
- Bunevicius, A.; Sheehan, J.P. Radiosurgery for Glioblastoma. Neurosurg. Clin. N. Am. 2021, 32, 117–128. [Google Scholar] [CrossRef]
- Roh, T.H.; Kang, S.-G.; Moon, J.H.; Sung, K.S.; Park, H.H.; Kim, S.H.; Kim, E.H.; Hong, C.K.; Suh, C.-O.; Chang, J.H. Survival benefit of lobectomy over gross-total resection without lobectomy in cases of glioblastoma in the noneloquent area: A retrospective study. J. Neurosurg. 2019, 132, 895–901. [Google Scholar] [CrossRef] [PubMed]
- Perrini, P.; Gambacciani, C.; Weiss, A.; Pasqualetti, F.; Delishaj, D.; Paiar, F.; Morganti, R.; Vannozzi, R.; Lutzemberger, L. Survival outcomes following repeat surgery for recurrent glioblastoma: A single-center retrospective analysis. J. Neuro-Oncol. 2017, 131, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Yong, R.L.; Wu, T.; Mihatov, N.; Shen, M.J.; Brown, M.A.; Zaghloul, K.A.; Park, G.E.; Park, J.K. Residual tumor volume and patient survival following reoperation for recurrent glioblastoma. J. Neurosurg. 2014, 121, 802–809. [Google Scholar] [CrossRef]
- Andreazzoli, F.; Fiorito, A.; Bonucci, M. ARTOI Nutritional Approach in the Hematological Patient: Is there a Rationale? J. Biomed. Res. Rev. 2019, 2, 50–55. [Google Scholar]
- Moldoveanu, C.-A.; Tomoaia-Cotisel, M.; Sevastre-Berghian, A.; Tomoaia, G.; Mocanu, A.; Pal-Racz, C.; Toma, V.-A.; Roman, I.; Ujica, M.-A.; Pop, L.-C. A Review on Current Aspects of Curcumin-Based Effects in Relation to Neurodegenerative, Neuroinflammatory and Cerebrovascular Diseases. Molecules 2024, 30, 43. [Google Scholar] [CrossRef]
- Schiborr, C.; Kocher, A.; Behnam, D.; Jandasek, J.; Toelstede, S.; Frank, J. The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Mol. Nutr. Food Res. 2014, 58, 516–527. [Google Scholar] [CrossRef]
- Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The essential medicinal chemistry of curcumin. J. Med. Chem. 2017, 60, 1620–1637. [Google Scholar] [CrossRef]
- Cheng, A.L.; Hsu, C.-H.; Lin, J.K.; Hsu, M.M.; Ho, Y.-F.; Shen, T.S.; Ko, J.Y.; Lin, J.T.; Lin, B.-R.; Ming-Shiang, W.; et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001, 21, 2895–2900. [Google Scholar]
- Elshaer, M.; Chen, Y.; Wang, X.J.; Tang, X. Resveratrol: An overview of its anti-cancer mechanisms. Life Sci. 2018, 207, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Pasqualetti, F.; Miniati, M.; Gonnelli, A.; Gadducci, G.; Giannini, N.; Palagini, L.; Mancino, M.; Fuentes, T.; Paiar, F. Cancer Stem Cells and Glioblastoma: Time for Innovative Biomarkers of Radio-Resistance? Biology 2023, 12, 1295. [Google Scholar] [CrossRef] [PubMed]
- Aponte, P.M.; Caicedo, A. Stemness in Cancer: Stem Cells, Cancer Stem Cells, and Their Microenvironment. Stem Cells Int. 2017, 2017, 5619472. [Google Scholar] [CrossRef] [PubMed]
- Hoang-Xuan, K.; Deckert, M.; Ferreri, A.J.M.; Furtner, J.; Perez-Larraya, J.G.; Henriksson, R.; Hottinger, A.F.; Kasenda, B.; Lefranc, F.; Lossos, A.; et al. European Association of Neuro-Oncology (EANO) guidelines for treatment of primary central nervous system lymphoma (PCNSL). Neuro-Oncology 2022, 25, 37–53. [Google Scholar] [CrossRef]
Component | Composition | Dosage | Administration Schedule |
---|---|---|---|
Main Composition | |||
Polydatin (PD) | CAS number 27208-80-6 | 2–4 mg per kg of body weight | Daily |
Curcumin (CUR) | Mixture of curcumin I, II, and III | 2–5 mg per kg of body weight | Daily |
Administration Forms | |||
Acute phase (up to 1 year) | PD + CUR (SHERMAN Tree Nutraceuticals—Italian supplement) | 500 mg of Composition daily | For at least 6 weeks during radiotherapy and continuing through the acute phase (one year) |
