Treatment Intensification Prior to Radical Prostatectomy for Clinically Localized Prostate Cancer
Simple Summary
Abstract
1. Introduction
2. Rationale and Biological Principle
3. Hormonal Therapy
4. Chemotherapeutics
5. Immunotherapy
6. Future Steps
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. CA: A Cancer Journal for Clinicians. Cancer Stat. 2024 2024, 74, 12–49. [Google Scholar] [CrossRef]
- Pierorazio, P.M.; Walsh, P.C.; Partin, A.W.; Epstein, J.I. Prognostic Gleason grade grouping: Data based on the modified Gleason scoring system. BJU Int. 2013, 111, 753–760. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. Prostate Cancer (Version 4.2024). Available online: https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf (accessed on 23 June 2025).
- Eastham, J.A.; Auffenberg, G.B.; Barocas, D.A.; Chou, R.; Crispino, T.; Davis, J.W.; Eggener, S.; Horwitz, E.M.; Kane, C.J.; Kirkby, E.; et al. Clinically Localized Prostate Cancer: AUA/ASTRO Guideline, Part I: Introduction, Risk Assessment, Staging; Risk-Based Management. J. Urol. 2022, 208, 10–18. [Google Scholar] [CrossRef]
- Powles, T.; Catto, J.W.F.; Galsky, M.D.; Al-Ahmadie, H.; Meeks, J.J.; Nishiyama, H.; Vu, T.Q.; Antonuzzo, L.; Wiechno, P.; Atduev, V.; et al. Perioperative Durvalumab with Neoadjuvant Chemotherapy in Operable Bladder Cancer. N. Engl. J. Med. 2024, 391, 1773–1786. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.; Joshi, M.; Meijer, R.P.; Glantz, M.; Holder, S.; Harvey, H.A.; Kaag, M.; van de Putte, E.E.F.; Horenblas, S.; Drabick, J.J. Neoadjuvant Chemotherapy for Muscle-Invasive Bladder Cancer: A Systematic Review and Two-Step Meta-Analysis. Oncologist 2016, 21, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Dibajnia, P.; Cardenas, L.M.; Lalani, A.A. The emerging landscape of neo/adjuvant immunotherapy in renal cell carcinoma. Hum. Vaccin Immunother. 2023, 19, 2178217. [Google Scholar] [CrossRef] [PubMed]
- Tamirisa, N.; Hunt, K.K. Neoadjuvant Chemotherapy, Endocrine Therapy, and Targeted Therapy for Breast Cancer: ASCO Guideline. Ann. Surg. Oncol. 2022, 29, 1489–1492. [Google Scholar] [CrossRef]
- Leow, J.J.; Chong, Y.L.; Chang, S.L.; Valderrama, B.P.; Powles, T.; Bellmunt, J. Neoadjuvant and Adjuvant Chemotherapy for Upper Tract Urothelial Carcinoma: A 2020 Systematic Review and Meta-analysis, and Future Perspectives on Systemic Therapy. Eur. Urol. 2021, 79, 635–654. [Google Scholar] [CrossRef]
- Inoue, K.; Takeuchi, Y.; Takeyama, S.; Yamaha, E.; Yamazaki, F.; Odo, S.; Harayama, S. Adhesive protein cDNA sequence of the mussel Mytilus coruscus and its evolutionary implications. J. Mol. Evol. 1996, 43, 348–356. [Google Scholar] [CrossRef]
- Robesti, D.; Gallina, A.; Montorsi, F.; Briganti, A.; Fossati, N. Role of cytoreductive radical prostatectomy in men with oligometastatic prostate cancer on molecular imaging. Curr. Opin. Urol. 2024, 34, 294–299. [Google Scholar] [CrossRef]
