The Evolving Role of Chemotherapy in the Management of Pleural Malignancies: Current Evidence and Future Directions
Simple Summary
Abstract
1. Introduction
2. Methodology of Study Search and Selection
3. Pathophysiology and Classification of Malignant Pleural Disease
3.1. Pathogenesis of Malignant Pleural Effusion
3.2. Classification of Tumors Causing Malignant Pleural Disease
3.2.1. Histological Classification of Pleural Tumors
3.2.2. Staging of Pleural Tumors
4. Management of Malignant Pleural Disease
4.1. Diagnosis
4.2. Multimodal Treatment Approaches
5. Systemic Chemotherapy of Malignant Pleural Disease
5.1. Systemic Chemotherapy of Malignant Pleural Mesothelioma
5.2. Systemic Chemotherapy of Metastatic Pleural Disease
5.2.1. Systemic Chemotherapy for Pleural Involvement in Lung Cancer
5.2.2. Systemic Chemotherapy for Pleural Involvement in Non-Lung Primary Cancers
6. Novel Systemic Therapy Regimens for Malignant Pleural Disease
6.1. Targeted Therapy and Immunotherapy of Malignant Pleural Mesothelioma
6.1.1. Targeted Therapy Agents for Malignant Pleural Mesothelioma
6.1.2. Immunotherapy Agents for Malignant Pleural Mesothelioma
6.2. Targeted Therapy and Immunotherapy of Metastatic Pleural Disease
7. Intrapleural Chemotherapy
7.1. Hyperthermic Intrathoracic Chemotherapy
7.2. Pressurized Intrathoracic Aerosol Chemotherapy
8. Future Directions
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AJCC | American Joint Committee on Cancer |
ASCO | American Society of Clinical Oncology |
AUC | Area Under the Curve |
CHOP | Cyclophosphamide, Doxorubicin, Vincristine, and Prednisolone |
CT | Computed Tomography |
CTLA-4 | Cytotoxic T-Lymphocyte Associated Protein-4 |
DLBCL | Diffuse Large B-Cell Lymphoma |
EGFR | Epidermal Growth Factor Receptor |
FAK | Focal Adhesion Kinase |
FGF | Fibroblast Growth Factor |
FOLFOX | 5-Fluorouracil, Leucovorin, and Oxaliplatin |
HITOC | Hyperthermic Intrathoracic Chemotherapy |
ICIs | Immune Checkpoint Inhibitors |
IPC | Indwelling Pleural Catheter |
IV | Intravenously |
LDCT | Low-Dose Computed Tomography |
MPD | Malignant Pleural Disease |
MPE | Malignant Pleural Effusion |
MPM | Malignant Pleural Mesothelioma |
MTD | Maximum Tolerated Dose |
NSCLC | Non-Small Cell Lung Cancer |
OS | Overall Survival |
PDGFR-α | Platelet-Derived Growth Factor Receptor-Alpha |
PD-L1 | Programmed Death-Ligand 1 |
PEL | Primary Effusion Lymphoma |
PET | Positron Emission Tomography |
PFS | Progression-Free Survival |
PITAC | Pressurized Intrathoracic Aerosol Chemotherapy |
PLD | Pegylated Liposomal Doxorubicin |
PMBCL | Primary Mediastinal Large B-Cell Lymphoma |
RCT | Randomized Controlled Trial |
SCLC | Small Cell Lung Cancer |
TILs | Tumor-Infiltrating Lymphocytes |
TNF-α | Tumor Necrosis Factor-Alpha |
TNM | Tumor, Node, Metastasis |
US | United States |
VATS | Video-Assisted Thoracoscopic Surgery |
VEGF | Vascular Endothelial Growth Factor |
WHO | World Health Organization |
XELOX | Capecitabine and Oxaliplatin |
References
- Corrin, B.; Nicholson, A.G. Pleura and Chest Wall. In Pathology of the Lungs, 3rd ed.; Corrin, B., Nicholson, A.G., Eds.; Churchill Livingstone: Edinburgh, UK, 2011; pp. 707–752. [Google Scholar] [CrossRef]
- Hajj, G.N.M.; Cavarson, C.H.; Pinto, C.A.L.; Venturi, G.; Navarro, J.R.; Lima, V.C.C. Malignant pleural mesothelioma: An update. J. Bras. Pneumol. 2021, 47, e20210129. [Google Scholar] [CrossRef] [PubMed]
- Gayen, S. Malignant pleural effusion: Presentation, diagnosis, and management. Am. J. Med. 2022, 135, 1188–1192. [Google Scholar] [CrossRef] [PubMed]
- Piggott, L.M.; Hayes, C.; Greene, J.; Fitzgerald, D.B. Malignant pleural disease. Breathe 2023, 19, 230145. [Google Scholar] [CrossRef] [PubMed]
- Kapp, C.M.; Zaheer, S.; Desai, N.R. Malignant Pleural Effusions. Clin. Chest Med. 2021, 42, 687–696. [Google Scholar] [CrossRef]
- Psallidas, I.; Kalomenidis, I.; Porcel, J.M. Malignant Pleural Effusion: From Bench to Bedside. Eur. Respir. Rev. 2016, 25, 189–198. [Google Scholar] [CrossRef]
- Czarnecka-Kujawa, K.; Fitzpatrick, P.; Penz, E.; Tremblay, A. Incremental Health Care Utilization and Cost of Malignant Pleural Effusion. Chest 2024, 166, A3650–A3651. [Google Scholar] [CrossRef]
- Zamboni, M.M.; da Silva, C.T., Jr.; Baretta, R.; Cunha, E.T.; Cardoso, G.P. Important prognostic factors for survival in patients with malignant pleural effusion. BMC Pulm. Med. 2015, 15, 29. [Google Scholar] [CrossRef]
- Psallidas, I. Malignant Pleural Effusion: Investigating Novel Diagnostic and Therapeutic Approaches. Ph.D. Thesis, University of Oxford, Oxford, UK, 2015. Available online: https://ora.ox.ac.uk/objects/uuid:7afb0213-dfc9-48d3-9e76-61b082965a58 (accessed on 20 May 2025).
- Antunes, G.; Neville, E.; Duffy, J.; Ali, N. Management of malignant pleural effusions. Thorax 2003, 58 (Suppl. 2), ii29–ii38. [Google Scholar] [CrossRef]
- Carbone, M.; Adusumilli, P.S.; Alexander, H.R.; Baas, P.; Bardelli, F.; Bononi, A.; Bueno, R.; Felley-Bosco, E.; Galateau-Salle, F.; Jablons, D.; et al. Mesothelioma: Scientific clues for prevention, diagnosis, and therapy. CA Cancer J. Clin. 2019, 69, 402–429. [Google Scholar] [CrossRef]
- Clive, A.O.; Kahan, B.C.; Hooper, C.E.; Bhatnagar, R.; Morley, A.; Bintcliffe, O.J.; Hallifax, R.J.; White, A.; Parker, R.; Maskell, N.A. Palliative interventions for malignant pleural effusions: A network meta-analysis. Cochrane Database Syst. Rev. 2016, 5, CD010529. [Google Scholar] [CrossRef]
- Porcel, J.M.; Light, R.W. Pleural Effusions. Dis. Mon. 2013, 59, 29–57. [Google Scholar] [CrossRef] [PubMed]
- Baumann, M.; Strange, C.; Heffner, J.; Light, R.; Kirby, T.; Klein, J.; Ernst, A.; Lee, Y.C.G.; Tse, K.S.; Flores, R.M.; et al. Management of Malignant Pleural Effusions. Am. J. Respir. Crit. Care Med. 2000, 162, 1987–2001. [Google Scholar]
- Hsieh, M.C.; Chen, K.Y.; Chang, Y.L.; Wu, C.T.; Huang, Y.T.; Hsiao, C.C.; Chen, H.C. Hyperthermic intrathoracic chemotherapy (HITOC) for malignant pleural diseases: A systematic review. J. Thorac. Dis. 2021, 13, 6884–6894. [Google Scholar]
- Gonnelli, F.; Hassan, W.; Bonifazi, M.; Pinelli, V.; Bedawi, E.O.; Porcel, J.M.; Rahman, N.M.; Mei, F. Malignant pleural effusion: Current understanding and therapeutic approach. Respir. Res. 2024, 25, 47. [Google Scholar] [CrossRef]
- Sharma, S.; Boster, J. Malignant Pleural Effusion. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Ferreiro, L.; Toubes, M.E.; Suárez-Antelo, J.; Rodríguez-Núñez, N.; Valdés, L. Clinical overview of the physiology and pathophysiology of pleural fluid movement: A narrative review. ERJ Open Res. 2024, 10, 00050–02024. [Google Scholar] [CrossRef]
- Ishikawa, H.; Satoh, H.; Hasegawa, S.; Yazawa, T.; Naito, T.; Yamashita, Y.T.; Ohtsuka, M.; Ogata, T.; Kamma, H. Urokinase-type plasminogen activator in carcinomatous pleural fluid. Eur. Respir. J. 1997, 10, 1566–1571. [Google Scholar] [CrossRef]
- Choi, H.; Ko, Y.; Lee, C.Y. Pro-cathepsin D as a diagnostic marker in differentiating malignant from benign pleural effusion: A retrospective cohort study. BMC Cancer 2020, 20, 825. [Google Scholar] [CrossRef]
- Granberg, D.; Juhlin, C.C.; Falhammar, H.; Hedayati, E. Lung carcinoids: A comprehensive review for clinicians. Cancers 2023, 15, 5440. [Google Scholar] [CrossRef]
- Subotic, D. Malignant pleural effusion and mesothelioma. AME Med. J. 2020, 5, 11. [Google Scholar] [CrossRef]
- Xin, Y.; Li, K.; Huang, M.; Liang, C.; Siemann, D.; Wu, L.; Tan, Y.; Tang, X. Biophysics in tumor growth and progression: From single mechano-sensitive molecules to mechanomedicine. Oncogene 2023, 42, 3457–3490. [Google Scholar] [CrossRef]
- Rusch, V.W.; Rimner, A.; Krug, L.M. The challenge of malignant pleural mesothelioma: New directions. J. Thorac. Oncol. 2014, 9, 271–272. [Google Scholar] [CrossRef] [PubMed]
- Sauter, J.L.; Dacic, S.; Galateau-Salle, F.; Attanoos, R.L.; Butnor, K.J.; Churg, A.; Husain, A.N.; Kadota, K.; Khoor, A.; Nicholson, A.G.; et al. The 2021 WHO Classification of Tumors of the Pleura: Advances since the 2015 classification. J. Thorac. Oncol. 2022, 17, 608–622. [Google Scholar] [CrossRef]
- Berzenji, L.; Van Schil, P.E.; Carp, L. The eighth TNM classification for malignant pleural mesothelioma. Transl. Lung Cancer Res. 2018, 7, 543–549. [Google Scholar] [CrossRef]
- Cheng, J.; Sharma, R.; Campos, A. Cotswolds-Modified Ann Arbor Classification. Radiopaedia.org. Available online: https://radiopaedia.org/articles/cotswolds-modified-ann-arbor-classification-2?lang=us (accessed on 22 April 2025).
