TTF-1 Negativity Predicts Poor Outcomes in Advanced Non-Squamous NSCLC Also in the Immunotherapy Era: A Multicenter Cohort Study and Meta-Analysis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Immunohistochemistry and Biomarker Assessment
2.3. Statistical Analysis
2.4. Systematic Review and Meta-Analysis
- (1)
- A predefined search strategy on PubMed and Europe PMC using Boolean operators;
- (2)
- An AI-assisted search using Elicit across over 126 million academic papers from the Semantic Scholar corpus, in which the same PICO-based research question was posed;
- (3)
- A manual review and deduplication of all retrieved references from both sources.
- Studies eligible for inclusion in the meta-analysis met the following criteria:
- Clinical trials, retrospective or prospective studies evaluating advanced-stage (III/IV) NSCLC.
- Patients treated with immunotherapy (ICI) or immunotherapy combined with chemotherapy (IO-CT).
- Availability of hazard ratios (HRs) for PFS or OS stratified by TTF-1 expression.
- Exclusion criteria were as follows:
- Case reports, case series (<10 patients), reviews, editorials, or non-original studies.
- Preclinical studies or studies not clearly reporting outcomes stratified by TTF-1.
- Studies assessing only early-stage NSCLC or non-ICI-based therapies.
3. Results
3.1. Patients’ Characteristics
3.2. Survival Analysis
3.3. Exploratory Analyses
3.3.1. Interaction Between TTF-1 and PD-L1 Expression
3.3.2. Combined Prognostic Value of TTF-1 and PD-L1 Expression
3.3.3. Second-Line Outcomes and PFS2
3.4. Meta-Analysis of the Prognostic Role of TTF-1 Expression in Advanced NSCLC
4. Discussion
4.1. Main Findings from Our Retrospective Cohort
4.2. TTF-1 vs. PD-L1 as Prognostic Biomarkers
4.3. Insights from the Meta-Analysis
4.4. Limitations
4.5. Clinical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Database | Search Terms | Filters | Results |
---|---|---|---|
PubMed | ((\”Carcinoma, Non-Small-Cell Lung\” OR \”non-small cell lung cancer\” OR \”NSCLC\” OR \”lung adenocarcinoma\”)) AND (\”Thyroid Transcription Factor 1\” OR \”TTF-1\” OR \”TTF1\” OR \”NKX2-1\”) AND (\”Progression-Free Survival\” OR \”Overall Survival\” OR \”Treatment Outcome\” OR \”immunotherapy\” OR \”immune checkpoint inhibitor\”) | Language: English Date: ≤Mar 2025 | N = 195 |
Europe PMC | “non small cell lung cancer” OR NSCLC OR “lung adenocarcinoma” AND “thyroid transcription factor 1” OR TTF-1 OR TTF1 OR NKX2-1 AND “progression-free survival” OR “overall survival” OR “treatment outcome” OR immunotherapy OR “immune checkpoint inhibitor” | Language: English Date: ≤Mar 2025 | N = 1130 |