- Kerkvliet, C.P.; Truong, T.H.; Ostrander, J.H.; Lange, C.A. Stress sensing within the breast tumor microenvironment: How glucocorticoid receptors live in the moment. Essays Biochem. 2021, 65, 971–983. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.H.; Li, J.; Xu, H.E.; Melcher, K.; Yong, E.L. Androgen receptor: Structure, role in prostate cancer and drug discovery. Acta Pharmacol. Sin. 2015, 36, 3–23. [Google Scholar] [CrossRef] [PubMed]
- Rock, C.G.; Marmelat, V.; Yentes, J.M.; Siu, K.C.; Takahashi, K.Z. Interaction between step-to-step variability and metabolic cost of transport during human walking. J. Exp. Biol. 2018, 221, jeb.181834. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, J. Current status and future directions of cancer immunotherapy. J. Cancer 2018, 9, 1773–1781. [Google Scholar] [CrossRef]
- Sayegh, N.; Graf, R.; Fisher, V.; Weberpals, J.; Huang, R.S.P.; Lin, D.I.; Gjoerup, O.; Raskina, K.; Severson, E.A.; Haberberger, J.; et al. Tumor mutational burden as a predictive biomarker for immune checkpoint inhibitor versus taxane chemotherapy benefit in metastatic castration-resistant prostate cancer: A real-world biomarker study. J. Clin. Oncol. 2022, 40, 162. [Google Scholar] [CrossRef]
- Cristescu, R.; Aurora-Garg, D.; Albright, A.; Xu, L.; Liu, X.Q.; Loboda, A.; Lang, L.; Jin, F.; Rubin, E.H.; Snyder, A.; et al. Tumor mutational burden predicts the efficacy of pembrolizumab monotherapy: A pan-tumor retrospective analysis of participants with advanced solid tumors. J. Immunother. Cancer 2022, 10, e003091. [Google Scholar] [CrossRef]
- Sartor, O.; de Bono, J.; Chi, K.N.; Fizazi, K.; Herrmann, K.; Rahbar, K.; Tagawa, S.T.; Nordquist, L.T.; Vaishampayan, N.; El-Haddad, G.; et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2021, 385, 1091–1103. [Google Scholar] [CrossRef]
- Attard, G.; Cooper, C.S.; de Bono, J.S. Steroid hormone receptors in prostate cancer: A hard habit to break? Cancer Cell 2009, 16, 458–462. [Google Scholar] [CrossRef]
- Coutinho, I.; Day, T.K.; Tilley, W.D.; Selth, L.A. Androgen receptor signaling in castration-resistant prostate cancer: A lesson in persistence. Endocr.-Relat. Cancer 2016, 23, T179–T197. [Google Scholar] [CrossRef]
- Schalken, J.; Fitzpatrick, J.M. Enzalutamide: Targeting the androgen signalling pathway in metastatic castration-resistant prostate cancer. BJU Int. 2016, 117, 215–225. [Google Scholar] [CrossRef]
- Labrie, F.; Cusan, L.; Gomez, J.L.; Diamond, P.; Suburu, R.; Lemay, M.; Tetu, B.; Fradet, Y.; Candas, B. Downstaging by combination therapy with flutamide and an LHRH agonist before radical prostatectomy. Cancer Surv. 1995, 23, 149–156. [Google Scholar] [PubMed]
- Gravina, G.L.; Festuccia, C.; Galatioto, G.P.; Muzi, P.; Angelucci, A.; Ronchi, P.; Costa, A.M.; Bologna, M.; Vicentini, C. Surgical and biologic outcomes after neoadjuvant bicalutamide treatment in prostate cancer. Urology 2007, 70, 728–733. [Google Scholar] [CrossRef]
- Bullock, M.J.; Srigley, J.R.; Klotz, L.H.; Goldenberg, S.L. Pathologic effects of neoadjuvant cyproterone acetate on nonneoplastic prostate, prostatic intraepithelial neoplasia, and adenocarcinoma: A detailed analysis of radical prostatectomy specimens from a randomized trial. Am. J. Surg. Pathol. 2002, 26, 1400–1413. [Google Scholar] [CrossRef]