- Bashour, S.I.; Mankidy, B.J.; Lazarus, D.R. Update on the diagnosis and management of malignant pleural effusions. Respir. Med. 2022, 196, 106802. [Google Scholar] [CrossRef]
- Medscape. Pleural Effusion Imaging. Available online: https://emedicine.medscape.com/article/355524-overview?form=fpf (accessed on 25 April 2025).
- Shehata, S.M.; Almalki, Y.E.; Basha, M.A.A.; Hendy, R.M.; Mahmoud, E.M.; Abd Elhamed, M.E.; Alduraibi, S.K.; Aboualkheir, M.; Almushayti, Z.A.; Alduraibi, A.K.; et al. Comparative evaluation of chest ultrasonography and computed tomography as predictors of malignant pleural effusion: A prospective study. Diagnostics 2024, 14, 1041. [Google Scholar] [CrossRef]
- Roca, E.; Aujayeb, A.; Astoul, P. Diagnosis of pleural mesothelioma: Is everything solved at the present time? Curr. Oncol. 2024, 31, 4968–4983. [Google Scholar] [CrossRef]
- Orlandi, R.; Cara, A.; Cassina, E.M.; Degiovanni, S.; Libretti, L.; Pirondini, E.; Raveglia, F.; Tuoro, A.; Vaquer, S.; Rizzo, S.; et al. Malignant Pleural Effusion: Diagnosis and Treatment—Up-to-Date Perspective. Curr. Oncol. 2024, 31, 6867–6878. [Google Scholar] [CrossRef]
- Bibby, A.C.; Dorn, P.; Psallidas, I.; Porcel, J.M.; Janssen, J.; Froudarakis, M.; Subotic, D.; Astoul, P.; Licht, P.; Schmid, R.; et al. ERS/EACTS Statement on the Management of Malignant Pleural Effusions. Eur. J. Cardiothorac. Surg. 2019, 55, 116–132. [Google Scholar] [CrossRef]
- Reddy, C.B.; DeCamp, M.M.; Diekemper, R.L.; Gould, M.K.; Henry, T.; Iyer, N.P.; Lee, Y.C.G.; Lewis, S.Z.; Maskell, N.A.; Rahman, N.M.; et al. Summary for Clinicians: Clinical Practice Guideline for Management of Malignant Pleural Effusions. Ann. Am. Thorac. Soc. 2019, 16, 17–21. [Google Scholar] [CrossRef]
- Rodrigues, A.L.S.O.; Souza, M.E.C.; Moraes, F.C.A.; Lima, D.P.; Carvalho, R.L.C. Talc Slurry versus Thoracoscopic Talc Insufflation for Malignant Pleural Effusion: A Systematic Review and Meta-Analysis. J. Bras. Pneumol. 2024, 50, e20240115. [Google Scholar] [CrossRef]
- Dipper, A.; Jones, H.E.; Bhatnagar, R.; Preston, N.J.; Maskell, N.; Clive, A.O. Interventions for the Management of Malignant Pleural Effusions: A Network Meta-Analysis. Cochrane Database Syst. Rev. 2020, 4, CD010529. [Google Scholar] [CrossRef] [PubMed]
- Treasure, T.; Lang-Lazdunski, L.; Waller, D.; Bliss, J.M.; Tan, C.; Entwisle, J.; Snee, M.; O’Brien, M.; Thomas, G.; Senan, S.; et al. Extra-Pleural Pneumonectomy versus No Extra-Pleural Pneumonectomy for Patients with Malignant Pleural Mesothelioma: Clinical Outcomes of the Mesothelioma and Radical Surgery (MARS) Randomised Feasibility Study. Lancet Oncol. 2011, 12, 763–772. [Google Scholar] [CrossRef] [PubMed]
- Muduly, D.; Deo, S.; Subi, T.S.; Kallianpur, A.; Shukla, N. An Update in the Management of Malignant Pleural Effusion. Indian J. Palliat. Care 2011, 17, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Kindler, H.L.; Ismaila, N.; Armato, S.G., 3rd; Bueno, R.; Hesdorffer, M.; Jahan, T.; Jones, C.M.; Miettinen, M.; Pass, H.; Rimner, A.; et al. Treatment of Malignant Pleural Mesothelioma: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2018, 36, 1343–1373. [Google Scholar] [CrossRef]
- Mancuso, M.R.; Neal, J.W. Novel Systemic Therapy against Malignant Pleural Mesothelioma. Transl. Lung Cancer Res. 2017, 6, 295–314. [Google Scholar] [CrossRef]
- Vogelzang, N.J.; Rusthoven, J.J.; Symanowski, J.; Denham, C.; Kaukel, E.; Ruffie, P.; Gatzemeier, U.; Boyer, M.; Emri, S.; Manegold, C.; et al. Phase III Study of Pemetrexed in Combination with Cisplatin Versus Cisplatin Alone in Patients with Malignant Pleural Mesothelioma. J. Clin. Oncol. 2003, 41, 2125–2133. [Google Scholar] [CrossRef]
- van Meerbeeck, J.P.; Gaafar, R.; Manegold, C.; Van Klaveren, R.J.; Van Marck, E.A.; Vincent, M.; Legrand, C.; Bottomley, A.; Debruyne, C.; Giaccone, G.; et al. Randomized Phase III Study of Cisplatin with or without Raltitrexed in Patients with Malignant Pleural Mesothelioma: An Intergroup Study. J. Clin. Oncol. 2005, 23, 6881–6889. [Google Scholar] [CrossRef]
- Castagneto, B.; Botta, M.; Aitini, E.; Spigno, F.; Degiovanni, D.; Alabiso, O.; Serra, M.; Muzio, A.; Carbone, R.; Buosi, R.; et al. Phase II Study of Pemetrexed in Combination with Carboplatin in Patients with Malignant Pleural Mesothelioma (MPM). Ann. Oncol. 2008, 19, 370–373. [Google Scholar] [CrossRef]
- Ceresoli, G.L.; Castagneto, B.; Zucali, P.A.; Favaretto, A.; Mencoboni, M.; Grossi, F.; Cortinovis, D.; Del Conte, G.; Ceribelli, A.; Bearz, A.; et al. Pemetrexed plus Carboplatin in Elderly Patients with Malignant Pleural Mesothelioma: Combined Analysis of Two Phase II Trials. Br. J. Cancer 2008, 99, 51–56. [Google Scholar] [CrossRef]
- Katirtzoglou, N.; Gkiozos, I.; Makrilia, N.; Tsaroucha, E.; Rapti, A.; Stratakos, G.; Fountzilas, G.; Syrigos, K.N. Carboplatin plus Pemetrexed as First-Line Treatment of Patients with Malignant Pleural Mesothelioma: A Phase II Study. Clin. Lung Cancer 2010, 11, 30–35. [Google Scholar] [CrossRef]
- Santoro, A.; O’Brien, M.E.; Stahel, R.A.; Nackaerts, K.; Baas, P.; Karthaus, M.; Eberhardt, W.; Paz-Ares, L.; Sundstrom, S.; Liu, Y.; et al. Pemetrexed plus Cisplatin or Pemetrexed plus Carboplatin for Chemonaïve Patients with Malignant Pleural Mesothelioma: Results of the International Expanded Access Program. J. Thorac. Oncol. 2008, 3, 756–763. [Google Scholar] [CrossRef] [PubMed]
- Raskin, J.; Surmont, V.; Maat, A.P.W.M.; Yahia, M.; Burgers, S.A.; Pretzenbacher, Y.; De Ryck, F.; Cornelissen, R.; Klomp, H.M.; Oliveira, A.; et al. A Randomised Phase II Study of Extended Pleurectomy/Decortication Preceded or Followed by Chemotherapy in Patients with Early-Stage Pleural Mesothelioma: EORTC 1205. Eur. Respir. J. 2024, 63, 2302114. [Google Scholar] [CrossRef] [PubMed]
- Kotecha, R.; Tonse, R.; Rubens, M.; Appel, H.; Albrecht, F.; Kaywin, P.; Alley, E.W.; Tom, M.C.; Mehta, M.P. Meta-Analysis of Survival and Development of a Prognostic Nomogram for Malignant Pleural Mesothelioma Treated with Systemic Chemotherapy. Cancers 2021, 13, 2186. [Google Scholar] [CrossRef] [PubMed]
- Byrne, M.J.; Davidson, J.A.; Musk, A.W.; Dewar, J.; van Hazel, G.; Buck, M.; de Klerk, N.H.; Robinson, B.W. Cisplatin and Gemcitabine Treatment for Malignant Mesothelioma: A Phase II Study. J. Clin. Oncol. 1999, 17, 25–30. [Google Scholar] [CrossRef]
- Lee, C.W.; Murray, N.; Anderson, H.; Rao, S.C.; Bishop, W. Outcomes with First-Line Platinum-Based Combination Chemotherapy for Malignant Pleural Mesothelioma: A Review of Practice in British Columbia. Lung Cancer 2009, 64, 308–313. [Google Scholar] [CrossRef]
- Jänne, P.A.; Simon, G.R.; Langer, C.J.; Taub, R.N.; Dowlati, A.; Fidias, P.; Monberg, M.; Obasaju, C.; Kindler, H. Phase II Trial of Pemetrexed and Gemcitabine in Chemotherapy-Naive Malignant Pleural Mesothelioma. J. Clin. Oncol. 2008, 26, 1465–1471. [Google Scholar] [CrossRef]
- Steele, J.P.; Shamash, J.; Evans, M.T.; Gower, N.H.; Tischkowitz, M.D.; Rudd, R.M. Phase II Study of Vinorelbine in Patients with Malignant Pleural Mesothelioma. J. Clin. Oncol. 2000, 18, 3912–3917. [Google Scholar] [CrossRef]
- Fennell, D.A.; Steele, J.P.C.; Shamash, J.; Sheaff, M.T.; Evans, M.T.; Goonewardene, T.I.; Nystrom, M.L.; Gower, N.H.; Rudd, R.M. Phase II Trial of Vinorelbine and Oxaliplatin as First-Line Therapy in Malignant Pleural Mesothelioma. Lung Cancer 2005, 47, 277–281. [Google Scholar] [CrossRef]