Semantic Scholar + Elicit (AI) | “What is the prognostic significance of TTF-1 expression in advanced NSCLC patients treated with immunotherapy or chemo-immunotherapy? make a systematic research of every study with survival data from anticancer immunotherapy and stratification by TTF-1 exposure” (semantic search via AI-assisted Elicit platform) | Language: English Date: ≤Mar 2025 | N = 499 |
PFS | OS | |||
---|---|---|---|---|
Covariates | Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | p-Value |
TTF-1 (Positive vs. Negative) | 0.41 (0.21–0.8) | 0.009 | 0.46 (0.24–0.93) | 0.0029 |
PD-L1 (≥50% vs. <50%) | 0.59 (0.36–0.97) | 0.036 | 0.63 (0.39–1.03) | 0.0649 |
TTF1 * PDL1 interaction | 1.17 (0.67–2.03) | 0.57 | 1.02 (0.58–1.78) | 0.95 |
Patients’ Characteristics by TTF-1 Status-n (%); Median (Q1–Q3) | ||||
---|---|---|---|---|
TTF-1− (n = 30) | TTF-1+ (n = 84) | p-Value | ||
Age, years | ≥70 | 14 (46.7%) | 34 (40.5%) | p = 0.6 |
<70 | 16 (53.3%) | 50 (59.5%) | ||
Smoking habit | Never Smoker | 5 (16.7%) | 13 (15.5%) | |
Former Smoker | 14 (46.7%) | 42 (50%) | p > 0.9 | |
Heavy Smoker | 11 (36.7%) | 29 (34.5%) | ||
Histology | Adenocarcinoma | 25 (83.3%) | 80 (95.2%) | p = 0.017 |
NOS | 5 (16.7%) | 4 (4.8%) | ||
PS ECOG | 0 | 15 (50%) | 33 (39.3%) | p = 0.3 |
1 | 15 (50%) | 51 (60.7%) | ||
Brain Metastases | Yes | 1 (3.3%) | 21 (25%) | p = 0.01 |
No | 29 (96.7%) | 63 (75%) | ||
Metastatic Burden | ≥3 | 12 (40%) | 34 (40.5%) | p > 0.9 |
<3 | 18 (60%) | 50 (59.5%) | ||
PDL-1 expression | Negative | 12 (40%) | 23 (27.4%) | |
1–49% | 13 (43.3%) | 40 (47.6%) | p = 0.4 | |
≥50% | 5 (16.7%) | 21 (25%) | ||
First line treatment | IO | 4 (13.3%) | 20 (23.8%) | |
IO-CT | 15 (50%) | 38 (45.2%) | p = 0.5 | |
CT | 11 (36.7%) | 26 (31%) | ||
Second line treatment | IO | 11 (36.7%) | 26 (31%) | p = 0.65 |
CT | 19 (63.3%) | 58 (69%) |
Author (year) | Design | Median Age | Stage | PD-L1 Levels (Clone) | TTF-1 Positivity Definition | Line(s) of Treatment | PD(L1)/CTLA-4 Antibody |
---|---|---|---|---|---|---|---|
Di Federico et al., 2023 [18] | Retrospective multicenter | NR | NR | All (NR) | NR | NR | NR |
Galland et al., 2021 [14] | Retrospective monocenter | 63.5 | IV | All (22C3/QR1) | Focal positivity considered TTF-1+ | 1st–2nd | aPD-1/ aPD-L1/ aCTLA4 |
Ibusuki et al., 2022 [19] | Retrospective multicenter | 67 | III-IV | All (NR) | NR | 1st | Pembro/Atezo |
Iso et al., 2023 [20] | Retrospective monocenter | 72 | III-IV | All (22C3) | NR | 1st | Nivo/Pembro/Atezo |
Ito et al., 2025 [21] | Retrospective multicenter | 50–83 * (ILD) 34–82 * (non-ILD) | IIIA-IV | All (22C3) | >10% | 1st–3rd | Nivo/Pembro |
Nakahama et al., 2022 [23] | Retrospective multicenter | 73 (TTF-1 +) 70 (TTF-1 -) | III-IV | All (22C3) | Per pathology report | 1st–3rd | Nivo/Pembro/Atezo |