- Sugino, F.; Nakane, K.; Kawase, M.; Ueda, S.; Tomioka, M.; Takeuchi, Y.; Yamada, T.; Namiki, S.; Kumada, N.; Kawase, K.; et al. Biochemical recurrence after chemohormonal therapy followed by robot-assisted radical prostatectomy in very-high-risk prostate cancer patients. J. Robot. Surg. 2023, 17, 2441–2449. [Google Scholar] [CrossRef] [PubMed]
- Giesen, A.; Devos, G.; Tosco, L.; Baldewijns, M.; Gevaert, T.; Goffin, K.; Bidakhvidi, N.A.; Laenen, A.; Raskin, Y.; Haute, C.V.; et al. Final oncological outcomes of the randomized phase II trial ARNEO: Neoadjuvant degarelix with or without apalutamide prior to radical prostatectomy for high-risk prostate cancer. J. Clin. Oncol. 2025, 43, 394. [Google Scholar] [CrossRef]
- Devos, G.; Tosco, L.; Baldewijns, M.; Gevaert, T.; Goffin, K.; Petit, V.; Mai, C.; Laenen, A.; Raskin, Y.; Van Haute, C.; et al. ARNEO: A Randomized Phase II Trial of Neoadjuvant Degarelix with or Without Apalutamide Prior to Radical Prostatectomy for High-risk Prostate Cancer. Eur. Urol. 2023, 83, 508–518. [Google Scholar] [CrossRef]
- Orme, J.J.; Pagliaro, L.C.; Quevedo, J.F.; Park, S.S.; Costello, B.A. Rational Second-Generation Antiandrogen Use in Prostate Cancer. Oncologist 2022, 27, 110–124. [Google Scholar] [CrossRef]
- Saad, F. Evidence for the efficacy of enzalutamide in postchemotherapy metastatic castrate-resistant prostate cancer. Ther. Adv. Urol. 2013, 5, 201–210. [Google Scholar] [CrossRef]
- Yuan, F.; Hankey, W.; Wu, D.; Wang, H.; Somarelli, J.; Armstrong, A.J.; Huang, J.; Chen, Z.; Wang, Q. Molecular determinants for enzalutamide-induced transcription in prostate cancer. Nucleic Acids Res. 2019, 47, 10104–10114. [Google Scholar] [CrossRef]
- Alumkal, J.J.; Sun, D.; Lu, E.; Beer, T.M.; Thomas, G.V.; Latour, E.; Aggarwal, R.; Cetnar, J.; Ryan, C.J.; Tabatabaei, S.; et al. Transcriptional profiling identifies an androgen receptor activity-low, stemness program associated with enzalutamide resistance. Proc. Natl. Acad. Sci. USA 2020, 117, 12315–12323. [Google Scholar] [CrossRef]
- Montgomery, B.; Tretiakova, M.S.; Joshua, A.M.; Gleave, M.E.; Fleshner, N.; Bubley, G.J.; Mostaghel, E.A.; Chi, K.N.; Lin, D.W.; Sanda, M.; et al. Neoadjuvant Enzalutamide Prior to Prostatectomy. Clin. Cancer Res. 2017, 23, 2169–2176. [Google Scholar] [CrossRef]
- McKay, R.R.; Ye, H.; Xie, W.; Lis, R.; Calagua, C.; Zhang, Z.; Trinh, Q.D.; Chang, S.L.; Harshman, L.C.; Ross, A.E.; et al. Evaluation of Intense Androgen Deprivation Before Prostatectomy: A Randomized Phase II Trial of Enzalutamide and Leuprolide With or Without Abiraterone. J. Clin. Oncol. 