- Fennell, D.A.; Porter, C.; Lester, J.; Danson, S.; Taylor, P.; Sheaff, M.; Rudd, R.M.; Gaba, A.; Busacca, S.; Nixon, L.; et al. Active Symptom Control with or without Oral Vinorelbine in Patients with Relapsed Malignant Pleural Mesothelioma (VIM): A Randomised, Phase 2 Trial. eClinicalMedicine 2022, 48, 101432. [Google Scholar] [CrossRef]
- Chahinian, A.P.; Antman, K.; Goutsou, M.; Corson, J.M.; Suzuki, Y.; Modeas, C.; Herndon, J.E., 2nd; Aisner, J.; Ellison, R.R.; Leone, L.; et al. Randomized Phase II Trial of Cisplatin with Mitomycin or Doxorubicin for Malignant Mesothelioma by the Cancer and Leukemia Group B. J. Clin. Oncol. 1993, 11, 1559–1565. [Google Scholar] [CrossRef]
- Sørensen, P.G.; Bach, F.; Bork, E.; Hansen, H.H. Randomized Trial of Doxorubicin versus Cyclophosphamide in Diffuse Malignant Pleural Mesothelioma. Cancer Treat. Rep. 1985, 69, 1431–1432. [Google Scholar] [PubMed]
- Zauderer, M.G.; Kass, S.L.; Woo, K.; Sima, C.S.; Ginsberg, M.S.; Krug, L.M. Vinorelbine and Gemcitabine as Second- or Third-Line Therapy for Malignant Pleural Mesothelioma. Lung Cancer 2014, 84, 271–274. [Google Scholar] [CrossRef] [PubMed]
- Koda, Y.; Kuribayashi, K.; Doi, H.; Kitajima, K.; Nakajima, Y.; Ishigaki, H.; Nakamura, A.; Minami, T.; Takahashi, R.; Yokoi, T.; et al. Irinotecan and Gemcitabine as Second-Line Treatment in Patients with Malignant Pleural Mesothelioma Following Platinum plus Pemetrexed Chemotherapy: A Retrospective Study. Oncology 2021, 99, 161–168. [Google Scholar] [CrossRef]
- Metaxas, Y.; Früh, M.; Eboulet, E.I.; Pless, M.; Zucali, P.A.; Ceresoli, G.L.; Mark, M.; Schneider, M.; Maconi, A.; Perrino, M.; et al. Lurbinectedin as second- or third-line palliative therapy in malignant pleural mesothelioma: An international, multi-centre, single-arm, phase II trial (SAKK 17/16). Ann. Oncol. 2020, 31, 495–500. [Google Scholar] [CrossRef]
- Tiefenbacher, A.; Pirker, R. Systemic treatment of advanced non-small cell lung cancer: Controversies and perspectives. Memo 2018, 11, 112–115. [Google Scholar] [CrossRef]
- Manegold, C.; Gatzemeier, U.; von Pawel, J.; Pirker, R.; Malayeri, R.; Blatter, J.; Krejcy, K. Front-line treatment of advanced non-small-cell lung cancer with MTA (LY231514, pemetrexed disodium, ALIMTA) and cisplatin: A multicenter phase II trial. Ann. Oncol. 2000, 11, 435–440. [Google Scholar] [CrossRef]
- Scagliotti, G.V.; Parikh, P.; von Pawel, J.; Biesma, B.; Vansteenkiste, J.; Manegold, C.; Serwatowski, P.; Gatzemeier, U.; Digumarti, R.; Zukin, M.; et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J. Clin. Oncol. 2008, 26, 3543–3551. [Google Scholar] [CrossRef]
- Zukin, M.; Barrios, C.H.; Pereira, J.R.; Ribeiro, R.A.; Beato, C.A.; do Nascimento, Y.N.; Murad, A.; Franke, F.A.; Precivale, M.; Araujo, L.H.; et al. Randomized phase III trial of single-agent pemetrexed versus carboplatin and pemetrexed in patients with advanced non-small-cell lung cancer and Eastern Cooperative Oncology Group performance status of 2. J. Clin. Oncol. 2013, 31, 2849–2853. [Google Scholar] [CrossRef]
- Sandler, A.; Gray, R.; Perry, M.C.; Brahmer, J.; Schiller, J.H.; Dowlati, A.; Lilenbaum, R.; Johnson, D.H. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med. 2006, 355, 2542–2550. [Google Scholar] [CrossRef]
- Pirker, R.; Pereira, J.R.; Szczesna, A.; von Pawel, J.; Krzakowski, M.; Ramlau, R.; Vynnychenko, I.; Park, K.; Yu, C.T.; Ganul, V.; et al. Cetuximab plus chemotherapy in patients with advanced non-small-cell lung cancer (FLEX): An open-label randomised phase III trial. Lancet 2009, 373, 1525–1531. [Google Scholar] [CrossRef]
- NSCLC Meta-Analyses Collaborative Group. Chemotherapy in addition to supportive care improves survival in advanced non-small-cell lung cancer: A systematic review and meta-analysis of individual patient data from 16 randomized controlled trials. J. Clin. Oncol. 2008, 26, 4617–4625. [Google Scholar] [CrossRef] [PubMed]
- Daaboul, N.; Nicholas, G.; Laurie, S.A. Algorithm for the treatment of advanced or metastatic squamous non-small-cell lung cancer: An evidence-based overview. Curr. Oncol. 2018, 25, S77–S85. [Google Scholar] [CrossRef] [PubMed]
- Columbia University Irving Medical Center. Small Cell Lung Cancer Treatment (PDQ®): Treatment—Health Professional Information [NCI]. Available online: https://www.columbiadoctors.org/health-library/nci-pdq-cancer/small-cell-lung-cancer-treatment-pdq-treatment-health-professional-information-nci/?utm_source=chatgpt.com (accessed on 3 May 2025).
- Medscape. Small Cell Lung Cancer (SCLC) Treatment & Management. Available online: https://emedicine.medscape.com/article/280104-treatment?utm_source=chatgpt.com&form=fpf (accessed on 3 May 2025).
- Stinchcombe, T.E. Current Treatments for Surgically Resectable, Limited-Stage, and Extensive-Stage Small Cell Lung Cancer. Oncologist 2017, 22, 1510–1517. [Google Scholar] [CrossRef] [PubMed]
- Skarlos, D.V.; Samantas, E.; Kosmidis, P.; Fountzilas, G.; Angelidou, M.; Palamidas, P.; Mylonakis, N.; Provata, A.; Papadakis, E.; Klouvas, G.; et al. Randomized comparison of etoposide-cisplatin vs. etoposide-carboplatin and irradiation in small-cell lung cancer. A Hellenic Co-operative Oncology Group study. Ann. Oncol. 1994, 5, 601–607. [Google Scholar] [CrossRef]
- Rossi, A.; Di Maio, M.; Chiodini, P.; Rudd, R.M.; Okamoto, H.; Skarlos, D.V.; Früh, M.; Qian, W.; Tamura, T.; Samantas, E.; et al. Carboplatin- or cisplatin-based chemotherapy in first-line treatment of small-cell lung cancer: The COCIS meta-analysis of individual patient data. J. Clin. Oncol. 2012, 30, 1692–1698. [Google Scholar] [CrossRef]
- Jiang, S.; Huang, L.; Zhen, H.; Jin, P.; Wang, J.; Hu, Z. Carboplatin versus cisplatin in combination with etoposide in the first-line treatment of small cell lung cancer: A pooled analysis. BMC Cancer 2021, 21, 1308. [Google Scholar] [CrossRef]
- Noda, K.; Nishiwaki, Y.; Kawahara, M.; Negoro, S.; Sugiura, T.; Yokoyama, A.; Fukuoka, M.; Mori, K.; Watanabe, K.; Tamura, T.; et al. Irinotecan plus cisplatin compared with etoposide plus cisplatin for extensive small-cell lung cancer. N. Engl. J. Med. 2002, 346, 85–91. [Google Scholar] [CrossRef]
- Hanna, N.; Bunn, P.A., Jr.; Langer, C.; Einhorn, L.; Guthrie, T., Jr.; Beck, T.; Ansari, R.; Ellis, P.; Byrne, M.; Morrison, M.; et al. Randomized phase III trial comparing irinotecan/cisplatin with etoposide/cisplatin in patients with previously untreated extensive-stage disease small-cell lung cancer. J. Clin. Oncol. 2006, 24, 2038–2043. [Google Scholar] [CrossRef]
- Lara, P.N., Jr.; Natale, R.; Crowley, J.; Lenz, H.J.; Redman, M.W.; Carleton, J.E.; Jett, J.; Langer, C.J.; Kuebler, J.P.; Dakhil, S.R.; et al. Phase III trial of irinotecan/cisplatin compared with etoposide/cisplatin in extensive-stage small-cell lung cancer: Clinical and pharmacogenomic results from SWOG S0124. J. Clin. Oncol. 2009, 27, 2530–2535. [Google Scholar] [CrossRef]
- de Jong, W.K.; Groen, H.J.; Koolen, M.G.; Biesma, B.; Willems, L.N.; Kwa, H.B.; van Bochove, A.; van Tinteren, H.; Smit, E.F. Phase III study of cyclophosphamide, doxorubicin, and etoposide compared with carboplatin and paclitaxel in patients with extensive disease small-cell lung cancer. Eur. J. Cancer 2007, 43, 2345–2350. [Google Scholar] [CrossRef]
- Satouchi, M.; Kotani, Y.; Shibata, T.; Ando, M.; Nakagawa, K.; Yamamoto, N.; Ichinose, Y.; Ohe, Y.; Nishio, M.; Hida, T.; et al. Phase III study comparing amrubicin plus cisplatin with irinotecan plus cisplatin in the treatment of extensive-disease small-cell lung cancer: JCOG 0509. J. Clin. Oncol. 2014, 32, 1262–1268. [Google Scholar] [CrossRef] [PubMed]