Katayama et al., 2023 [22] | Retrospective multicenter | 68.5 | III-IV | All (22C3) | Cytoplasmic or nuclear staining + | 1st | Pembro/Atezo |
Nishioka et al., 2025 [24] | Retrospective multicenter | 68 | IIIB-IV | ≥1% (22C3) | NR | 1st | Nivo/Pembro/Atezo |
Moeller et al., 2022 [13] | Retrospective monocenter | 66 | IV | All (NR) | NR | 1st | Non specified |
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature 2018, 553, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus Chemotherapy in Metastatic Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef] [PubMed]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1–Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [PubMed]
- Socinski, M.A.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; Thomas, C.A.; Barlesi, F.; et al. Atezolizumab for First-Line Treatment of Metastatic Non-squamous NSCLC. N. Engl. J. Med. 2018, 378, 2288–2301. [Google Scholar] [CrossRef]
- Hellmann, M.D.; Paz-Ares, L.; Bernabe Caro, R.; Zurawski, B.; Kim, S.-W.; Carcereny Costa, E.; Park, K.; Alexandru, A.; Lupinacci, L.; de la Mora Jimenez, E.; et al. Nivolumab plus Ipilimumab in Advanced Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2019, 381, 2020–2031. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez–Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Updated Analysis of KEYNOTE-024: Pembrolizumab Versus Platinum-Based Chemotherapy for Advanced Non–Small-Cell Lung Cancer with PD-L1 Tumor Proportion Score of 50% or Greater. J. Clin. Oncol. 2019, 37, 537–546. [Google Scholar] [CrossRef]
- Doroshow, D.B.; Bhalla, S.; Beasley, M.B.; Sholl, L.M.; Kerr, K.M.; Gnjatic, S.; Wistuba, I.I.; Rimm, D.L.; Tsao, M.S.; Hirsch, F.R. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 2021, 18, 345–362. [Google Scholar] [CrossRef]
- Winslow, M.M.; Dayton, T.L.; Verhaak, R.G.W.; Kim-Kiselak, C.; Snyder, E.L.; Feldser, D.M.; Hubbard, D.D.; DuPage, M.J.; Whittaker, C.A.; Hoersch, S.; et al. Suppression of lung adenocarcinoma progression by Nkx2-1. Nature 2011, 473, 101–104. [Google Scholar] [CrossRef]
- Berghmans, T.; Paesmans, M.; Mascaux, C.; Martin, B.; Meert, A.-P.; Haller, A.; Lafitte, J.-J.; Sculier, J.-P. Thyroid transcription factor 1—A new prognostic factor in lung cancer: A meta-analysis. Ann. Oncol. 2006, 17, 1673–1676. [Google Scholar] [CrossRef]
- Sun, J.M.; Han, J.; Ahn, J.S.; Park, K.; Ahn, M.J. Significance of Thymidylate Synthase and Thyroid Transcription Factor 1 Expression in Patients with Non-squamous Non-small Cell Lung Cancer Treated with Pemetrexed-Based Chemotherapy. J. Thorac. Oncol. 2011, 6, 1392–1399. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Yanagisawa, K.; Sugiyama, R.; Hosono, Y.; Shimada, Y.; Arima, C.; Kato, S.; Tomida, S.; Suzuki, M.; Osada, H.; et al. NKX2-1/TITF1/TTF-1-Induced ROR1 Is Required to Sustain EGFR Survival Signaling in Lung Adenocarcinoma. Cancer Cell. 2012, 21, 348–361. [Google Scholar] [CrossRef] [PubMed]