Maintenance phase | PD + CUR (SHERMAN Tree Nutraceuticals—Italian supplement) | 300 mg of Composition daily | For the rest of the patient’s life |
Pharmaceutical Formulation | |||
Delivery method | Gel and/or mouth-soluble tablet | - | - |
Adjunct Treatment | |||
Boswellia serrata extract | Phytosome-based delivery form of boswellic acids (65%) (Biofarmex—Italian supplement with 70% of ACBA acids) | 1.8–2.4 g total dose per day | Daily |
Supportive Treatments | |||
For hematological parameters alterations | |||
Tamarix gallica extracts (Italian supplement) | 20 drops × 3 times a day until normal red blood cells | As needed during Temozolomide treatment | |
Melatonin (PRM Factory—Italian supplement) | 20 drops until normal platelets | As needed during Temozolomide treatment | |
Glutathione (PRM Factory—Italian supplement) | 600 mg/day if the liver enzymes are modified | As needed during Temozolomide treatment |
Dietary Category | Recommendation | Details/Rationale |
---|---|---|
Foods to Exclude | ||
Meat | Completely excluded | Both red and white meat |
Dairy | Completely excluded | Milk and all dairy products |
Sugars | Completely excluded | Both simple and complex sugars |
Polyamine-rich foods | Completely excluded | Foods containing high levels of polyamines [71] |
Soy products | Completely excluded | Limited consumption recommended |
Foods to Reduce | ||
Fruit | Reduce intake | Limited consumption recommended |
Dietary Framework | ||
Dietary structure | Specialized nutrition regimen recommended by ARTOI | According to ARTOI guidelines |
Implementation timing | Begin at diagnosis and continue throughout treatment | Concurrent with conventional and integrative treatments |
Dietary Rationale | ||
Cancer metabolism | Reduce glucose availability | GBM cells are highly dependent on glucose metabolism |
Inflammation | Reduce inflammatory dietary components | Support anti-inflammatory effects of integrative treatments |
Polyamine pathway | Reduce dietary polyamines | May influence tumor growth [71] |
Monitoring | ||
Adherence assessment | During follow-up visits | Part of overall treatment adherence evaluation |
Nutritional status | Regular assessment | To prevent malnutrition |
Univariate HR (95% CI) | Multivariable HR (95% CI) | |
---|---|---|
GENDER | -- | |
Male | 1.19 (0.62–2.30) p = 0.61 | |
Female | Ref. | |
AGE (in years) | 1.01 (0.99–1.04) p = 0.36 | -- |
SURGERY | ||
Biopsy/partial resection | Ref. | Ref. |
Radical resection | 0.30 (0.130.66) p = 0.003 | 0.39 (0.16–0.94) p = 0.036 |
RADIOTHERAPY | ||
No | Ref. | Ref. |
Yes | 0.07 (0.02–0.26) p < 0.001 | 0.04 (0.01–0.22) p < 0.001 |
CHEMOTHERAPY | -- | |
No | Ref. | |
Yes | 0.95 (0.29–3.11) p = 0.94 | |
CORTICOSTEROIDS USE | -- | |
No | Ref. | |
Yes | 0.90 (0.47–1.75) p = 0.76 | |
METHYLATION | ||
No | Ref. | Ref. |
Yes | 0.48 (0.22–1.02) p = 0.058 | 0.44 (0.20–0.95) p = 0.038 |
ADHERENCE TO IT | ||
No | Ref. | Ref. |
Yes | 0.31 (0.15–0.63) p = 0.001 | 0.34 (0.15–0.74) p = 0.007 |
Characteristic | Value | Percentage (%) |
---|---|---|
Total number of patients | 72 | 100 |
Gender distribution | ||
- Male | 42 | 59 |
- Female | 30 | 41 |
Age | ||
- Range | 18–85 years | |
Corticosteroid treatment | ||
- At the beginning of the study | 31 | 43.1 |
Average time from diagnosis to first visit | 3.9 months | |
- Range | 10 days–14 months | |
Adherence to integrative treatment | ||
- Never received integrative therapy | 7 | 9.7 |
- Non-adherent to protocol | 5 | 6.9 |
- High adherence to protocol | 60 | 83.3 |
Treatment Type | Number of Patients | Percentage (%) |
---|---|---|