2019, 37, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Ravi, P.; Kwak, L.; Acosta, A.M.; Rastogi, S.; Xie, W.; Abdelnaser, A.; Einstein, D.J.; Chang, P.; Wagner, A.A.; McKay, R.R.; et al. Long-term Outcomes and Prognostic Impact of Residual Cancer Burden After Intensified Neoadjuvant Therapy in High-risk Prostate Cancer. Eur. Urol. 2025, 87, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Chi, K.N.; Chin, J.L.; Winquist, E.; Klotz, L.; Saad, F.; Gleave, M.E. Multicenter phase II study of combined neoadjuvant docetaxel and hormone therapy before radical prostatectomy for patients with high risk localized prostate cancer. J. Urol. 2008, 180, 565–570, discussion 570. [Google Scholar] [CrossRef] [PubMed]
- Eastham, J.A.; Heller, G.; Halabi, S.; Monk, P.; Clinton, S.K.; Szmulewitz, R.Z.; Coleman, J.; Gleave, M.; Evans, C.P.; Hillman, D.W.; et al. CALGB 90203 (Alliance): Radical prostatectomy (RP) with or without neoadjuvant chemohormonal therapy (CHT) in men with clinically localized, high-risk prostate cancer (CLHRPC). J. Clin. Oncol. 2019, 37, 5079. [Google Scholar] [CrossRef]
- Kelly, W.K.; Halabi, S.; Carducci, M.; George, D.; Mahoney, J.F.; Stadler, W.M.; Morris, M.; Kantoff, P.; Monk, J.P.; Kaplan, E.; et al. Randomized, double-blind, placebo-controlled phase III trial comparing docetaxel and prednisone with or without bevacizumab in men with metastatic castration-resistant prostate cancer: CALGB 90401. J. Clin. Oncol. 2012, 30, 1534–1540. [Google Scholar] [CrossRef]
- McKay, R.R.; Liu, L.; Pu, M.; Araneta, A.; Wang, L.; Castano, N.; Gomez, J.; Ajmera, A.; Ye, H.; Pili, R.; et al. A phase 2 study of neoadjuvant PARP inhibition followed by radical prostatectomy (RP) in patients with unfavorable intermediate-risk or high-risk prostate cancer with BRCA1/2 gene alterations (NePtune). J. Clin. Oncol. 2024, 42, TPS353. [Google Scholar] [CrossRef]
- Messina, C.; Giunta, E.F.; Signori, A.; Rebuzzi, S.E.; Banna, G.L.; Maniam, A.; Buti, S.; Cattrini, C.; Fornarini, G.; Bauckneht, M.; et al. Combining PARP Inhibitors and Androgen Receptor Signalling Inhibitors in Metastatic Prostate Cancer: A Quantitative Synthesis and Meta-analysis. Eur. Urol. Oncol. 2024, 7, 179–188. [Google Scholar] [CrossRef]
- de Bono, J.; Mateo, J.; Fizazi, K.; Saad, F.; Shore, N.; Sandhu, S.; Chi, K.N.; Sartor, O.; Agarwal, N.; Olmos, D.; et al. Olaparib for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2020, 382, 2091–2102. [Google Scholar] [CrossRef]
- Lenis, A.T.; Ravichandran, V.; Brown, S.; Alam, S.M.; Katims, A.; Truong, H.; Reisz, P.A.; Vasselman, S.; Nweji, B.; Autio, K.A.; et al. Microsatellite Instability, Tumor Mutational Burden, and Response to Immune Checkpoint Blockade in Patients with Prostate Cancer. Clin. Cancer Res. 2024, 30, 3894–3903. [Google Scholar] [CrossRef]
- Nolan-Stevaux, O.; Li, C.; Liang, L.; Zhan, J.; Estrada, J.; Osgood, T.; Li, F.; Zhang, H.; Case, R.; Murawsky, C.M.; et al. AMG 509 (Xaluritamig), an Anti-STEAP1 XmAb 2+1 T-cell Redirecting Immune Therapy with Avidity-Dependent Activity against Prostate Cancer. Cancer Discov. 2024, 14, 90–103. [Google Scholar] [CrossRef] [PubMed]