- Moeller, M.; Schaedlich, F.; Schuette, W. Retrospective Data Analysis of Patients with Metastatic Lung Adenocarcinoma with or Without KRAS-Mutation or TTF1-Expression. Cancer Control. 2022, 29, 10732748221126949. [Google Scholar] [CrossRef]
- Galland, L.; Le Page, A.L.; Lecuelle, J.; Bibeau, F.; Oulkhouir, Y.; Derangère, V.; Truntzer, C.; Ghiringhelli, F. Prognostic value of Thyroid Transcription Factor-1 expression in lung adenocarcinoma in patients treated with anti PD-1/PD-L1. Oncoimmunology 2021, 10, 1957603. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.-P.; Huang, Y.-T.; Chang, Y.-L.; Yu, C.-J.; Yang, C.-H.; Chang, Y.-C.; Shih, J.-Y.; Yang, P.-C. Clinical Significance of Thyroid Transcription Factor-1 in Advanced Lung Adenocarcinoma Under Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Treatment. Chest 2012, 141, 420–428. [Google Scholar] [CrossRef]
- Nicholson, A.G.; Tsao, M.S.; Beasley, M.B.; Borczuk, A.C.; Brambilla, E.; Cooper, W.A.; Dacic, S.; Jain, D.; Kerr, K.M.; Lantuejoul, S.; et al. The 2021 WHO Classification of Lung Tumors: Impact of Advances Since 2015. J. Thorac. Oncol. 2022, 17, 362–387. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.; Aki, E.; Brennan, S.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 2021, 372, n71. [Google Scholar] [CrossRef]
- Di Federico, A.; Ricciuti, B.; Alessi, J.; Pecci, F.; Lamberti, G.; Gandhi, M.; Vaz, V.; Voligny, E.; Nguyen, T.; Haradon, D.; et al. MA20.06 Association of TTF-1 Expression with Outcomes to Immunotherapy and KRAS G12C Inhibition in Lung Adenocarcinoma. J. Thorac. Oncol. 2023, 18, S175. [Google Scholar] [CrossRef]
- Ibusuki, R.; Yoneshima, Y.; Hashisako, M.; Matsuo, N.; Harada, T.; Tsuchiya-Kawano, Y.; Kishimoto, J.; Ota, K.; Shiraishi, Y.; Iwama, E.; et al. Association of thyroid transcription factor-1 (TTF-1) expression with efficacy of PD-1/PD-L1 inhibitors plus pemetrexed and platinum chemotherapy in advanced non-squamous non-small cell lung cancer. Transl. Lung Cancer Res. 2022, 11, 2208–2215. [Google Scholar] [CrossRef]
- Iso, H.; Hisakane, K.; Mikami, E.; Suzuki, T.; Matsuki, S.; Atsumi, K.; Nagata, K.; Seike, M.; Hirose, T. Thyroid transcription factor-1 (TTF-1) expression and the efficacy of combination therapy with immune checkpoint inhibitors and cytotoxic chemotherapy in non-squamous non-small cell lung cancer. Transl. Lung Cancer Res. 2023, 12, 1850–1861. [Google Scholar] [CrossRef]