- Katsumata, N.; Watanabe, T.; Minami, H.; Aogi, K.; Tabei, T.; Sano, M.; Masuda, N.; Andoh, J.; Ikeda, T.; Shibata, T.; et al. Phase III trial of doxorubicin plus cyclophosphamide (AC), docetaxel, and alternating AC and docetaxel as front-line chemotherapy for metastatic breast cancer: Japan Clinical Oncology Group trial (JCOG9802). Ann. Oncol. 2009, 20, 1210–1215. [Google Scholar] [CrossRef]
- Zheng, R.; Han, S.; Duan, C.; Chen, K.; You, Z.; Jia, J.; Lin, S.; Liang, L.; Liu, A.; Long, H.; et al. Role of taxane and anthracycline combination regimens in the management of advanced breast cancer: A meta-analysis of randomized trials. Medicine 2015, 94, e803. [Google Scholar] [CrossRef]
- Bria, E.; Nisticò, C.; Cuppone, F.; Giannarelli, D.; Terzoli, E. Impact of taxanes in association with anthracyclines in 1st line chemotherapy for metastatic breast cancer (MBC): Comprehensive review of 2805 patients in 7 phase III trials. J. Clin. Oncol. 2004, 22, 659. [Google Scholar] [CrossRef]
- Rubovszky, G.; Kocsis, J.; Boér, K.; Chilingirova, N.; Dank, M.; Kahán, Z.; Kaidarova, D.; Kövér, E.; Krakovská, B.V.; Máhr, K.; et al. Systemic Treatment of Breast Cancer. 1st Central-Eastern European Professional Consensus Statement on Breast Cancer. Pathol. Oncol. Res. 2022, 28, 1610383. [Google Scholar] [CrossRef]
- Gennatas, C.; Michalaki, V.; Mouratidou, D.; Tsavaris, N.; Andreadis, C.; Psychogios, J.; Poulakaki, N. Gemcitabine in combination with vinorelbine for heavily pretreated advanced breast cancer. Anticancer Res. 2006, 26, 549–552. [Google Scholar] [CrossRef]
- Franzoi, M.A.; Saúde-Conde, R.; Ferreira, S.C.; Eiger, D.; Awada, A.; de Azambuja, E. Clinical outcomes of platinum-based chemotherapy in patients with advanced breast cancer: An 11-year single institutional experience. Breast 2021, 57, 86–94. [Google Scholar] [CrossRef]
- González-Martín, A.; Harter, P.; Leary, A.; Lorusso, D.; Miller, R.E.; Pothuri, B.; Ray-Coquard, I.; Tan, D.S.P.; Bellet, E.; Oaknin, A.; et al. Newly diagnosed and relapsed epithelial ovarian cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2023, 34, 833–848. [Google Scholar] [CrossRef]
- Kushner, D.M.; Connor, J.P.; Sanchez, F.; Volk, M.; Schink, J.C.; Bailey, H.H.; Harris, L.S.; Stewart, S.L.; Fine, J.; Hartenbach, E.M. Weekly docetaxel and carboplatin for recurrent ovarian and peritoneal cancer: A phase II trial. Gynecol. Oncol. 2007, 105, 358–364. [Google Scholar] [CrossRef]
- Wagner, U.; Marth, C.; Largillier, R.; Kaern, J.; Brown, C.; Heywood, M.; Bonaventura, T.; Vergote, I.; Piccirillo, M.C.; Fossati, R.; et al. Final overall survival results of phase III GCIG CALYPSO trial of pegylated liposomal doxorubicin and carboplatin vs paclitaxel and carboplatin in platinum-sensitive ovarian cancer patients. Br. J. Cancer 2012, 107, 588–591. [Google Scholar] [CrossRef]
- Migliore, M.; Milosevic, M.; Koledin, B. Pleural carcinosis caused by extrathoracic malignancies. AME Med. J. 2021, 6, 27. [Google Scholar] [CrossRef]
- Semenova, Y.; Kerimkulov, A.; Uskenbayev, T.; Zharlyganova, D.; Shatkovskaya, O.; Sarina, T.; Manatova, A.; Yessenbayeva, G.; Adylkhanov, T. Chemotherapy Options for Locally Advanced Gastric Cancer: A Review. Cancers 2025, 17, 809. [Google Scholar] [CrossRef] [PubMed]
- Chiappetta, M.; Salvatore, L.; Congedo, M.T.; Bensi, M.; De Luca, V.; Petracca Ciavarella, L.; Camarda, F.; Evangelista, J.; Valentini, V.; Tortora, G.; et al. Management of Single Pulmonary Metastases from Colorectal Cancer: State of the Art. World J. Gastrointest. Oncol. 2022, 14, 820–832. [Google Scholar] [CrossRef] [PubMed]
- Kunitoh, H.; Tamura, T.; Shibata, T.; Nakagawa, K.; Takeda, K.; Nishiwaki, Y.; Osaki, Y.; Noda, K.; Yokoyama, A.; Saijo, N.; et al. A Phase-II Trial of Dose-Dense Chemotherapy in Patients with Disseminated Thymoma: Report of a Japan Clinical Oncology Group Trial (JCOG 9605). Br. J. Cancer 2009, 101, 1549–1554. [Google Scholar] [CrossRef]
- Song, Z.; Yu, X.; Zhang, Y. Chemotherapy and Prognosis in Advanced Thymic Carcinoma Patients. Clinics 2015, 70, 775–780. [Google Scholar] [CrossRef]
- Aoki, T.; Izutsu, K.; Suzuki, R.; Nakaseko, C.; Arima, H.; Shimada, K.; Tomita, A.; Sasaki, M.; Takizawa, J.; Mitani, K.; et al. Prognostic Significance of Pleural or Pericardial Effusion and the Implication of Optimal Treatment in Primary Mediastinal Large B-Cell Lymphoma: A Multicenter Retrospective Study in Japan. Haematologica 2014, 99, 1817–1825. [Google Scholar] [CrossRef]
- Zalcman, G.; Mazieres, J.; Margery, J.; Greillier, L.; Audigier-Valette, C.; Moro-Sibilot, D.; Molinier, O.; Corre, R.; Monnet, I.; Gounant, V.; et al. Bevacizumab for Newly Diagnosed Pleural Mesothelioma in the Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): A Randomised, Controlled, Open-Label, Phase 3 Trial. Lancet 2016, 387, 1405–1414. [Google Scholar] [CrossRef]
- Tsao, A.S.; Miao, J.; Wistuba, I.I.; Vogelzang, N.J.; Heymach, J.V.; Fossella, F.V.; Lu, C.; Velasco, M.R.; Box-Noriega, B.; Hueftle, J.G.; et al. Phase II Trial of Cediranib in Combination with Cisplatin and Pemetrexed in Chemotherapy-Naïve Patients with Unresectable Malignant Pleural Mesothelioma (SWOG S0905). J. Clin. Oncol. 2019, 37, 2537–2547. [Google Scholar] [CrossRef]
- Scagliotti, G.V.; Gaafar, R.; Nowak, A.K.; Nakano, T.; van Meerbeeck, J.; Popat, S.; Vogelzang, N.J.; Grosso, F.; Aboelhassan, R.; Jakopovic, M.; et al. Nintedanib in Combination with Pemetrexed and Cisplatin for Chemotherapy-Naive Patients with Advanced Malignant Pleural Mesothelioma (LUME-Meso): A Double-Blind, Randomised, Placebo-Controlled Phase 3 Trial. Lancet Respir. Med. 2019, 7, 569–580. [Google Scholar] [CrossRef]
- Buikhuisen, W.A.; Scharpfenecker, M.; Griffioen, A.W.; Korse, C.M.; van Tinteren, H.; Baas, P. A Randomized Phase II Study Adding Axitinib to Pemetrexed-Cisplatin in Patients with Malignant Pleural Mesothelioma: A Single-Center Trial Combining Clinical and Translational Outcomes. J. Thorac. Oncol. 2016, 11, 758–768. [Google Scholar] [CrossRef]
- Pinto, C.; Zucali, P.A.; Pagano, M.; Grosso, F.; Pasello, G.; Garassino, M.C.; Tiseo, M.; Soto Parra, H.; Grossi, F.; Cappuzzo, F.; et al. Gemcitabine with or without Ramucirumab as Second-Line Treatment for Malignant Pleural Mesothelioma (RAMES): A Randomised, Double-Blind, Placebo-Controlled, Phase 2 Trial. Lancet Oncol. 2021, 22, 1438–1447. [Google Scholar] [CrossRef] [PubMed]
- Kindler, H.L.; Ismaila, N.; Bazhenova, L.; Chu, Q.; Churpek, J.E.; Dagogo-Jack, I.; Bryan, D.S.; Drazer, M.W.; Forde, P.; Husain, A.N.; et al. Treatment of Pleural Mesothelioma: ASCO Guideline Update. J. Clin. Oncol. 2025, 43, 1006–1038. [Google Scholar] [CrossRef] [PubMed]
- Jahan, T.; Gu, L.; Kratzke, R.; Dudek, A.; Otterson, G.A.; Wang, X.; Green, M.; Vokes, E.E.; Kindler, H.L. Vatalanib in Malignant Mesothelioma: A Phase II Trial by the Cancer and Leukemia Group B (CALGB 30107). Lung Cancer 2012, 76, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Dubey, S.; Jänne, P.A.; Krug, L.; Pang, H.; Wang, X.; Heinze, R.; Watt, C.; Crawford, J.; Kratzke, R.; Vokes, E.; et al. A Phase II Study of Sorafenib in Malignant Mesothelioma: Results of Cancer and Leukemia Group B 30307. J. Thorac. Oncol. 2010, 5, 1655–1661. [Google Scholar] [CrossRef]
- Nowak, A.K.; Millward, M.J.; Creaney, J.; Francis, R.J.; Dick, I.M.; Hasani, A.; van der Schaaf, A.; Segal, A.; Musk, A.W.; Byrne, M.J. A Phase II Study of Intermittent Sunitinib Malate as Second-Line Therapy in Progressive Malignant Pleural Mesothelioma. J. Thorac. Oncol. 2012, 7, 1449–1456. [Google Scholar] [CrossRef]