- Vardeu, A.; Davis, C.; McDonald, I.; Stahlberg, G.; Thapa, B.; Piotrowska, K.; Marshall, M.A.; Evans, T.; Wheeler, V.; Sebastian, S.; et al. Intravenous administration of viral vectors expressing prostate cancer antigens enhances the magnitude and functionality of CD8+ T cell responses. J. Immunother. Cancer 2022, 10, e005398. [Google Scholar] [CrossRef]
- Krafft, U.; Grünwald, V.; Fendler, W.P.; Herrmann, K.; Reis, H.; Roghmann, F.; Rahbar, K.; Heidenreich, A.; Giesel, F.; Niegisch, G.; et al. A randomized phase I/II study of neoadjuvant treatment with 177-Lutetium-PSMA-617 with or without ipilimumab in patients with very high-risk prostate cancer who are candidates for radical prostatectomy (NEPI trial). J. Clin. Oncol. 2024, 42, TPS352. [Google Scholar] [CrossRef]
- Isaacsson Velho, P.; Bastos, D.A.; Saint’ana, P.T.; Rigatti, B.; da Costa, E.T.; Muniz, D.Q.B.; Andreis, F.; Ferreira, R.D.P.; Giongo Pedrotti, L.; Maistro, S.; et al. Nivolumab in patients with metastatic castration-resistant prostate cancer with and without DNA repair defects. Clin. Cancer Res. 2024, 30, 5342–5352. [Google Scholar] [CrossRef] [PubMed]
- Slevin, F.; Zattoni, F.; Checcucci, E.; Cumberbatch, M.G.K.; Nacchia, A.; Cornford, P.; Briers, E.; De Meerleer, G.; De Santis, M.; Eberli, D.; et al. A Systematic Review of the Efficacy and Toxicity of Brachytherapy Boost Combined with External Beam Radiotherapy for Nonmetastatic Prostate Cancer. Eur. Urol. Oncol. 2024, 7, 677–696. [Google Scholar] [CrossRef]
- Shah, T.T.; Reddy, D.; Peters, M.; Ball, D.; Kim, N.H.; Gomez, E.G.; Miah, S.; Evans, D.E.; Guillaumier, S.; van Rossum, P.S.N.; et al. Focal therapy compared to radical prostatectomy for non-metastatic prostate cancer: A propensity score-matched study. Prostate Cancer Prostatic Dis. 2021, 24, 567–574. [Google Scholar] [CrossRef]
- Guercio, A.; Lombardo, R.; Turchi, B.; Romagnoli, M.; Franco, A.; D’Annunzio, S.; Fusco, F.; Pastore, A.L.; Al Salhi, Y.; Fuschi, A.; et al. Patient satisfaction and decision regret in patients undergoing radical prostatectomy: A multicenter analysis. Int. Urol. Nephrol. 2025, 1–7. [Google Scholar] [CrossRef]
NCT Number | Study Title | Planned Interventions | Phases |
---|---|---|---|
NCT06259123 | Neoadjuvant PSMA-RLT in Oligometastatic PCa | PSMA | Phase 2 |
NCT06387056 | Genomic Biomarker-guided Neoadjuvant Therapy for Prostate Cancer (SEGNO) | Rezvilutamide, Goserelin Microspheres for Injection, Docetaxel, Pamiparib, Cisplatin, Tislelizumab | Phase 2 |
NCT04887935 | Neoadjuvant SGLT2 Inhibition in High-Risk Localized Prostate Cancer | Dapagliflozin | Phase 1 |
NCT06575257 | Neoadjuvant Therapy of Darolutamide Plus ADT for High-Risk Prostate Cancer | Darolutamide, Goserelin 3.6 mg | Phase 2 |
NCT06631521 | Neoadjuvant Darolutamide and Relugolix Combination Preceding Radical Prostatectomy for Prostate Cancer | Darolutamide, Relugolix | Phase 1 |
NCT05223582 | Fluzoparib and Abiraterone in the preSurgery Treatment of Prostate Cancer: FAST Trial | Abiraterone acetate, Fluzoparib, Prednisone | Phase 2 |
NCT06613100 | Evaluation of Neoadjuvant Xaluritamig in Localized Prostate Cancer | Xaluritamig | Phase 1 |