- Ito, M.; Honda, T.; Onishi, I.; Endo, S.; Mochizuki, A.; Nishiyama, N.; Sakakibara, R.; Takahashi, S.; Kumagai, T.; Hata, K.; et al. A strong association between TTF-1 expression and interstitial lung disease in predicting the efficacy of PD-1 inhibitor for non-squamous NSCLC patients. ERJ Open Res. 2025, 11, 00628–2024. [Google Scholar] [CrossRef]
- Katayama, Y.; Yamada, T.; Morimoto, K.; Fujii, H.; Morita, S.; Tanimura, K.; Takeda, T.; Okada, A.; Shiotsu, S.; Chihara, Y.; et al. TTF-1 Expression and Clinical Outcomes of Combined Chemo-immunotherapy in Patients with Advanced Lung Adenocarcinoma: A Prospective Observational Study. JTO Clin. Res. Rep. 2023, 4, 100494. [Google Scholar] [CrossRef] [PubMed]
- Nakahama, K.; Kaneda, H.; Osawa, M.; Izumi, M.; Yoshimoto, N.; Sugimoto, A.; Nagamine, H.; Ogawa, K.; Matsumoto, Y.; Sawa, K.; et al. Association of thyroid transcription factor-1 with the efficacy of immune-checkpoint inhibitors in patients with advanced lung adenocarcinoma. Thorac. Cancer 2022, 13, 2309–2317. [Google Scholar] [CrossRef] [PubMed]
- Nishioka, N.; Hata, T.; Yamada, T.; Goto, Y.; Amano, A.; Negi, Y.; Watanabe, S.; Furuya, N.; Oba, T.; Ikoma, T.; et al. Impact of TTF-1 Expression on the Prognostic Prediction of Patients with Non–Small Cell Lung Cancer with PD-L1 Expression Levels of 1% to 49%, Treated with Chemotherapy vs. Chemo-immunotherapy: A Multicenter, Retrospective Study. Cancer Res Treat. 2025, 57, 412–421. [Google Scholar] [CrossRef]
- Kut, E.; Menekşe, S. Relationship between brain metastasis and thyroid transcription factor 1. Sci. Rep. 2023, 13, 1945. [Google Scholar] [CrossRef]
- Wasilewski, D.; Araceli, T.; Bischoff, P.; Früh, A.; Ates, R.; Murad, S.; Jung, N.; Bukatz, J.; Samman, M.; Faust, K.; et al. TTF-1 negativity in synchronous M1b/M1c wildtype lung adenocarcinoma brain metastases predicts worse survival with increased risk of intracranial progression. J. Neuro-Oncol. 2024, 171, 637–649. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, R.; Li, Y.; Pan, Y.; Hu, H.; Zhang, Y.; Li, H.; Shen, L.; Yu, Y.; Sun, Y.; et al. Negative Thyroid Transcription Factor 1 Expression Defines an Unfavorable Subgroup of Lung Adenocarcinomas. J. Thorac. Oncol. 2015, 10, 1444–1450. [Google Scholar] [CrossRef]
- Cardnell, R.J.G.; Behrens, C.; Diao, L.; Fan, Y.; Tang, X.; Tong, P.; Minna, J.; Mills, G.; Heymach, J.; Witsuba, I.; et al. An Integrated Molecular Analysis of Lung Adenocarcinomas Identifies Potential Therapeutic Targets among TTF1-Negative Tumors, Including DNA Repair Proteins and Nrf2. Clin. Cancer Res. 2015, 21, 3480–3491. [Google Scholar] [CrossRef] [PubMed]
- Anichini, A.; Perotti, V.E.; Sgambelluri, F.; Mortarini, R. Immune Escape Mechanisms in Non Small Cell Lung Cancer. Cancers 2020, 12, 3605. [Google Scholar] [CrossRef]