- Tsao, A.S.; Harun, N.; Lee, J.J.; Heymach, J.; Pisters, K.; Hong, W.K.; Fujimoto, J.; Wistuba, I. Phase I Trial of Cisplatin, Pemetrexed, and Imatinib Mesylate in Chemonaive Patients with Unresectable Malignant Pleural Mesothelioma. Clin. Lung Cancer 2014, 15, 197–201. [Google Scholar] [CrossRef]
- Chia, P.L.; Parakh, S.; Russell, P.; Gan, H.K.; Asadi, K.; Gebski, V.; Murone, C.; Walkiewicz, M.; Liu, Z.; Thapa, B.; et al. Expression of EGFR and Conformational Forms of EGFR in Malignant Pleural Mesothelioma and Its Impact on Survival. Lung Cancer 2021, 153, 35–41. [Google Scholar] [CrossRef]
- Govindan, R.; Kratzke, R.A.; Herndon, J.E.; Niehans, G.A.; Vollmer, R.; Watson, D.; Green, M.R.; Kindler, H.L. Gefitinib in Patients with Malignant Mesothelioma: A Phase II Study by the Cancer and Leukemia Group B. Clin. Cancer Res. 2005, 11, 2300–2304. [Google Scholar] [CrossRef]
- Garland, L.L.; Rankin, C.; Gandara, D.R.; Rivkin, S.E.; Scott, K.M.; Nagle, R.B.; Klein-Szanto, A.J.P.; Testa, J.R.; Altomare, D.A.; Borden, E.C. Phase II Study of Erlotinib in Patients With Malignant Pleural Mesothelioma: A Southwest Oncology Group Study. J. Clin. Oncol. 2007, 25, 2406–2413. [Google Scholar] [CrossRef]
- Kurai, J.; Chikumi, H.; Hashimoto, K.; Takata, M.; Sako, T.; Yamaguchi, K.; Kinoshita, N.; Watanabe, M.; Touge, H.; Makino, H.; et al. Therapeutic Antitumor Efficacy of Anti-Epidermal Growth Factor Receptor Antibody, Cetuximab, against Malignant Pleural Mesothelioma. Int. J. Oncol. 2012, 41, 1610–1618. [Google Scholar] [CrossRef]
- De Paepe, A.; Vermaelen, K.Y.; Cornelissen, R.; Germonpre, P.R.; Janssens, A.; Lambrechts, M.; Bootsma, G.; Van Meerbeeck, J.P.; Surmont, V. Cetuximab plus Platinum-Based Chemotherapy in Patients with Malignant Pleural Mesothelioma: A Single Arm Phase II Trial. J. Clin. Oncol. 2017, 35, e20030. [Google Scholar] [CrossRef]
- Ou, S.-H.I.; Moon, J.; Garland, L.L.; Mack, P.C.; Testa, J.R.; Tsao, A.S.; Wozniak, A.J.; Gandara, D.R. SWOG S0722: Phase II Study of MTOR Inhibitor Everolimus (RAD001) in Advanced Malignant Pleural Mesothelioma (MPM). J. Thorac. Oncol. 2015, 10, 387–391. [Google Scholar] [CrossRef]
- Zauderer, M.G.; Alley, E.W.; Bendell, J.; Capelletto, E.; Bauer, T.M.; Callies, S.; Szpurka, A.M.; Kang, S.; Willard, M.D.; Wacheck, V.; et al. Phase 1 Cohort Expansion Study of LY3023414, a Dual PI3K/mTOR Inhibitor, in Patients with Advanced Mesothelioma. Investig. New Drugs 2021, 39, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Van Brummelen, E.M.J.; Levchenko, E.; Dómine, M.; Fennell, D.A.; Kindler, H.L.; Viteri, S.; Gadgeel, S.; López, P.G.; Kostorov, V.; Morgensztern, D.; et al. A Phase Ib Study of GSK3052230, an FGF Ligand Trap in Combination with Pemetrexed and Cisplatin in Patients with Malignant Pleural Mesothelioma. Investig. New Drugs 2020, 38, 457–467. [Google Scholar] [CrossRef]
- Fennell, D.A.; Baas, P.; Taylor, P.; Nowak, A.K.; Gilligan, D.; Nakano, T.; Pachter, J.A.; Weaver, D.T.; Scherpereel, A.; Pavlakis, N.; et al. Maintenance Defactinib Versus Placebo After First-Line Chemotherapy in Patients With Merlin-Stratified Pleural Mesothelioma: COMMAND—A Double-Blind, Randomized, Phase II Study. J. Clin. Oncol. 2019, 37, 790–798. [Google Scholar] [CrossRef]
- Borea, F.; Franczak, M.A.; Garcia, M.; Perrino, M.; Cordua, N.; Smolenski, R.T.; Peters, G.J.; Dziadziuszko, R.; Santoro, A.; Zucali, P.A.; et al. Target Therapy in Malignant Pleural Mesothelioma: Hope or Mirage? Int. J. Mol. Sci. 2023, 24, 9165. [Google Scholar] [CrossRef]
- Baas, P.; Scherpereel, A.; Nowak, A.K.; Fujimoto, N.; Peters, S.; Tsao, A.S.; Mansfield, A.S.; Popat, S.; Jahan, T.; Antonia, S.; et al. First-Line Nivolumab plus Ipilimumab in Unresectable Malignant Pleural Mesothelioma (CheckMate 743): A Multicentre, Randomised, Open-Label, Phase 3 Trial. Lancet 2021, 397, 375–386. [Google Scholar] [CrossRef]
- Adler, A.I.; Slayen, S.; Stegenga, H.; Guo, Y.; Diaz, R.; Welton, N.J.; Westwood, N.; Doull, I.; Crawley, C. NICE Guidance on Nivolumab plus Ipilimumab for Untreated, Unresectable Malignant Pleural Mesothelioma. Lancet Respir. Med. 2022, 10, e92–e93. [Google Scholar] [CrossRef]
- Chu, Q.; Perrone, F.; Greillier, L.; Tu, W.; Piccirillo, M.C.; Grosso, F.; Lo Russo, G.; Florescu, M.; Mencoboni, M.; Morabito, A.; et al. Pembrolizumab plus Chemotherapy versus Chemotherapy in Untreated Advanced Pleural Mesothelioma in Canada, Italy, and France: A Phase 3, Open-Label, Randomised Controlled Trial. Lancet 2023, 402, 2295–2306. [Google Scholar] [CrossRef]
- Messori, A.; Trippoli, S.; Piragine, E.; Veneziano, S.; Calderone, V. A Meta-Analysis of First-Line Treatments for Unresectable Pleural Mesothelioma: Indirect Comparisons from Reconstructed Individual Patient Data of Six Randomized Controlled Trials. Cancers 2025, 17, 503. [Google Scholar] [CrossRef]
- Forde, P.M.; Anagnostou, V.; Sun, Z.; Dahlberg, S.E.; Kindler, H.L.; Niknafs, N.; Purcell, T.; Santana-Davila, R.; Dudek, A.Z.; Borghaei, H.; et al. Durvalumab with platinum-pemetrexed for unresectable pleural mesothelioma: Survival, genomic and immunologic analyses from the phase 2 PrE0505 trial. Nat. Med. 2021, 27, 1910–1920. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.K.; Lesterhuis, W.J.; Kok, P.S.; Brown, C.; Hughes, B.G.; Karikios, D.J.; John, T.; Kao, S.C.; Leslie, C.; Cook, A.M.; et al. Durvalumab with first-line chemotherapy in previously untreated malignant pleural mesothelioma (DREAM): A multicentre, single-arm, phase 2 trial with a safety run-in. Lancet Oncol. 2020, 21, 1213–1223. [Google Scholar] [CrossRef]
- Lee, H.S.; Jang, H.J.; Ramineni, M.; Wang, D.Y.; Ramos, D.; Choi, J.M.; Splawn, T.; Espinoza, M.; Almarez, M.; Hosey, L.; et al. A Phase II Window of Opportunity Study of Neoadjuvant PD-L1 versus PD-L1 plus CTLA-4 Blockade for Patients with Malignant Pleural Mesothelioma. Clin. Cancer Res. 2023, 29, 548–559. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, L.; Rossi, G.; Morra, A.; Rosati, C.; Cutaia, O.; Daffinà, M.G.; Altomonte, M.; Di Giacomo, A.M.; Casula, M.; Fazio, C.; et al. Tremelimumab plus durvalumab retreatment and 4-year outcomes in patients with mesothelioma: A follow-up of the open label, non-randomised, phase 2 NIBIT-MESO-1 study. Lancet Respir. Med. 2021, 9, 969–976. [Google Scholar] [CrossRef]
- Tamiya, M.; Tamiya, A.; Yamadori, T.; Nakao, K.; Asami, K.; Yasue, T.; Otsuka, T.; Shiroyama, T.; Morishita, N.; Suzuki, H.; et al. Phase 2 study of bevacizumab with carboplatin-paclitaxel for non-small cell lung cancer with malignant pleural effusion. Med. Oncol. 2013, 30, 676. [Google Scholar] [CrossRef]
- Usui, K.; Sugawara, S.; Nishitsuji, M.; Fujita, Y.; Inoue, A.; Mouri, A.; Watanabe, H.; Sakai, H.; Kinoshita, I.; Ohhara, Y.; et al. A phase II study of bevacizumab with carboplatin-pemetrexed in non-squamous non-small cell lung carcinoma patients with malignant pleural effusions: North East Japan Study Group Trial NEJ013A. Lung Cancer 2016, 99, 131–136. [Google Scholar] [CrossRef]
- Nie, K.; Zhang, Z.; You, Y.; Zhuang, X.; Zhang, C.; Ji, Y. A randomized clinical study to compare intrapleural infusion with intravenous infusion of bevacizumab in the management of malignant pleural effusion in patients with non-small-cell lung cancer. Thorac. Cancer 2020, 11, 8–14. [Google Scholar] [CrossRef]
- Zongwen, S.; Song, K.; Cong, Z.; Tian, F.; Yan, Z. Evaluation of efficacy and safety for bevacizumab in treating malignant pleural effusions caused by lung cancer through intrapleural injection. Oncotarget 2017, 8, 113318–113330. [Google Scholar] [CrossRef]