Surgical Intervention | ||
- Gross total resection | 28 | 38.9 |
- Partial resection/extensive biopsy | 38 | 52.8 |
- Only a single biopsy | 6 | 8.3 |
Radiotherapy | ||
- Received radiotherapy | 69 | 95.8 |
- Did not receive radiotherapy | 3 | 4.2 |
Chemotherapy—First Line | ||
- Temozolomide (TMZ) | 52 | 72.2 |
- Nimotuzumab + Vinorelbine | 1 | 1.4 |
Chemotherapy—Second Line | ||
- Fotemustine (primarily) | 11 | 15.2 |
Chemotherapy—Third Line | ||
- BCNU Carmustine + PCV-conjugated pneumococcal vaccine | 1 | 1.4 |
- Rituximab | 1 | 1.4 |
Integrative Treatment (IT) | ||
- Received and highly adherent to IT | 60 | 83.3 |
- Received but not adherent to IT | 5 | 6.9 |
- Never received IT | 7 | 9.7 |
Corticosteroid Treatment | ||
- Received at beginning of study | 31 | 43.1 |
- Did not receive at beginning of study | 41 | 56.9 |
CATEGORY/TREATMENT | TOTAL | METHYLATION | |
---|---|---|---|
YES | NO | ||
TOTAL CASES | 72 | 25 | 47 |
TOTAL SURGERY | 28 | 11 | 17 |
PARTIAL SURGERY | 38 | 11 | 26 |
OLNY BX | 6 | 2 | 4 |
SURVIVORS | 10 | 6 | 4 |
TOTAL SURGERY | 7 | 4 | 3 |
PARTIAL SURGERY | 3 | 2 | 1 |
NO THERAPY | 7 | 2 | 5 |
TOTAL SURGERY | 1 | 1 | - |
PARTIAL SURGERY | 3 | 1 | 2 |
ONLY BX | 3 | - | 3 |
NO ADHERENCE | 5 | 2 | 3 |
TOTAL SURGERY | 1 | 1 | - |
PARTIAL SURGERY | 4 | 1 | 3 |
Patient Group | Number of Patients | Median Overall Survival (Months) | 95% Confidence Interval | 1-Year Survival Rate | 2-Year Survival Rate | 5-Year Survival Rate |
---|---|---|---|---|---|---|
All patients | 72 | 13.3 | 7.3–19.3 | 53.1% | - | 16.0% |
Patients who received integrative treatment | 65 | 16.3 | 0.2–32.4 | 55.4% | - | - |
Patients with high adherence to integrative treatment | 60 | 25.4 | 8.3–42.5 | 59.0% | - | 25.0% |
Patients who underwent complete surgery with high adherence | 28 | 34.4 | 18.1–40.8 | 82.4% | 54.2% | 34.0% |
Characteristic | Subgroup | Number of Patients | One-Year Survival Rate | Statistical Significance |
---|---|---|---|---|
Gender | No significant difference | |||
Male | 42 | 51.9% | ||
Female | 30 | 59.1% | ||
Age | No significant difference | |||
<57 years | 35 | 53.8% | ||
≥57 years | 37 | 57.0% | ||
Number of Previous Chemotherapy Treatments | No significant difference | |||
One treatment | 53 | 58.0% | ||
Two or three treatments | 13 | 56.3% | ||
Corticosteroid Use | No significant difference | |||
Received corticosteroids | 31 | 58.7% | ||
Did not receive corticosteroids | 41 | 50.6% | ||
Extent of Surgical Intervention | p < 0.001 | |||
Only biopsy | 6 | 1 (16.6%) | ||
Gross total resection | 28 | 21 (75.0%) | ||
Extensive biopsy/partial resection | 38 | 22 (57.9%) |
Side Effect Category | Conventional Treatment Side Effects | Observations with Integrative Treatment | Management Strategy |
---|---|---|---|
Radiotherapy Effects | |||
Post-radiation edema | Common (G1) and severe (G3) (seen MRI) typically requiring increased steroid use | Decreased in the integrative treatment group | Boswellia serrata extract (1.8–2.4 g/day) used to mitigate edema and reduce reliance on glucocorticoids |
Post-radiation asthenia | Common complaint affecting quality of life (asked clinically) | Decreased in the integrative treatment group | Integrative treatment protocol (PD + CUR) |
Hematological Parameters | |||
Platelet count | Often decreased during chemotherapy, potentially leading to treatment interruption (G2–G3–4) | Normal in the group of 60 highly adherent patients | Regular monitoring and supportive treatments when count was less than 100.000 μL |