- Uhlenbruch, M.; Krüger, S. Effect of TTF-1 expression on progression free survival of immunotherapy and chemo-/immunotherapy in patients with non-small cell lung cancer. J. Cancer Res. Clin. Oncol. 2024, 150, 394. [Google Scholar] [CrossRef]
- Terashima, Y.; Matsumoto, M.; Iida, H.; Takashima, S.; Fukuizumi, A.; Takeuchi, S.; Miyanaga, A.; Terasaki, Y.; Kasahara, K.; Seike, M. Predictive Impact of Diffuse Positivity for TTF-1 Expression in Patients Treated with Platinum-Doublet Chemotherapy Plus Immune Checkpoint Inhibitors for Advanced Non-squamous NSCLC. JTO Clin. Res. Rep. 2023, 4, 100578. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total N 200 (100%); Median (Q1–Q3) | |
---|---|---|
Median Age | 67 (60–73) | |
Sex | Women | 58 (29%) |
Men | 142 (71%) | |
Smoking Habit | Never Smoker | 28 (14%) |
Former Smoker | 97 (48.5%) | |
Heavy Smoker | 75 (37.5%) | |
Stage at Diagnosis (AJCC 8th Edition) | IA/IB | 4 (2%) |
IIA | 6 (3%) | |
IIB | 2 (1%) | |
IIIA | 17 (8.5%) | |
IIIB | 7 (3.5%) | |
IIIC | 3 (1.5%) | |
IV | 161 (80.5%) | |
PS ECOG | 0 | 107 (53.5%) |
1 | 91 (45.5%) | |
2 | 2 (1%) | |
PD-L1 Expression | 0 | 54 (27%) |
1–49% | 88 (44%) | |
>50% | 58 (29%) | |
TTF-1 Expression | Negative | 51 (25.5%) |
Positive | 149 (74.5%) | |
Histology | Adenocarcinoma | 181 (90.5%) |
NOS | 19 (9.5%) | |
First Line Treatment | Immunotherapy | 57 (28.5%) |
Immuno-chemotherapy | 106 (53%) | |
Chemotherapy | 37 (18.5%) | |
Pembrolizumab | 167 (83.5%) | |
PD(L)-1 antibody | Atezolizumab | 17 (8.5%) |
Nivolumab | 16 (8%) |
Patients’ Characteristics by TTF-1 Status-n (%); Median (Q1–Q3) | ||||
---|---|---|---|---|
TTF-1− (n = 51) | TTF-1+ (n = 149) | p-Value | ||
Sex | Men | 15 (29.4%) | 43 (28.9%) | p > 0.9 |
Women | 36 (71.6%) | 106 (71.1%) | ||
Age, years | ≥70 | 24 (47.1%) | 61 (40.9%) | p = 0.5 |
<70 | 27 (52.9%) | 88 (59.1%) | ||
Smoking habit | Never Smoker | 6 (11.8%) | 22 (14.8%) | |
Former Smoker | 27 (52.9%) | 70 (47%) | p = 0.7 | |
Heavy Smoker | 18 (35.3%) | 57 (38.2%) | ||
Histology | Adenocarcinoma | 40 (78.4%) | 141 (94.6%) | p < 0.001 |
NOS | 11 (21.6%) | 8 (5.4%) | ||
PS ECOG | 0 | 24 (47%) | 83 (55.7%) | |
1 | 26 (51%) | 65 (43.6%) | p = 0.4 | |
2 | 1 (2%) | 1 (0.7%) | ||
Brain Metastases | Yes | 5 (9.8%) | 36 (24.2%) | p = 0.046 |
No | 46 (90.2%) | 113 (75.8%) | ||
Bone Metastases | Yes | 22 (43.1%) | 50 (33.6%) | p = 0.3 |
No | 29 (56.9%) | 99 (66.4%) | ||
Liver Metastases | Yes | 7 (13.7%) | 17 (11.4%) | p = 0.8 |
No | 44 (86.3%) | 132 (88.6%) | ||
Metastatic Burden | ≥3 | 21 (41.2%) | 61 (40.9%) | p > 0.9 |
<3 | 30 (58.8%) | 88 (59.1%) | ||
PDL-1 expression | Negative | 12 (23.5%) | 46 (31%) | |
1–49% | 23 (45.1%) | 65 (43.5%) | p = 0.5 | |
≥50% | 16 (31.4%) | 38 (25.5%) | ||
First line treatment | IO | 11 (21.5%) | 46 (31%) | |
IO-CT | 29 (57%) | 77 (51.7%) | p = 0.4 | |