- Takemoto, S.; Fukuda, M.; Ogata, R.; Senju, H.; Sugasaki, N.; Nakatomi, K.; Tomono, H.; Suyama, T.; Sasaki, E.; Matsuo, M.; et al. Phase II study of ramucirumab and docetaxel for previously platinum-treated patients with non-small cell lung cancer and malignant pleural effusion (PLEURAM study). Transl. Lung Cancer Res. 2024, 13, 2673–2682. [Google Scholar] [CrossRef]
- Massarelli, E.; Onn, A.; Marom, E.M.; Alden, C.M.; Liu, D.D.; Tran, H.T.; Mino, B.; Wistuba, I.I.; Faiz, S.A.; Bashoura, L.; et al. Vandetanib and indwelling pleural catheter for non-small-cell lung cancer with recurrent malignant pleural effusion. Clin. Lung Cancer 2014, 15, 379–386. [Google Scholar] [CrossRef]
- Mulder, S.F.; Boers-Sonderen, M.J.; van der Heijden, H.F.; Vissers, K.C.; Punt, C.J.; van Herpen, C.M. A phase II study of cediranib as palliative treatment in patients with symptomatic malignant ascites or pleural effusion. Target Oncol. 2014, 9, 331–338. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Ding, R.; Wen, Q.; Chen, L. Novel therapies for malignant pleural effusion: Anti angiogenic therapy and immunotherapy (Review). Int. J. Oncol. 2021, 58, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Deng, T.; Wu, J.; Zeng, H.; Qi, C.; Tan, S.; Zhang, Y.; Huang, Q.; Pu, X.; Xu, W.; et al. Immune checkpoint inhibitor plus chemotherapy as first-line treatment for non-small cell lung cancer with malignant pleural effusion: A retrospective multicenter study. BMC Cancer 2024, 24, 393. [Google Scholar] [CrossRef]
- Kawachi, H.; Tamiya, M.; Taniguchi, Y.; Yokoyama, T.; Yokoe, S.; Oya, Y.; Imaji, M.; Okabe, F.; Kanazu, M.; Sakata, Y.; et al. Efficacy of Immune Checkpoint Inhibitor With or Without Chemotherapy for Nonsquamous NSCLC With Malignant Pleural Effusion: A Retrospective Multicenter Cohort Study. JTO Clin. Res. Rep. 2022, 3, 100355. [Google Scholar] [CrossRef]
- Tsimafeyeu, I.; Goutnik, V.; Shrainer, I.; Kosyrev, V.; Bondarenko, A.; Utyashev, I. Multicenter phase 2 study of intrapleural nivolumab in patients with metastatic non-small cell lung cancer and pleural effusion. Am. J. Cancer Res. 2023, 13, 1103–1106. [Google Scholar]
- Lv, T.; Wu, G.; Song, X.; Li, X.; Zhang, J.; Song, Y. P16.05 Exploratory Study of Sintilimab Intrapleural Therapy for NSCLC-Mediated Malignant Pleural Effusion. J. Thorac. Oncol. 2021, 16, S349–S350. [Google Scholar] [CrossRef]
- Danson, S.J.; Conner, J.; Edwards, J.G.; Blyth, K.G.; Fisher, P.M.; Muthana, M.; Salawu, A.; Taylor, F.; Hodgkinson, E.; Joyce, P.; et al. Oncolytic herpesvirus therapy for mesothelioma—A phase I/IIa trial of intrapleural administration of HSV1716. Lung Cancer 2020, 150, 145–151. [Google Scholar] [CrossRef]
- Krug, L.M.; Zauderer, M.G.; Adusumili, P.S.; McGee, E.; Sepkowitz, K.; Klang, M.; Yu, Y.A.; Scigalla, P.; Rusch, V.W. Phase I study of intra-pleural administration of GL-ONC1, an oncolytic vaccinia virus, in patients with malignant pleural effusion. J. Clin. Oncol. 2015, 33, 7559. [Google Scholar] [CrossRef]
- Chang, G.C.; Lan, H.C.; Juang, S.H.; Wu, Y.C.; Lee, H.C.; Hung, Y.M.; Yang, H.Y.; Whang-Peng, J.; Liu, K.J. A pilot clinical trial of vaccination with dendritic cells pulsed with autologous tumor cells derived from malignant pleural effusion in patients with late-stage lung carcinoma. Cancer 2005, 103, 763–771. [Google Scholar] [CrossRef]
- Chu, H.; Du, F.; Gong, Z.; Lian, P.; Wang, Z.; Li, P.; Hu, B.; Chi, C.; Chen, J. Better Clinical Efficiency of TILs for Malignant Pleural Effusion and Ascites than Cisplatin Through Intrapleural and Intraperitoneal Infusion. Anticancer Res. 2017, 37, 4587–4591. [Google Scholar] [CrossRef]
- Markowiak, T.; Larisch, C.; Hofmann, H.S.; Ried, M. Hyperthermic intrathoracic chemotherapy (HITHOC): Narrative review of the current literature, recommendations and future studies. Ann. Transl. Med. 2021, 9, 955. [Google Scholar] [CrossRef]
- Ried, M.; Lehle, K.; Neu, R.; Diez, C.; Bednarski, P.; Sziklavari, Z.; Hofmann, H.S. Assessment of cisplatin concentration and depth of penetration in human lung tissue after hyperthermic exposure. Eur. J. Cardiothorac. Surg. 2015, 47, 563–566. [Google Scholar] [CrossRef]
- Migliore, M.; Fiore, M.; Filippini, T.; Tumino, R.; Sabbioni, M.; Spatola, C.; Polosa, R.; Vigneri, P.; Nardini, M.; Castorina, S.; et al. Comparison of Video-Assisted Pleurectomy/Decortication Surgery Plus Hyperthermic Intrathoracic Chemotherapy with VATS Talc Pleurodesis for the Treatment of Malignant Pleural Mesothelioma: A Pilot Study. Heliyon 2023, 9, e16769. [Google Scholar] [CrossRef]
- Karampinis, I.; Dionysopoulou, A.; Galata, C.; Almstedt, K.; Grilli, M.; Hasenburg, A.; Roessner, E.D. Hyperthermic intrathoracic chemotherapy for the treatment of malignant pleural effusion caused by breast and ovarian cancer: A systematic literature review and pooled analysis. Thorac. Cancer 2022, 13, 883–888. [Google Scholar] [CrossRef]
- Järvinen, T.; Paajanen, J.; Ilonen, I.; Räsänen, J. Hyperthermic Intrathoracic Chemoperfusion for Malignant Pleural Mesothelioma: Systematic Review and Meta-Analysis. Cancers 2021, 13, 3637. [Google Scholar] [CrossRef]
- Zhou, H.; Wu, W.; Tang, X.; Zhou, J.; Shen, Y. Effect of Hyperthermic Intrathoracic Chemotherapy (HITHOC) on the Malignant Pleural Effusion: A Systematic Review and Meta-Analysis. Medicine 2017, 96, e5532. [Google Scholar] [CrossRef] [PubMed]
- Dawson, A.G.; Kutywayo, K.; Mohammed, S.B.; Fennell, D.A.; Nakas, A. Cytoreductive Surgery with Hyperthermic Intrathoracic Chemotherapy for Malignant Pleural Mesothelioma: A Systematic Review. Thorax 2023, 78, 409–417. [Google Scholar] [CrossRef]
- Richards, W.G.; Zellos, L.; Bueno, R.; Jaklitsch, M.T.; Jänne, P.A.; Chirieac, L.R.; Yeap, B.Y.; Dekkers, R.J.; Hartigan, P.M.; Capalbo, L.; et al. Phase I to II Study of Pleurectomy/Decortication and Intraoperative Intracavitary Hyperthermic Cisplatin Lavage for Mesothelioma. J. Clin. Oncol. 2006, 24, 1561–1567. [Google Scholar] [CrossRef]
- Markowiak, T.; Koller, M.; Zeman, F.; Huppertz, G.; Hofmann, H.S.; Ried, M.; HITOC Study Group. Protocol of a Retrospective, Multicentre Observational Study on Hyperthermic Intrathoracic Chemotherapy in Germany. BMJ Open 2020, 10, e041511. [Google Scholar] [CrossRef]
- Sugarbaker, D.J.; Gill, R.R.; Yeap, B.Y.; Wolf, A.S.; DaSilva, M.C.; Baldini, E.H.; Bueno, R.; Richards, W.G. Hyperthermic Intraoperative Pleural Cisplatin Chemotherapy Extends Interval to Recurrence and Survival among Low-Risk Patients with Malignant Pleural Mesothelioma Undergoing Surgical Macroscopic Complete Resection. J. Thorac. Cardiovasc. Surg. 2013, 145, 955–963. [Google Scholar] [CrossRef]
- Klotz, L.V.; Lindner, M.; Eichhorn, M.E.; Grützner, U.; Koch, I.; Winter, H.; Kauke, T.; Duell, T.; Hatz, R.A. Pleurectomy/Decortication and Hyperthermic Intrathoracic Chemoperfusion Using Cisplatin and Doxorubicin for Malignant Pleural Mesothelioma. J. Thorac. Dis. 2019, 11, 1963–1972. [Google Scholar] [CrossRef] [PubMed]
- Ried, M.; Kovács, J.; Markowiak, T.; Müller, K.; Huppertz, G.; Koller, M.; Winter, H.; Klotz, L.V.; Hatz, R.; Zimmermann, J.; et al. Hyperthermic Intrathoracic Chemotherapy (HITOC) after Cytoreductive Surgery for Pleural Malignancies—A Retrospective, Multicentre Study. Cancers 2021, 13, 4580. [Google Scholar] [CrossRef] [PubMed]
- Markowiak, T.; Neu, R.; Ansari, M.K.A.; Großer, C.; Klinkhammer-Schalke, M.; Hofmann, H.S.; Ried, M. Surgical Cytoreduction and HITOC for Thymic Malignancies with Pleural Dissemination. Thorac. Cardiovasc. Surg. 2021, 69, 157–164. [Google Scholar] [CrossRef]