NCT03821246 | Neoadjuvant Atezolizumab-Based Combination Therapy in Men with Localized Prostate Cancer Prior to Radical Prostatectomy | Atezolizumab, Tocilizumab, Etrumadenant | Phase 2 |
NCT04894188 | Neoadjuvant Hormone and Radiation Therapy Followed by Radical Prostatectomy in Patients with High-Risk Prostate Cancer | Goserelin 3.6 mg | NA |
NCT02903368 | Neoadjuvant And Adjuvant Abiraterone Acetate + Apalutamide Prostate Cancer Undergoing Prostatectomy | Apalutamide, Leuprolide, Prednisone, Abiraterone Acetate | Phase 2 |
NCT06347705 | A Study of 2141-V11 in Combination with Standard Treatments in People with Prostate Cancer | 2141-V11 Antibody | Phase 2 |
NCT05593497 | A Single-Arm Phase II Study of Neoadjuvant Intensified Androgen Deprivation (Leuprolide and Abiraterone Acetate) in Combination with AKT Inhibition (Capivasertib) for High-Risk Localized Prostate Cancer with PTEN Loss | Capivasertib, abiraterone acetate | Phase 2 |
NCT05406999 | Neoadjuvant Intense Endocrine Therapy for High Risk and Locally Advanced Prostate Cancer | Abiraterone Acetate, Prednisolone, Enzalutamide, Apalutamide, Darotamide, Rezvilutamide | Phase 2 |
NCT05249712 | Efficacy and Safety of Darolutamide Combined with ADT in High-risk/Very High-risk Localized Prostate Cancer | Darolutamide | Phase 2 |
NCT06066437 | Neoadjuvant Theranostic Lutetium Study: The Nautilus Trial | 177Lu rhPSMA-10.1, Deguelin | Phase 2 |
NCT06029036 | A Phase II Neoadjuvant Study of Darolutamide Plus ADT in Men with Localized Prostate Cancer | Darolutamide+ADT | Phase 2 |
NCT03080116 | Neoadjuvant Degarelix with or Without Apalutamide (ARN-509) Followed by Radical Prostatectomy | ARN-509, Degarelix | Phase 2 |
NCT06014255 | Trial of Neoadjuvant Enoblituzumab vs. SOC in Men with High-Risk Localized Prostate Cancer | Enoblituzumab | Phase 2 |
NCT02923180 | Neoadjuvant Enoblituzumab (MGA271) in Men with Localized Intermediate and High-Risk Prostate Cancer | Enoblituzumab | Phase 2 |
NCT01990196 | Neoadjuvant Phase 2 Study Comparing the Effects of AR Inhibition With/Without SRC or MEK Inhibition in Prostate Cancer | degarelix, enzalutamide, trametinib, dasatinib | Phase 2 |
NCT05740488 | Efficacy and Safety of Apalutamide in Combination With 89Sr as Neoadjuvant Therapy in Prostate Cancer With‚ Bone Metastases | Apalutamide | NA |
NCT04009967 | Biomarkers for Neoadjuvant Pembrolizumab in Non-Metastatic Prostate Cancer Positive by 18FDG-PET Scanning | Pembrolizumab | Phase 2 |
NCT05496959 | 177-Lutetium-PSMA Before Stereotactic Body Radiotherapy for the Treatment of Oligorecurrent Prostate Cancer, The LUNAR Study | Lutetium Lu-177 PNT2002 | Phase 2 |
NCT05617885 | Neo-DAB: Darolutamide and Abemaciclib in Prostate Cancer | Darolutamide, Abemaciclib, Leuprolide, Goserelin, Degarelix | Phase 2 |
NCT04301414 | Non-fucosylated Anti-CTLA-4 (BMS-986218) + Degarelix Acetate vs. Degarelix Acetate Alone in Men with High-risk Localized Prostate Cancer | BMS-986218, Degarelix | Phase 1 |