CT | 11 (21.5%) | 26 (17.3%) | ||
Best Response | CR | - | 6 (4%) | p = 0.038 |
PR | 28 (54.9%) | 92 (61.7%) | ||
SD | 8 (15.7%) | 31 (20.8%) | ||
PD | 15 (29.3%) | 20 (13.5%) | ||
ORR | 54.9% | 65.7% | p = 0.18 | |
DCR | 70.6% | 86.6% | p = 0.015 |
PFS | Univariate | Multivariate | ||
Covariates | Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | p-Value |
TTF-1 (Negative vs. Positive) | 2.22 (1.59–3.13) | <0.001 | 2.17 (1.49–3.13) | <0.001 |
Sex (Female vs. Male) | 0.89 (0.64–1.26) | 0.52 | 0.89 (0.63–1.27) | 0.53 |
Histology (Adc vs. non-Adc) | 0.95 (0.55–1.61) | 0.83 | 0.85 (0.47–1.52) | 0.57 |
Brain Metastases (Yes vs. no) | 0.98 (0.67–1.43) | 0.9 | 1.07 (0.72–1.76) | 0.72 |
PS ECOG (≥1 vs. 0) | 1.44 (1.07–1.92) | 0.02 | 1.49 (1.11–2.01) | 0.008 |
Smoking History (Yes vs. no) | 0.99 (0.79–1.24) | 0.9 | 1.09 (0.85–1.39) | 0.49 |
PD-L1 (≥50% vs. <50%) | 0.67 (0.55–0.83) | <0.001 | 0.64 (0.51–0.79) | <0.001 |
Age (≥70 vs. <70 years) | 1.15 (0.85–1.57) | 0.36 | 1.11 (0.8–1.54) | 0.52 |
OS | Univariate | Multivariate | ||
Covariates | Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | p-Value |
TTF-1 (Negative vs. Positive) | 2.33 (1.64–3.45) | <0.001 | 2.08 (1.41–3.13) | <0.001 |
Sex (Female vs. Male) | 0.88 (0.61–1.28) | 0.51 | 0.9 (0.62–1.31) | 0.59 |
Histology (Adc vs. non-Adc) | 0.79 (0.46–1.38) | 0.41 | 0.65 (0.35–1.2) | 0.17 |
Brain Metastases (Yes vs. no) | 1.05 (0.69–1.58) | 0.82 | 1.19 (0.77–1.81) | 0.43 |
PS ECOG (≥1 vs. 0) | 1.74 (1.27–2.4) | <0.001 | 1.81 (1.31–2.5) | <0.001 |
Smoking History (Yes vs. no) | 0.94 (0.741–1.2) | 0.63 | 1.04 (0.81–1.33) | 0.77 |
PD-L1 (≥50% vs. <50%) | 0.68 (0.54–0.85) | <0.001 | 0.61 (0.49–0.77) | <0.001 |
Age (≥70 vs. <70 years) | 1.34 (0.96–1.87) | 0.08 | 1.27 (0.89–1.81) | 0.19 |
PFS | OS | ||||
---|---|---|---|---|---|
PD-L1 | Months (95% CI) | HR (95% CI) p-Value | Months (95% CI) | HR (95% CI) p-Value | |
TTF-1 - | High (≥50%) | 9.67 (6.73-NA) | 0.68 (0.32–1.45) p = 0.313 | 13.5 (6.73-NA) | 0.67 (0.3–1.48) p = 0.322 |
Low (<50%) | 6.33 (4.2–10.2) | 11 (6.2–19.3) | |||
TTF-1 + | High (≥50%) | 25.3 (16.2-NA) | 0.56 (0.35–0.87) p = 0.011 | NA (26.2-NA) | 0.46 (0.27–0.76) p = 0.003 |
Low (<50%) | 13 (9.6–21.2) | 22.4 (17.8–28) |
Author (year) | Intervention Type | Cases | Median Follow-Up | Median OS | Median PFS | HR OS | HR PFS |
---|---|---|---|---|---|---|---|
Di Federico et al., 2023 [18] | IO | 755 | NR | 13.5 vs. 6.3 months | 3.5 vs. 2.1 months | 0.68 (0.54–0.85) | 0.66 (0.53–0.82) |
IO-CT | 294 | - | 20 vs. 7.6 months | 7 vs. 3.8 months | 0.5 (0.35–0.71) | 0.55 (0.41–0.75) | |
Galland et al., 2021 [14] | IO | 231 | NR | NR | NR | 0.33 (0.27–0.41) * | 0.44 (0.35–0.61) * |