- Ambrogi, M.C.; Bertoglio, P.; Aprile, V.; Chella, A.; Korasidis, S.; Fontanini, G.; Fanucchi, O.; Lucchi, M.; Mussi, A. Diaphragm and Lung-Preserving Surgery with Hyperthermic Chemotherapy for Malignant Pleural Mesothelioma: A 10-Year Experience. J. Thorac. Cardiovasc. Surg. 2018, 155, 1857–1866.e2. [Google Scholar] [CrossRef]
- Aprile, V.; Bacchin, D.; Korasidis, S.; Nesti, A.; Marrama, E.; Ricciardi, R.; Petrini, I.; Ambrogi, M.C.; Paladini, P.; Lucchi, M. Surgical Treatment of Pleural Recurrence of Thymoma: Is Hyperthermic Intrathoracic Chemotherapy Worthwhile? Interact. Cardiovasc. Thorac. Surg. 2020, 30, 765–772. [Google Scholar] [CrossRef]
- Burt, B.M.; Richards, W.G.; Lee, H.S.; Bartel, S.; DaSilva, M.C.; Gill, R.R.; Jaklitsch, M.T.; Johnson, B.E.; Swanson, S.J.; Bueno, R.; et al. A Phase I Trial of Surgical Resection and Intraoperative Hyperthermic Cisplatin and Gemcitabine for Pleural Mesothelioma. J. Thorac. Oncol. 2018, 13, 1400–1409. [Google Scholar] [CrossRef]
- Milano, G.A.; Besnard, T.; Renée, N.; Etienne-Grimaldi, M.; Mouroux, J.; Brouchet, L.; Pop, D.; Garraffo, R.; Venissac, N. A novel intra-thoracic hyperthermic schedule combining gemcitabine (Gem) and cisplatin (Pt) in patients with pleural mesothelioma: A pharmacokinetic analysis. J Clin. Oncol. 2008, 26 (Suppl. 15), 2551. [Google Scholar] [CrossRef]
- Patel, M.D.; Damodaran, D.; Rangole, A.; Shaikh, S.; Shah, K.; Bagwade, R.; Bhatt, A. Hyperthermic Intrathoracic Chemotherapy (HITHOC) for Pleural Malignancies—Experience from Indian Centers. Indian J. Surg. Oncol. 2019, 10 (Suppl. 1), 91–98. [Google Scholar] [CrossRef]
- Singh, S.; Armstrong, A.; Robke, J.; Waggoner, S.; Debernardo, R. Hyperthermic Intra-Thoracic Chemotherapy (HITeC) for the Management of Recurrent Ovarian Cancer Involving the Pleural Cavity. Gynecol. Oncol. Case Rep. 2014, 9, 24–25. [Google Scholar] [CrossRef]
- Djelil, D.; Clarac, U.; Eyrauld, D.; Doat, S.; Lucidarne, O.; Pocard, M. Abdominal and Concomitant Thoracic HIPEC, Named HITAC: Technique and Post-Operative Courses. J. Visc. Surg. 2025, 162, 96–101. [Google Scholar] [CrossRef]
- Hansen, P.S.; Graversen, M.; Detlefsen, S.; Mortensen, M.B. Review on Treatment of Pleural Metastasis and Malignant Pleural Effusion with Pressurized IntraThoracic Aerosol Chemotherapy (PITAC). Pleura Peritoneum 2024, 9, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Kuchen, N.; Cereser, T.; Hailemariam, S.; Schoeb, O. Safety and Efficacy of Pressurized Intraperitoneal/Intrathoracic Aerosol Chemotherapy (PIPAC/PITAC) in Patients with Peritoneal and/or Pleural Carcinomatosis: A Preliminary Experience. J. Med. Therap. 2018, 2, 1000127. [Google Scholar] [CrossRef]
- Hansen, P.; Graversen, M.; Detlefsen, S.; Ainsworth, A.; Fristrup, C.; Eckhoff, L.; Jelin-Klaric, M.; Mortensen, M. Implementation and Evaluation of Pressurized IntraThoracic Aerosol Chemotherapy (PITAC) for the Treatment of Patients with Malignant Pleural Effusion: Study Protocol for the Danish Phase-I PITAC-OPC5 Study. Pleura Peritoneum 2024, 9, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Drevet, G.; Maury, J.M.; Bakrin, N.; Tronc, F. Technique of Pressurized Intrathoracic Aerosol Chemotherapy (PITAC) for Malignant Pleural Effusion. Pleura Peritoneum 2020, 5, 20200129. [Google Scholar] [CrossRef]
- Giger-Pabst, U.; Demtröder, C.; Falkenstein, T.A.; Ouaissi, M.; Götze, T.O.; Rezniczek, G.A.; Tempfer, C.B. Pressurized IntraPeritoneal Aerosol Chemotherapy (PIPAC) for the Treatment of Malignant Mesothelioma. BMC Cancer 2018, 18, 442. [Google Scholar] [CrossRef]
- Chriqui, L.E.; Abdelnour-Berchtold, E.; Zanfrini, E.; Devesa-Perez, S.; Gonzalez, M.; Krueger, T.; Ellefsen, K.; Destaillats, A.; Bonnet, D.; Hübner, M.; et al. Phase I Clinical Trial Testing the Dose Escalation and Expansion of Pressurized IntraThoracic Hyperthermic Aerosol Cisplatin Administration (PITHAC) for the Management of Pleural Carcinosis. Cancer Treat. Res. Commun. 2024, 42, 100858. [Google Scholar] [CrossRef]
- Huang, J.; Chan, S.C.; Pang, W.S.; Chow, S.H.; Lok, V.; Zhang, L.; Lin, X.; Lucero-Prisno, D.E., III; Xu, W.; Zheng, Z.J.; et al. NCD Global Health Research Group, Association of Pacific Rim Universities (APRU). Global Incidence, Risk Factors, and Temporal Trends of Mesothelioma: A Population-Based Study. J. Thorac. Oncol. 2023, 18, 792–802. [Google Scholar] [CrossRef]
- Pass, H.I.; Levin, S.M.; Harbut, M.R.; Melamed, J.; Chiriboga, L.; Donington, J.; Huflejt, M.; Carbone, M.; Chia, D.; Goodglick, L.; et al. Fibulin-3 as a Blood and Effusion Biomarker for Pleural Mesothelioma. N. Engl. J. Med. 2012, 367, 1417–1427. [Google Scholar] [CrossRef]
- Creaney, J.; Robinson, B.W.S. Malignant Mesothelioma Biomarkers: From Discovery to Use in Clinical Practice for Diagnosis, Monitoring, Screening, and Treatment. Chest 2017, 152, 143–149. [Google Scholar] [CrossRef]
- Lancaster, H.L.; Heuvelmans, M.A.; Oudkerk, M. Low-Dose Computed Tomography Lung Cancer Screening: Clinical Evidence and Implementation Research. J. Intern. Med. 2022, 292, 68–80. [Google Scholar] [CrossRef]
- Tomlinson-Hansen, S.E.; Budh, D.P.; Sapra, A. Breast Cancer Screening in the Average-Risk Patient. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Gupta, S. Screening for Colorectal Cancer. Hematol. Oncol. Clin. N. Am. 2022, 36, 393–414. [Google Scholar] [CrossRef] [PubMed]
- Umurzakov, K.T.; Shalgumbayeva, G.M.; Kaydarova, D.R.; Smail, Y.; Ibrayev, A.; Sagidullin, S.O.; Semenova, Y.M. Epidemiological Characteristics of Male Reproductive Cancers in the Republic of Kazakhstan: Ten-Year Trends. Iran J. Public Health 2022, 51, 1807–1816. [Google Scholar] [CrossRef] [PubMed]
- Shalgumbayeva, G.; Zhabagina, A.; Kuanysheva, A.; Sandybayev, M.; Faizova, R.; Belikhina, T.; Prokazyuk, A.; Kulabukhova, N.; Semenova, Y. Incidence and Mortality of Cervical Cancer in the Republic of Kazakhstan: 2007–2016. Iran J. Public Health 2020, 49, 1807–1816. [Google Scholar] [CrossRef]
- Jain, M.; Crites, M.K.; Rich, P.; Bajantri, B. Malignant Pleural Mesothelioma: A Comprehensive Review. J. Clin. Med. 2024, 13, 5837. [Google Scholar] [CrossRef]
- Karpathiou, G.; Benli, J.; Désage, A.L.; Jacob, M.; Tiffet, O.; Peoc’h, M.; Froudarakis, M.E. Prognostic Role of Immune Microenvironment in Pleural Metastases from Breast and Lung Adenocarcinomas. Ann. Transl. Med. 2022, 10, 430. [Google Scholar] [CrossRef]
- Wang, C.Q.; Huang, X.R.; He, M.; Zheng, X.T.; Jiang, H.; Chen, Q.; Fan, T.Y.; Zhan, L.; Ling, J.; Feng, J.H.; et al. Intrapleural Administration with Rh-Endostatin and Chemical Irritants in the Control of Malignant Pleural Effusion: A Systematic Review and Meta-Analysis. Front. Oncol. 2021, 11, 649999. [Google Scholar] [CrossRef]
- Halstead, J.C.; Lim, E.; Venkateswaran, R.M.; Charman, S.C.; Goddard, M.; Ritchie, A.J. Improved Survival with VATS Pleurectomy–Decortication in Advanced Malignant Mesothelioma. J. Surg. Oncol. 2005, 31, 314–320. [Google Scholar] [CrossRef]
- Migliore, M. Further Insights into MARS 2. Lancet Respir. Med. 2024, 12, e54. [Google Scholar] [CrossRef]
First Author, Year of Publication [Reference] | Regimen Composition and Dosage | Route of Administration and Therapy Duration |
---|---|---|
First-line therapies | ||
Vogelzang et al., 2003 [41] | Pemetrexed 500 mg/m2 and cisplatin 75 mg/m2 | * IV, every 21 days |
van Meerbeeck et al., 2005 [42] | Raltitrexed 3 mg/m2 and cisplatin 80 mg/m2 | |
Castagneto et al., 2008 [43] | Pemetrexed 500 mg/m2 and carboplatin ^ AUC 5 mg/mL/min | |
Byrne at al., 1999 [49] | Gemcitabine 1000 mg/m2 and cisplatin 100 mg/m2 | IV, on days 1, 8, and 15, every 28 days |
Steele et al., 2000 [52] | Vinorelbine, 30 mg/m2 | IV, every 7 days |
Second-, third-line therapies | ||