NCT04997252 | An Evaluation of the Efficacy and Safety of Apalutamide as Neoadjuvant Endocrine Therapy in High-Risk and Oligometastatic Prostate Cancer | Apalutamide | NA |
NCT06306612 | CytoREductive prostAtectomy for Poly-metastatic Hormone sensiTIVE Prostate Cancer | Systemic Chemohormonal Therapy, Systemic Hormonal Therapy | NA |
NCT03258320 | A Randomised Trial of Cabazitaxel, Docetaxel, Mitoxantrone or Satraplatin (CDMS) Plus Surgery for Prostate Cancer Patients Without Metastasis | Cabazitaxel, Docetaxel, Mitoxantrone or Satraplatin | Phase 1 |
NCT03860987 | Neoadjuvant Androgen Deprivation Therapy Combined with Enzalutamide and Abiraterone Using Multiparametric MRI and 18FDCFPyL PET/CT in Newly Diagnosed Prostate Cancer | Goserelin, Enzalutamide, Abiraterone, 18F-DCFPyL | Phase 2 |
NCT00329043 | Sunitinib Malate With Hormonal Ablation for Patients Who Will Have Prostatectomy | Sunitinib Malate | Phase 2 |
NCT03412396 | Apalutamide in Treating Patients with Prostate Cancer Before Radical Prostatectomy | Apalutamide | Phase 2 |
NCT05498272 | Study of Neoadjuvant PARP Inhibition Followed by Radical Prostatectomy in Patients with Unfavorable Intermediate-Risk or High-Risk Prostate Cancer with Select HRR Gene Alterations | Olaparib | Phase 2 |
NCT00430183 | Surgery With or Without Docetaxel and Leuprolide or Goserelin in Treating Patients with High-Risk Localized Prostate Cancer | Docetaxel | Phase 3 |
NCT02949284 | Androgen Receptor Antagonist ARN-509 With or Without Abiraterone Acetate, Gonadotropin-Releasing Hormone Analog, and Prednisone in Treating Patients with High-Risk Prostate Cancer Undergoing Surgery | Abiraterone Acetate, ARN-509 | Phase 2 |
NCT04030559 | Niraparib Before Surgery in Treating Patients with High Risk Localized Prostate Cancer and DNA Damage Response Defects | Niraparib | Phase 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perez Kerkvliet, C.J.; Leong, J.Y.; Thompson, R.A.M.; Zarrabi, K.K.; Kelly, W.K.; Lallas, C.; Gomella, L.; Shah, M. Treatment Intensification Prior to Radical Prostatectomy for Clinically Localized Prostate Cancer. Cancers 2025, 17, 2258. https://doi.org/10.3390/cancers17132258
Perez Kerkvliet CJ, Leong JY, Thompson RAM, Zarrabi KK, Kelly WK, Lallas C, Gomella L, Shah M. Treatment Intensification Prior to Radical Prostatectomy for Clinically Localized Prostate Cancer. Cancers. 2025; 17(13):2258. https://doi.org/10.3390/cancers17132258
Chicago/Turabian StylePerez Kerkvliet, Carlos Jesus, Joon Yau Leong, Rasheed A. M. Thompson, Kevin Kayvan Zarrabi, William Kevin Kelly, Costas Lallas, Leonard Gomella, and Mihir Shah. 2025. "Treatment Intensification Prior to Radical Prostatectomy for Clinically Localized Prostate Cancer" Cancers 17, no. 13: 2258. https://doi.org/10.3390/cancers17132258
APA StylePerez Kerkvliet, C. J., Leong, J. Y., Thompson, R. A. M., Zarrabi, K. K., Kelly, W. K., Lallas, C., Gomella, L., & Shah, M. (2025). Treatment Intensification Prior to Radical Prostatectomy for Clinically Localized Prostate Cancer. Cancers, 17(13), 2258. https://doi.org/10.3390/cancers17132258