Ibusuki et al., 2022 [19] | IO-CT | 122 | 14.6 months | 10.8 vs. 5.7 months | 12.2 vs. 6 months | 0.64 (0.33–1.26) | 0.63 (0.37–1.06) |
Iso et al., 2023 [20] | IO | 70 | 17.9 months | 19.5 vs. 15.6 months | 4.5 vs. 3.8 months | 0.6 (0.29–1.22) | 0.57 (0.3–1.1) |
IO-CT | 59 | - | 18.9 vs. 32.3 months | 9.6 vs. 9.9 months | 0.89 (0.38–2.08) | 0.56 (0.26–1.22) | |
Ito et al., 2025 [21] | IO (non-ILD) | 28 | NR | 37.1 vs. 33.7 months | 2.6 vs. 1.8 months | 1.43 (0.47–4.35) | 0.79 (0.29–2.13) |
IO (ILD) | 34 | - | 42.5 vs. 14.5 months | 12 vs. 2 months | 0.33 (0.15–0.72) | 0.33 (0.15–0.72) | |
Nakahama et al., 2022 [23] | IO | 108 | NR | 18.2 vs. 8 months | 5.4 vs. 1.6 months | 0.59 (0.36–1.01) | 0.41 (0.26–0.68) |
Katayama et al., 2023 [22] | IO-CT | 58 | 10.9 months | - | 10.9 vs. 5 months | - | 0.45 (0.24–0.84) |
Nishioka et al., 2025 [24] | IO-CT | 190 | 21.3 | 25 vs. 21.2 months | 7.6 vs. 6 months | 0.71 (0.47–1.06) | 0.9 (0.63–1.29) |
Moeller et al., 2022 [13] | IO + IO-CT | 154 | NR | 8.4 vs. 5.8 months | 6.5 vs. 4.6 months | 0.8 (0.53–1.19) | 0.76 (0.51–1.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brunetti, L.; Santo, V.; Galletti, A.; Gelibter, A.; Lugini, A.; Spinelli, G.P.; Santini, D.; Cortellini, A.; Vendittelli, A.; Di Fazio, G.R.; et al. TTF-1 Negativity Predicts Poor Outcomes in Advanced Non-Squamous NSCLC Also in the Immunotherapy Era: A Multicenter Cohort Study and Meta-Analysis. Cancers 2025, 17, 2188. https://doi.org/10.3390/cancers17132188
Brunetti L, Santo V, Galletti A, Gelibter A, Lugini A, Spinelli GP, Santini D, Cortellini A, Vendittelli A, Di Fazio GR, et al. TTF-1 Negativity Predicts Poor Outcomes in Advanced Non-Squamous NSCLC Also in the Immunotherapy Era: A Multicenter Cohort Study and Meta-Analysis. Cancers. 2025; 17(13):2188. https://doi.org/10.3390/cancers17132188
Chicago/Turabian StyleBrunetti, Leonardo, Valentina Santo, Alessandro Galletti, Alain Gelibter, Antonio Lugini, Gian Paolo Spinelli, Daniele Santini, Alessio Cortellini, Alessia Vendittelli, Giuseppina Rita Di Fazio, and et al. 2025. "TTF-1 Negativity Predicts Poor Outcomes in Advanced Non-Squamous NSCLC Also in the Immunotherapy Era: A Multicenter Cohort Study and Meta-Analysis" Cancers 17, no. 13: 2188. https://doi.org/10.3390/cancers17132188
APA StyleBrunetti, L., Santo, V., Galletti, A., Gelibter, A., Lugini, A., Spinelli, G. P., Santini, D., Cortellini, A., Vendittelli, A., Di Fazio, G. R., Citarella, F., La Cava, G., Mingo, E. C., Fiorenti, M., Cristofani, L., Mariotti, S., Ricciardi, S., Pantano, F., Vincenzi, B., ... Russano, M. (2025). TTF-1 Negativity Predicts Poor Outcomes in Advanced Non-Squamous NSCLC Also in the Immunotherapy Era: A Multicenter Cohort Study and Meta-Analysis. Cancers, 17(13), 2188. https://doi.org/10.3390/cancers17132188