Zauderer et al., 2014 [57] | Vinorelbine, 25 mg/m2 | IV, on days 1 and 8, every 21 days |
Gemcitabine 1000 mg/m2 | IV, on days 1 and 8, every 21 days or days 1, 8, and 15, every 28 days | |
Koda et al., 2021 [58] | Irinotecan 60 mg/m2 and gemcitabine 800 mg/m2 | IV, on days 1 and 8, every 21 days |
Metaxas et al., 2020 [59] | Lurbinectedin 3.2 mg/m2 | IV, every 21 days |
First Author, Year of Publication [Reference] | Primary Tumor Histology | Regimen Composition and Dosage | Route of Administration and Therapy Duration |
---|---|---|---|
Manegold et al., 2000 [61] | Nonsquamous ^ NSCLC | Pemetrexed 500 mg/m2 and cisplatin 75 mg/m2 | * IV, every 21 days |
Scagliotti et al., 2008 [62] | Gemcitabine 1250 mg/m2 and cisplatin 75 mg/m2 | IV, on days 1 and 8, every 21 days | |
Zukin et al., 2013 [63] | Pemetrexed 500 mg/m2 and carboplatin ª AUC 5 mg/mL/min | IV, every 21 days | |
Scagliotti et al., 2008 [62] | Squamous NSCLC | Gemcitabine 1250 mg/m2 and cisplatin 75 mg/m2 | IV, on days 1 and 8, every 21 days |
Pirker et al., 2009 [65] | Vinorelbine 25 mg/m2 and cisplatin 80 mg/m2 | ||
Sandler et al., 2006 [64] | Paclitaxel 200 mg/m2 and carboplatin AUC 6 mg/mL/min | IV, every 21 days | |
Skarlos et al., 1994 [71] | ° SCLC | Cisplatin 50 mg/m2 or carboplatin 300 mg/m2 and etoposide 300 mg/m2 | IV, cisplatin on days 1–2, carboplatin on day 1, etoposide on days 1–3, every 21 days |
Lara et al., 2009 [76] | Cisplatin 60 mg/m2 and irinotecan 60 mg/m2 | IV, cisplatin on day 1, irinotecan on days 1, 8, and 15, every 28 days | |
de Jong et al., 2007 [77] | Cyclophosphamide 1000 mg/m2 doxorubicin 45 mg/m2 and etoposide 100 mg/m2 | IV, cyclophosphamide and doxorubicin on day 1, etoposide on days 1–3, every 21 days | |
Carboplatin AUC 7 mg/mL/min and paclitaxel 175 mg/m2 | IV, every 21 days | ||
Satouchi et al., 2014 [78] | Cisplatin 50 mg/m2 and amrubicin 40 mg/m2 | IV, amrubicin on days 1–3, cisplatin on day 1, every 21 days |
First Author, Year of Publication [Reference] | Primary Tumor Site | Regimen Composition and Dosage | Route of Administration and Therapy Duration |
---|---|---|---|
Katsumata et al., 2009 [79] | Breast cancer | Doxorubicin 40 mg/m2 and cyclophosphamide 500 mg/m2, | * IV, every 21 days |
Docetaxel 60 mg/m2 | |||
Gennatas et al., 2006 [83] | Gemcitabine 1000 mg/m2 and vinorelbine 25 mg/m2 | IV, on days 1 and 8, every 21 days | |
González-Martín et al., 2023 [85] | Ovarian cancer | Paclitaxel 175 mg/m2 and carboplatin ª AUC 5 mg/mL/min | IV, every 21 days |
Kushner et al., 2007 [86] | Docetaxel 35 mg/m2 and carboplatin ª AUC 2 mg/mL/min | IV, on days 1, 8, and 15, every 28 days | |
Wagner et al., 2012 [87] | * PLD 30 mg m−2 and carboplatin AUC 5 mg/mL/min | IV, every 28 days | |
Kunitoh et al., 2009 [91] | Thymic cancer | Cisplatin 25 mg/m−2 and vincristine 1 mg/m−2 and doxorubicin 40 mg/m−2 and etoposide 80 mg/m−2 | IV, cisplatin on weeks 1–9; vincristine on weeks 1, 2, 4, 6, and 8; doxorubicin and etoposide on days 1–3 of weeks 1, 3, 5, 7, and 9 |
Aoki et al., 2014 [93] | ^ PMBCL | Cyclophosphamide 750 mg/m2, doxorubicin 50 mg/m2, vincristine 1.4 mg/m2 and prednisolone 40 mg/m2 | IV, cyclophosphamide, doxorubicin, vincristine, every 21 days Oral prednisolone on days 1–5 of every 21 days |
First Author, Year of Publication [Reference] | Pharmacological Group | Regimen Composition and Dosage | Route of Administration and Therapy Duration | Combination Chemotherapy |
---|---|---|---|---|
Targeted therapy | ||||
Zalcman et al., 2016 [94] | * Anti-VEGF | Bevacizumab 15 mg/kg | ° IV, every 21 days | Pemetrexed and cisplastin |
Pinto et al., 2021 [98] | Ramucirumab 10 mg/kg | Gemcitabine | ||
Immunotherapy | ||||
Baas et al., 2021 [114] | Immune checkpoint inhibitor | Nivolumab 3 mg/kg and ipilimumab 1 mg/kg | IV, Nivolumab, every 14 days; ipilimumab, every 42 days | - |
Chu et al., 2023 [116] | Pembrolizumab 200 mg | IV, every 21 days | Pemetrexed and cisplastin |
First Author, Year of Publication [Reference] | Pharmacological Group | Primary Tumor Histology | Regimen Composition and Dosage | Route of Administration and Therapy Duration | Combination Chemotherapy |
---|---|---|---|---|---|
Targeted therapy | |||||
Tamiya et al., 2013 [122] | * Anti-VEGF | Nonsquamous ª NSCLC | Bevacizumab 15 mg/kg | ° IV, every 21 days | Carboplatin and paclitaxel |
Usui et al., 2016 [123] | Carboplatin and pemetrexed | ||||
Nie et al., 2020 [124] | NSCLC | Bevacizumab 7.5 mg/kg |
^
IP, single time; IV, every 21 days | - | |
Takemoto et al., 2024 [126] | Ramicrumab 10 mg/kg | IV, every 21 days | Docetaxel | ||
Immunotherapy | |||||
Lv et al., 2021 [133] | Immune checkpoint inhibitor | NSCLC | Sintilimab 100 mg | IP, single time | Platinum analogue and pemetrexed |
First Author, Year of Publication [Reference] | Primary Tumor Histology | Synchronous Surgery | Regimen Composition and Dosage | Perfusion Time, Temperature |
---|---|---|---|---|
Richards et al., 2006 [145] | * MPM |
Pleurectomy/ decortication | Cisplatin 50–250 mg/m2 | 60 min, 42 °C |
Klotz et al., 2019 [148] | Cisplatin 200 mg/m2 and doxorubicin 100 mg | 90 min, 42 °C | ||
Ambrogi et al., 2018 [151] | Cisplatin 80 mg/m2 and doxorubicin 25 mg/m2 | 60 min, 42.5 °C | ||
Burt et al., 2018 [153] |
Extrapleural pneumonectomy or pleurectomy/ decortication | Cisplatin 175 mg/m2 and gemcitabine 100–1100 mg/m2 | 60 min, 40–42 °C | |
Patel et al., 2019 [155] | MPM, metastatic pleural disease | Cisplatin 50–250 mg/m2 and mitomycin C 15 mg | 60–90 min, 40–43 °C | |
Singh et al., 2014 [156] | Metastatic pleural disease due to ovarian cancer | Pleurectomy | Paclitaxel 135 mg/m2 and cisplatin 80 mg/m2, doxorubicin 15 mg/m2 or paclitaxel 175 mg/m2 alone | 45 min, 42 °C |
First Author, Year of Publication [Reference] | Indication | Synchronous Surgery | Regimen Composition and Dosage | Perfusion Time, Pressure |
---|---|---|---|---|
Drevet et al., 2020 [161] | * MPE of any cause | ª VATS | Cisplatin 10.5 mg/m2 and doxorubicin 2.1 mg/m2 | 30 min, 12 mmHg CO2 |
Kuchen et al., 2018 [159] | ^ MPD of any cause | Wedge resection | Cisplatin 7.5 mg/m2 and doxorubicin 1.5 mg/m2 or oxaliplatin 92 mg/m2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semenova, Y.; Burkitbayev, Z.; Kalibekov, N.; Digay, A.; Zhaxybayev, B.; Shatkovskaya, O.; Khamzina, S.; Zharlyganova, D.; Kuanysh, Z.; Manatova, A. The Evolving Role of Chemotherapy in the Management of Pleural Malignancies: Current Evidence and Future Directions. Cancers 2025, 17, 2143. https://doi.org/10.3390/cancers17132143
Semenova Y, Burkitbayev Z, Kalibekov N, Digay A, Zhaxybayev B, Shatkovskaya O, Khamzina S, Zharlyganova D, Kuanysh Z, Manatova A. The Evolving Role of Chemotherapy in the Management of Pleural Malignancies: Current Evidence and Future Directions. Cancers. 2025; 17(13):2143. https://doi.org/10.3390/cancers17132143
Chicago/Turabian StyleSemenova, Yuliya, Zhandos Burkitbayev, Nurtas Kalibekov, Alexandr Digay, Bakhyt Zhaxybayev, Oxana Shatkovskaya, Saule Khamzina, Dinara Zharlyganova, Zhuldyz Kuanysh, and Almira Manatova. 2025. "The Evolving Role of Chemotherapy in the Management of Pleural Malignancies: Current Evidence and Future Directions" Cancers 17, no. 13: 2143. https://doi.org/10.3390/cancers17132143
APA StyleSemenova, Y., Burkitbayev, Z., Kalibekov, N., Digay, A., Zhaxybayev, B., Shatkovskaya, O., Khamzina, S., Zharlyganova, D., Kuanysh, Z., & Manatova, A. (2025). The Evolving Role of Chemotherapy in the Management of Pleural Malignancies: Current Evidence and Future Directions. Cancers, 17(13), 2143. https://doi.org/10.3390/cancers17132143