White blood cell count | Often decreased during chemotherapy, Neutropenia (G1–G3–4) | Normal in the group of 60 highly adherent patients | Tamarix gallica extracts as supportive treatments when (G1–2) present |
Red blood cell count | Often decreased during chemotherapy | Normal in the group of 60 highly adherent patients | Tamarix gallica as supportive treatments when red count was under 3000 |
Liver Function | |||
Liver enzymes | Often elevated during chemotherapy (G2–G3–4) | Not specifically reported | Supportive treatments, including glutathione, when ALT and AST are more than one times the normal level |
Chemotherapy Continuation | |||
Treatment interruption | Common due to side effects | All desired cycles completed without interruption in the integrative treatment group | Regular monitoring and prompt management of side effects |
Glucocorticoid Dependence | |||
Steroid use for cerebral edema | Common (seen MRI) with associated adverse effects (G1–G3) | Reduced need for steroids | Boswellia serrata extract for its anti-edemagenic properties |
Outcome Measure | Current Study Results | Literature Data | Difference |
---|---|---|---|
Median Overall Survival | |||
All patients (n = 72) | 13.3 months | 12.1–14.6 months | Comparable |
Patients who received integrative treatment (n = 65) | 16.3 months | 12.1–14.6 months | +1.7 to +4.2 months |
Patients with high adherence to integrative treatment (n = 60) | 25.4 months | 12.1–14.6 months | +10.8 to +13.3 months |
Patients who underwent complete surgery with high adherence | 34.4 months | ~18–19 months | +15.4 to +16.4 months |
1-Year Survival Rate | |||
All patients (n = 72) | 53.1% | ~50% | +3.1% |
Patients who received integrative treatment (n = 65) | 55.4% | ~50% | +5.4% |
Patients with high adherence to integrative treatment (n = 60) | 59.0% | ~50% | +9.0% |
Patients who underwent complete surgery with high adherence | 82.4% | ~61–65% | +17.4 to +21.4% |
2-Year Survival Rate | |||
Patients who underwent complete surgery with high adherence | 54.2% | ~25–30% | +24.2 to +29.2% |
5-Year Survival Rate | |||
All patients (n = 72) | 16.0% | 3–7% | +9.0 to +13.0% |
Patients with high adherence to integrative treatment (n = 60) | 25.0% | 3–7% | +18.0 to +22.0% |
Patients who underwent complete surgery with high adherence | 34.0% | 3–7% | +27.0 to +31.0% |
Long-term Survival (>60 months) | |||
All patients (n = 72) | 12% | <3% | >+9.0% |
Patients with high adherence to integrative treatment (n = 60) | 16% | <3% | >+13.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonucci, M.; Fuggetta, M.P.; Anelli, L.; Giannarelli, D.; Fiorentini, C.; Ravagnan, G. New Approach for Enhancing Survival in Glioblastoma Patients: A Longitudinal Pilot Study on Integrative Oncology. Cancers 2025, 17, 2321. https://doi.org/10.3390/cancers17142321
Bonucci M, Fuggetta MP, Anelli L, Giannarelli D, Fiorentini C, Ravagnan G. New Approach for Enhancing Survival in Glioblastoma Patients: A Longitudinal Pilot Study on Integrative Oncology. Cancers. 2025; 17(14):2321. https://doi.org/10.3390/cancers17142321
Chicago/Turabian StyleBonucci, Massimo, Maria Pia Fuggetta, Lorenzo Anelli, Diana Giannarelli, Carla Fiorentini, and Giampietro Ravagnan. 2025. "New Approach for Enhancing Survival in Glioblastoma Patients: A Longitudinal Pilot Study on Integrative Oncology" Cancers 17, no. 14: 2321. https://doi.org/10.3390/cancers17142321
APA StyleBonucci, M., Fuggetta, M. P., Anelli, L., Giannarelli, D., Fiorentini, C., & Ravagnan, G. (2025). New Approach for Enhancing Survival in Glioblastoma Patients: A Longitudinal Pilot Study on Integrative Oncology. Cancers, 17(14), 2321. https://doi.org/10.3390/cancers17142321